3.5.1 直角三角形的性质和判定(1)
八年级上册数学-直角三角形的性质与判定(1)
教学用具:课件,
教学方法:课件辅助教学,讨论,交流.
教学过程
一Hale Waihona Puke 、预习与交流1、什么叫直角三角形?
A
C
B
2、直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?
二、合作与探究
(1)研究直角三角形性质定理一
如图:∠A与∠B有何关系?为什么?
A
C
B
D
四:巩固练习
(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数为;
(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A=,∠B=;
(3)如图,在Rt△ABC中,∠ACB=900,CD是斜边AB上的高,那么,与∠B互余的角有,与∠A互余的角有,与∠B相等的角有,∠A相等的角有.
课题:直角三角形的性质与判定(1)第2课时总序第教案
课型:新授课编写时间:年月日执行时间:年月日
教学目标:1、掌握“直角三角形的两个锐角互余”的定理。
批注:
2、巩固利用添辅助线证明有关几何问题的方法。
3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
教学重点:1、直角三角形斜边上的中线性质定理的证明思想方法.
归纳:定理1:
A
C
B
D
(2)猜一猜量一量证一证
直角三角形斜边上的中线等于斜边的一半吗?
命题:直角三角形斜边上的中线等于斜边的一半.
已知:在Rt△ABC中,∠ACB=900,CD是斜边AB的中线.
求证:CD= AB
定理2:直角三角形斜边上的中线等于斜边的一半.
三。知识应用:
例:如果三角形一边上的中线等于这条边的一半,求证:这个三角形是直角三角形。
第25课时直角三角形中30度角所对的直角边是斜边的一半
第三章 全等三角形3.5.1 直角三角形的性质和判定第二课时 含30°角的直角三角形的性质与判定一.预习题纲(1)学习目标展示1.经历探索活动,了解含30°角的直角三角形的性质2.在具体情景中运用含30°角的直角三角形的性质与判定来解决数学问题(2)预习思考1.在直角三角形中,如果一个锐角为30°,那么另一个角是多少?2.在直角三角形中,如果一个锐角为30°,那么斜边上的中线将这个直角三角形分成几个等腰三角形?3.在直角三角形中,如果一个锐角为30°且这个角所对的直角边长为a ,那么斜边长是多少?二.经典例题例1.如图,在四边形ABCD 中,AD ∥BC ,∠A=90°,△DBC 是等边三角形,已知BC=12,求AD 的长 【分析】因AD ∥BC ,∠A=90°,∴∠ABC=90°,又△DBC是等边三角形,∴∠ABD=30°,在Rt △ABD 中利用“直角三角形中30°角所对的直角边是斜边的一半”可求得AD 的长【简解】因AD ∥BC ,∴∠A+∠ABC=180,又∠A=90°,∴∠ABC=90°,因△DBC 是等边三角形,∴∠DBC=60°,∴∠ABD=30°,因BD=12,AD=6【规律总结】在直角三角形中,如果有一个角是30°,常应用“直角三角形中30°角所对的直角边是斜边的一半”来求线段的长或证明线段的倍.分关系三.易错例题例2.若等腰三角形一腰上的高等于腰长的一半,求这个等腰三角形顶角的度数【错解】如图1,在△ABC 中,BD ⊥AC ,因BD=12AB ,∴∠A=30° 【错解分析】错解只考虑了△ABC 是锐角三角形的情况,忽视了△ABC 为钝角三角形的另一种情况【正解】当△ABC 是锐角三角形时,顶角为30°,当△ABC 为钝角三角形时,如图2,CD ⊥BA 交BA 的延长线于D ,因CD=12AC ,∴∠DAC=30°,∴∠BAC=150° 【点拨】在等腰三角形中,当三角形的形状不确定时常分类讨论一.课前预习A B C DA B C D 图1 AB C D 图21. 在直角三角形中,如果一个锐角为30°,那么它所对的直角边等于2. 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于 度3.在Rt △ABC 中,∠C=90°,∠A=30°,BC=5,则AB=二.当堂训练知识点一:直角三角形中,30°锐角所对的直角边等于斜边的一半1.如图,在△ABC 中,∠A=30°,∠ACB=90°,CD ⊥AB 于D ,若BC=3,则AB= ,BD=2.在△ABC 中,∠A :∠B :∠C=1:2:3,若AB=10cm ,则BC=3.一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A 处测得某灯塔位于它的北偏东30°的B 处,上午10时行至C 处,测得灯塔恰好在它的正北方向,问上午8时,该船与灯塔相距多少海里?知识点二: 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30度 4.如图,BD 是△ABC 的高,CD=1,BC=2,AD=3,则∠ABC=5.在直角三角形中,最长边为4,最短边为2,则最长边与最短边的夹角为6.在△ABC 中,如果∠A+∠B=∠C ,且AC=12AB ,求∠B 的度数课时测评:(40分钟,满分100分)一.选择题 (每小题5分,共25分)1. 如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 的度数为()A .25°B .30°C .45 °D .60°2.△ABC 中,∠A :∠B :∠C=1:2:3,则BC :AB 等于 ( )A B C D 第1题 AB C D 第4题 A B DC E 第1题 东 北ABC 30° 第3题A . 2:1B .1:2C .1:3D .2 :33. 等腰三角形的底角为15,腰长为12,则腰上的高为()A .3B .4C .6D .124. 在△ABC 中,∠C=90,ED 垂直平分AB 交于D ,交AC 于E ,∠A=30°,则AE 与EC 的关系为( )A .AE=2ECB .AE=EC C .EC=2AED .AE=12EC 5.如图,∠BAC=90°,AD ⊥BC ,DE ⊥AC ,DF ⊥AB ,∠B=30°,这样图中存在着某些三角形,使其中的一边是另一边的一半,则图中这样的三角形共有( ) A .4个 B .6个 C .7个 D .8个二.填空题(每小题5分,共25分)6.在△ABC 中,如果∠A=12∠B ,∠A=13∠C ,则∠A= ,∠B= ,∠C= 7.在直角三角形中,如果有一个锐角多比另一个锐角大30°,则较大锐角为8.△ABC 中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.9.如图,ΔABC 中,∠C=90º,∠B=15º,AB 的垂直平分线交BC 于D ,若BD=4cm ,则AC=______10.如图,在△ABC 中,∠A=90°,∠ABC=60°,BD 平分∠ABC ,AC=12cm ,则CD =三.解答题11.(本题满分12分)如图所示:在ΔABC 中,∠C=90°,∠B=15°AB 的垂直平分线交BC 于D ,且BD=8cm ,求AC 的长.12.(本题满分12分)一艘轮船由南向北航行,在A 处测得小岛P 在西偏北75°方向上,两小时后,船在B 处,测得小岛在西偏北60°方向上,在小岛周围18海里内有暗礁,若轮AB C D EF 第5题 D C B A 第9题 A B C D 第10题 D E C B A 第11题船仍按每小时15海里的速度向前航行,有无触礁危险?13.(本题满分12分)已知:△ABC 中,∠ACB=90°,AD=BD ,∠A=30°求证:△BDC 是等边三角形.14.(本题满分14分)已知:如图,△ABC 中,AB=AC ,∠A=120°,AB 的垂直平分线交AB 于N ,交BC 于M ,猜想CM 与BM 之间有何数量关系,并证明你的猜想。
湘教版数学八年级下册1.1《直角三角形的性质与判定(Ⅰ)》教学设计1
湘教版数学八年级下册1.1《直角三角形的性质与判定(Ⅰ)》教学设计1一. 教材分析湘教版数学八年级下册1.1《直角三角形的性质与判定(Ⅰ)》是学生在掌握了三角形基本概念和性质的基础上,进一步研究直角三角形的特殊性质。
本节课主要让学生了解并证明直角三角形的性质,如勾股定理、直角三角形的边角关系等,并学会运用这些性质解决实际问题。
教材通过丰富的例题和习题,引导学生掌握直角三角形的性质,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在七年级已经学习了三角形的基本概念和性质,对三角形有一定的认识。
但直角三角形作为一种特殊的三角形,其性质和判定方法还需要进一步学习。
学生在学习过程中,需要通过观察、操作、思考、交流等活动,发现直角三角形的性质,并能够运用这些性质解决实际问题。
三. 教学目标1.了解直角三角形的性质,掌握勾股定理,并能运用性质解决实际问题。
2.培养学生的观察能力、操作能力、逻辑思维能力和解决问题的能力。
3.激发学生对数学的兴趣,培养合作意识,提高学生的数学素养。
四. 教学重难点1.重点:直角三角形的性质和勾股定理。
2.难点:勾股定理的证明和运用。
五. 教学方法1.采用问题驱动法,引导学生发现直角三角形的性质。
2.运用几何画板等软件,辅助证明勾股定理。
3.通过小组合作、讨论交流,培养学生的合作意识和解决问题的能力。
4.运用例题和习题,巩固所学知识。
六. 教学准备1.准备相关课件和教学素材。
2.准备几何画板等软件,用于辅助证明勾股定理。
3.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和性质,引出直角三角形作为一种特殊的三角形,其性质和判定方法值得研究。
2.呈现(10分钟)利用课件展示直角三角形的性质,引导学生发现并证明勾股定理。
在此过程中,注意引导学生运用已学的知识,如三角形的性质、 Pythagoreantheorem 等。
3.操练(10分钟)学生分组讨论,运用直角三角形的性质解决实际问题。
八年级数学下册 随堂训练 1.1 直角三角形的性质和判定(I)(第1课时)课件 (新版)湘教版
B.∠A∶∠B∶∠C=1∶2∶3
C.∠A-∠B=90°
D.∠A=51∠B=16∠C
直角三角形斜边上的中线等于斜边的一半 8.如图,公路 AC、BC 互相垂直,公路 AB 的中点 M 与点 C 被湖隔开,若 测得 AM 的长为 1.2km,则 M、C 两点间的距离为( D )
A.0.5km
B.0.6km
A.8
B.9.5
C.11
D.14
4.如图,在△ABC 中,∠A=90°,点 D 在 AC 边上,DE∥BC.若∠1=155°, 则∠B 的度数为 65° .
5.如图,在△ABC 中,AB=AC=6,AD 是底边上的高,E 为 AC 中点,则 DE= 3 .
6.如图,AD∥BC,∠DAB 和∠ABC 的平分线相交于 CD 边上的一点 E,F 为 AB 边的中点.求证:EF=21AB.
7.如图,四边形 ABCD 中,∠BAD=∠BCD=90°,点 M 为 BD 的中点, 点 N 为 AC 的中点.MN 与 AC 的位置关系如何?证明你的猜想.
解:MN⊥AC.证明:连接 AM、CM,∵∠BAD=90°,点 M 为 BD 中点,∴ AM=21BD.同理:CM=12BD,∴AM=CM.∵点 N 为 AC 中点,∴MN⊥AC.
l2 上,∠ACB=90°,若∠1=15°,则∠2 的度数是( B )
A.35°
B.30°
C.25°
D.20°
2.已知:在 Rt△ABC 中,∠C=90°,∠A-∠B=20°,则∠A= 55° , ∠B= 35° .
3.如图,在△ABC 中,∠ACB=90°,CD⊥AB 于 D,那么与∠A 互余的角 有 ∠ACD、∠B ;与∠A 相等的角有 ∠BCD .
C.0.9km
三角形判定定理(一)
三角形判定定理(一)引言概述:三角形判定定理是数学中研究三角形性质的重要理论。
通过判定三个已知边长的数值是否能够构成一个三角形,并进一步确定该三角形的性质和特点。
本文将介绍三角形判定定理中的第一部分内容,包括三个判定条件及其应用。
正文:1. 第一判定条件:任意两边之和大于第三边。
- 两边之和等于第三边,无法构成三角形。
- 两边之和小于第三边,无法构成三角形。
- 两边之和大于第三边,可以构成三角形。
- 应用:通过已知的三边长,使用第一判定条件可以判断是否能够构成一个三角形。
2. 第二判定条件:两边的差小于第三边。
- 两边的差等于第三边,无法构成三角形。
- 两边的差大于第三边,无法构成三角形。
- 两边的差小于第三边,可以构成三角形。
- 应用:对于已知的三边长,在使用第一判定条件通过后,使用第二判定条件可以进一步确认三角形是否可行。
3. 第三判定条件:任意两边之比大于第三边之比。
- 两边之比等于第三边之比,无法构成三角形。
- 两边之比小于第三边之比,无法构成三角形。
- 两边之比大于第三边之比,可以构成三角形。
- 应用:通过已知的三边长比例关系,使用第三判定条件可以判断是否能够构成一个三角形。
4. 特殊情况的考虑:- 等边三角形:三边长度相等。
- 等腰三角形:两边长度相等。
- 直角三角形:一条边为直角边(与直角相对)。
- 钝角三角形:三个角中至少有一个角大于90度。
- 锐角三角形:三个角均小于90度。
- 应用:根据特殊情况的考虑,可以进一步确定三角形的性质和分类。
5. 示例和练习:- 提供一些具体的示例,让读者能够更好地理解三角形判定定理的应用。
- 给出一些判定是否为三角形的练习题,帮助读者巩固所学知识。
总结:三角形判定定理(一)由三个判定条件组成,分别是任意两边之和大于第三边、两边的差小于第三边以及任意两边之比大于第三边之比。
通过应用这些条件,我们可以判断已知边长能否构成三角形,并进一步了解三角形的性质和特点。
(完整版)直角三角形的性质和判定
直角三角形的性质和判定一、知识要点1、直角三角形的性质:(1)在直角三角形中,两锐角 _____________________ ;(2) _________________________________________ 在直角三角形中,斜边上的中线等于■勺一半;(3) _______________________________________________________________________ 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于 _________________________________ ;(4) ________________________________________________________________________________ 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于 ____________________ 。
2、直角三角形的判定:(1) ____________________ 有一个角等于■勺三角形是直角三角形;(2) ____________________ 有两个角■勺三角形是直角三角形;(3) _________________________________________ 如果三角形一边上的中线等于这条边的 ____________________ 那么这例2、如图,在Rt△ ABC中, CD是斜边上的中线, CEL AB 已知AB=10cm DE=2.5crr,求CD和/ DCE个三角形是直角三角形。
二、知识运用典型例题例1、在厶ABC中,/ C=90°,/ A=30°, CD丄AB,⑴若BD=8求AB的长;(2)若AB=8求BD的长。
例3、如图,在△ ABC 中,/ C=90°,Z A=x °,Z B=2 x。
直角三角形的性质和判定(1)(教案练习)
1.2.1直角三角形的性质与判定练习题一、选择题1.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.512、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1 C.n2﹣1 D.n2+15.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或76.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm7.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题8.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2= .9.如图,△ABC中,AC=6,AB=BC=5,则BC边上的高AD=______.10.如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是.11.直角三角形的三边长为连续偶数,则其周长为 cm.12.如图,△ABC中,∠C=90°,AB垂直平分线交BC于D.若BC=8,AD=5,则AC等于.三、解答题13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和是多少?14. 如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5 cm,求AB的长.15.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)答案:1. C分析:根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.解:∵=15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.2.C(提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7)故选C;3. B分析:先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.4. D分析:根据勾股定理直接解答即可.解:两条直角边与斜边满足勾股定理,则斜边长是:===n2+1.故选D.5. D分析:分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D .6. D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,)故选D .7. A分析:首先根据翻折的性质得到ED=BE ,再设出未知数,分别表示出线段AE ,ED ,BE 的长度,然后在Rt △ABE 中利用勾股定理求出AE 的长度,进而求出AE 的长度,就可以利用面积公式求得△ABE 的面积了.解:∵长方形折叠,使点B 与点D 重合,∴ED=BE ,设AE=xcm ,则ED=BE=(9﹣x )cm ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+x 2=(9﹣x )2,解得:x=4,∴△ABE 的面积为:3×4×=6(cm 2).故选:A .8.分析:由三角形ABC 为直角三角形,利用勾股定理根据斜边AB 的长,可得出AB 的平方及两直角边的平方和,然后将所求式子的后两项结合,将各自的值代入即可求出值. 解:∵△ABC 为直角三角形,AB 为斜边,∴AC 2+BC 2=AB 2,又AB=2,∴AC 2+BC 2=AB 2=4,则AB 2+BC 2+CA 2=AB 2+(BC 2+CA 2)=4+4=8.故答案为:89. 3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);10. 分析:在直角三角形ABE 中,由AE 与BE 的长,利用勾股定理求出AB 的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形﹣S△ABE=52﹣×3×4=25﹣6=19,故答案为:19.11.分析:设直角三角形的三边边长分别为2n﹣2,2n,2n+2,由勾股定理得:两直角边的平方和等于斜边的平方,据此列出关于n的方程,求出符合题意n的值,即求出了直角三角形的三边长,之后求出周长即可.解:设直角三角形的三边边长分别为2n﹣2,2n,2n+2.由勾股定理得:(2n﹣2)2+(2n)2=(2n+2)2,解得:n1=4,n2=0(不合题意舍去),即:该直角三角形的三边边长分别为6cm,8cm,10cm.所以,其周长为6+8+10=24cm.12.分析:根据线段垂直平分线的性质可求得BD的长,从而求得CD的长,再根据勾股定理即可求得AC的长.解:∵AB垂直平分线交BC于D,AD=5,∴BD=AD=5,∵BC=8,∴CD=BC﹣BD=3,∴AC==4,故答案是:4.13.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A ,B ,C ,D 的面积之和=49cm 2.故答案为:49cm 2. 14.解:.∵在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,∴∠ABD=∠CBD=30°.∴AD=DB.又∵Rt △CBD 中,CD=5 cm ,∴BD=10 cm.∴BC=22BD CD -=22105-=53(cm).∴AB=2BC=103 cm.15. 解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,∴计划修筑的这条公路不会穿过公园.。
(完整版)直角三角形的判定和性质
直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。
【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。
则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)
∠A=90°-∠B,
④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有
_____①__②__③__(填序号).
世纪金榜导学号
第十七页,共三十四页。
知识点二 直角三角形斜边上中线(zhōngxiàn)的性质 (P3探究拓展)
第十八页,共三十四页。
【典例2】 如图,△ABD是以BD为斜边的等腰直 角三角形,△BCD中,∠DBC=90°, ∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,求∠AFB 度数(dù shu). 世纪金榜导学号
)
C
A.75° B.65° C.55° D.45°
第七页,共三十四页。
2.具备下列条件(tiáojiàn)的△ABC中,不是直角三角形的是 ( D) A.∠A+∠B=∠C
B.∠A-∠B=∠C
第八页,共三十四页。
C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
第九页,共三十四页。
3.(2019·睢宁县期中(qī zhōnɡ))已知一个直角三角形的斜边长 为12,则其斜边上的中线长为_____6_.
第十页,共三十四页。
知识点一直角三角形两锐角(ruìjiǎo)的关系及应用 (P2议一议拓展)
第十一页,共三十四页。
【典例1】如图,在△ABC中, ∠ACB=90°,CD是高. (1)图中有几个直角三角形?是哪几个? (2)∠1和∠A有什么(shén me)关系?∠2和∠A呢?还有哪些
锐角相等?
第二十五页,共三十四页。
【火眼金睛】 如图,△ABC为等腰直角三角形,AD为斜边BC上的高,E,F分 别(fēnbié)为AB和AC的中点,试判断DE和DF的关系.
第二十六页,共三十四页。
第二十七页,共三十四页。
沪教版 八年级(上)数学 秋季课程 第18讲 直角三角形的判定、性质和推论
直角三角形是特殊的三角形,本节主要讨论直角三角形全等的判定定理和性质,难点是直角三角形的性质及应用.综合性较强,会牵涉到辅助线的添加,连接中线,将散落的条件集中到直角三角形中进行求解.1、直角三角形全等的判定方法:(1)直角三角形是特殊的三角形,对于一般三角形全等的判定方法,直角三角形都适用;(2)直角三角形还有一个特殊的判定方法:有一条直角边和斜边对应相等的两个直角三角形全等(简记“H.L”).直角三角形的全等判定及性质知识结构模块一:直角三角形全等的判定知识精讲内容分析【例1】 如图,∠D =∠C =90°,请添加一个条件,使得△ABC ≌△BAD ,并在括号内写出判定的依据。
(1)AD =__________(); (2)∠DAB =_________ ().【例2】 已知:如图,EF ⊥AD ,BC ⊥AD ,AG =DH ,AF =DC ,那么图中全等的三角形共有______对.【例3】 下列命题中,正确的个数是()①两条边分别相等的两个直角三角形全等; ②斜边和直角边对应相等的两个直角三角形全等; ③斜边相等的两个等腰直角三角形全等. A .3B .2C .1D .0【例4】 已知:如图,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F , 求证:CE =DF .例题解析BACDABC DEFGOH EABCDF【例5】如图,已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB 的垂线交AC于E,求证:CD⊥BE.【例6】如图,△ABC中,AB⊥BC,AD平分∠BAC,DF⊥AC,ED=CD.求证:AC =AE+2BE.【例7】如图1,点A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC.若AB=CD,(1)BD与EF有什么关系?为什么?(2)若变为图2所示位置,结论是否仍然成立?请说明理由.ABCDEAB CDEFABC DE FGABCDEFG图2图1【例8】 在直角△ABC 中,AB =AC ,∠BAC =90°,直线l 为经过点A 的任一直线,BD ⊥l于点D ,CE ⊥l 于点E ,若BD >CE ,试问: (1) AD 与CE 的大小关系如何?请说明理由;(2) 线段BD 、DE 、CE 之间的数量关系如何?你能说明清楚吗?试一试.【例9】 如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于D ,CE ⊥DE 于E .(1) 若BC 在DE 的同侧(如图1),且AD =CE ,求证:AB ⊥AC .(2) 若BC 在DE 的两侧(如图2),其他的条件不变,问AB 与AC 仍垂直吗?若是,请予以证明,若不是,请说明理由.图1ABCDElABCDE图2ABCD E【例10】 如图,在△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,在AB 上截取AE =AC ,过点E 作EF ∥CD 、交BC 边于点F ,EG 垂直BC 于点G ,求证:DE=EG .2、 两个性质:(1) 直角三角形的两个锐角互余;(2) 在直角三角形中,斜边的中线等于斜边的一半.如果有直角三角形,作斜边的中线这条辅助线,可达到解决问题的目的.【例11】 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D : (1)若∠B =55°,则∠A =________; (2)若∠B ∠A =10°,则∠B =_________;(3)图中与∠A 互余的角有_________,与∠A 相等的角有_________.模块二:直角三角形的性质例题解析知识精讲ABCDEFGABCD【例12】 如图,已知,四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 中点.求证:MN ⊥BD .【例13】 如图,在Rt △ABC 中,∠C =90°,AB 的中垂线交AB 于E 、AC 于D ,BD 、CE交于F ,设∠A =y ,∠DFC =x , (1)求证:∠CDB =∠CEB ; (2)用x 的代数式表示y .【例14】 如图ABC ∆中,AD 是BC 边上的高,CF 是AB 边的中线,BF =DC ,P 是CF 中 点.求证:(1)DP FC ⊥;(2)2B BCF ∠=∠.【例15】 如图,AB ,CD 交于点O ,且BD=BO ,CA =CO ,E 、F 、M 分别是OD 、OA 、BC 的中点,求证:ME MF =.ABC DE FO M AB C DMN A B CD EABCDP F【例16】 如图,在梯形ABCD 中,AD //BC ,M 、N 分别是AD 、BC 的中点,若∠B 与∠C 互余,则MN 与(BC -AD )的关系是什么?【例17】 如图,已知在钝角∆ABC 中,AC 、BC 边上的高分别是BE 、AD ,BE 、AD 的延长线交于点H ,点F 、G 分别是BH 、AC 的中点. (1)求证:∠FDG =90°;(2)连结FG ,试问∆FDG 能否为等腰直角三角形?若能,试确定∠ABC 的度数,并写出你的推理过程;若不能,请简要说明理由.【例18】 如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD交AB 于E .求证:∠CDA =∠EDB .【例19】 如图,点A 、B 、C 在同一直线上,在直线AC 的同侧作△ABE 和△BCF ,连接AF 、CE ,取AF 、CE 的中点M 、N ,连接MB 、NB 、NM .BE FHD AGCABC DE12ABCDMN(1) 若△ABE 和△FBC 是等腰直角三角形,且∠ABE =∠FBC =90°,如图1所示,则△MBN 是_____________三角形;(2) 若△ABE 和△FBC 中,BA =BE ,BC =BF ,且∠ABE =∠FBC =α,如图2所示,则△MBN 是_____________三角形,且∠MBN =_______;(3) 若(2)中的△ABE 绕点B 旋转一定的角度,如图3,其他的条件不变那么(2)中的结论是否成立?若成立,给出你的证明,若不成立,写出正确的结论并给出证明.【例20】 已知,如图,在△ABC 中,边AB 上的高CF 、边BC 上的高AD 与边CA 上的高BE 交于点H ,连接EF ,AH 和BC 的中点为N 、M . 求证:MN 是线段EF 的中垂线.A BCDE FNHMABC MEFN 图2ABCNEFM图1ABCEFNM图33、 推论:(1) 在直角三角形中,30°所对的直角边等于斜边的一半;(2) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.【例21】 (1)△ABC 中,AB =AC =6,∠B =30°,则BC 边上的高AD =________;(2)△ABC 中,AB =AC ,AB 上的高CD =12AB ,则顶角∠BAC =_______.【例22】 如图,在矩形ABCD 中,AB =2BC ,在CD 上取一点E ,使AE =AB ,则∠EBC 的度数为__________.【例23】 已知:如图,在△ABC 中,BA =BC ,∠B =120°,AB 的垂直平分线MN 交AC 于例题解析模块三:直角三角形性质的推论知识精讲ABCDEABCDMEDCBAD ,求证:12AD DC .【例24】 已知:如图,Rt △ABC 和Rt △ABD 中,DA =DB ,∠ADB =90°,BC =12AB , ∠ACB =90°,DE ⊥AB ,联结DC ,求∠EDC 的大小.【例25】已知如图,在直角△ABC 中,∠ACB =90°,∠A =30°,D 为AB 上一点,且BD =14AB .求证:CD ⊥AB .【例26】 已知等边△ABC 中,D 、E 分别是BC 、AC 上的点,且AE =CD ,AD 与BE 相交于点F ,过点B 作BG ⊥AD ,垂足为G , (1) 求FG :BF 的值;(2) 若D 、E 分别在BC 、CA 的延长线上,其他条件都不变,上述结论是否仍然成立,请说明理由.【例27】 在△ABC 中,已知∠A =60°,BE ⊥AC 于E ,CF ⊥AB 于F ,点D 是BC 中点. (1)如果AB =AC ,求证△DEF 为等边三角形; (2)如果AB ≠AC ,试猜想△DEF 是不是等边三角形,若是,请加以证明,若不是,请 说明理由;(3)如果CM =4,FM =5,求BE 的长度.ABCDEFGABCDA E FM【例28】 已知∠MAN ,AC 平分∠MAN ,(1)在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,求证:AB +AD =AC . (2)在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. 【习题1】下列条件不可以判定两个直角三角形全等的是().A . 两条直角边对应相等B . 斜边一个锐角对应相等C . 一条直角边和一条斜边对应相等D . 一条边和一个角对应相等 【习题2】如图在△ABC 中,∠ACB =90°,在AB 上截取AE =AC ,BD =BC ,则∠DCE =_________.【习题3】 如图在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,则AD =_____AB随堂检测ABCDABCD MNNABCD M【习题4】 如图,在直角△ABC 在,∠ACB =90°,AB =8cm ,D 为AB 的中点,DE ⊥AC 于E ,∠A =30°,求BC 、CD 和DE 的长.【习题5】 如图,△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,交AD 于点H ,且AD=BD ,AC=BH ,连接CH .求证:∠ABC =∠BCH .【习题6】 如图,已知,在锐角三角形ABC 中,∠ABC =2∠C ,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F ,求证:BF =BD .【习题7】 如图,在△ABC 中,BE ⊥AC 于点E ,CF ⊥AB 于点F ,D 是边BC 的中点,连接DF 、EF 、DE . (1) 求证:ED =DF ;(2) 若△DEF 是等边三角形,则△ABC 应满足什么条件?【习题8】 如图,AD ∥BC ,且BD ⊥CD ,BD = CD ,AC = BC .求证:AB = BO .A BC DE ABCDEHAB CDEFAC BE FD【习题9】 已知:如图在△ABC 中,AD 是BC 边上的高,CE 是AB 上的中线,DC =BE ,DG ⊥CE ,垂足为点G . 求证:∠AEC =3∠DCE .【习题10】 如图,在等边三角形ABC 中,D 、E 分别是BC 、AC 上的一点,且AE =CD ,AD与BE 相交于点F ,CF ⊥BE . 求AF :BF 的值.【习题11】 如图,在直角三角形ABC 中,∠BAC =90°,AB =AC ,以AB 为边向外作等边三角形ABD ,AE ⊥BD 于点E ,AE 交CD 于点M . (1) 线段DM 与线段BC 有怎样的数量关系?并证明;(2) 若△ABC 于△ABD 在AB 的同侧,CD 的延长线与AE 的延长线交于点M ,请在图2中画出△ABD 与点M ;线段DM 与BC 仍有(1)中的数量关系吗?并证明.ABCDE GABCDFE ABDMEABDOC课后作业【作业1】下列命题中,正确的有()个(1)腰长及底边上的高对应相等的两个等腰三角形全等(2)有一直角边和斜边对应相等的两个直角三角形全等(3)有两边和其中一边上的高对应相等的两个三角形全等A.0B.1C.2D.3【作业2】 (1)直角△ABC 中,∠C =90°,CD ⊥AB ,点E 是AB 的中点,∠ACD=25°,则∠ECB =__________;(2)直角△ABC 中,∠C =90°,CD ⊥AB ,点E 是AB 的中点,∠DCE=10°,则∠B =______________.【作业3】 如图,ABC ∆中,AB AC =,DB DC =,DE AC ⊥,2AC AD =,8AB =,则AD =________,AE =____________.【作业4】(1)等腰三角形底角是75°,腰长为9,则此三角形的面积是_______;(2)等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的顶角的度数是_____________.【作业5】 已知:AB ⊥BC ,DC ⊥BC ,点E 在BC 上,且AE =AD ,AB =BC ,求证:CE =CD .D ABCEABCDE ABCDE【作业6】 已知:如图,△ABC 中,∠B =40°,∠C =20°,DA ⊥CA ,求证:CD=2AB .【作业7】 如图,已知:△ABC 中,AB =AC ,∠A=60°,BD =CD ,BE ∥AC ,DE ⊥BE ,求证:4BE=AC .【作业8】 在等腰直角△ABC 中,D 是斜边AB 的中点,E 、F 分别在直线AC 、BC 上,且AE =CF ,联结DE 、DF 、EF ,试判断△DEF 的形状,并加以证明.【作业9】 已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,AC 、BD 相交于点O ,M 、N 分别为AC 、BD 的中点. (1) 求证:MN ⊥BD ;ABCDABCD EABCDEFADM(2) 当∠BAC =15°,AC =10,OB =OM 时,求MN 的长【作业10】 已知:等腰直角△ABC 中,O 是斜边AC 的中点,P 是斜边AC 上的一个动点,D 是线段BC 上的一点,且BP =PD ,过点D 作AC 边上的高DE ,求证:PE =BO .【作业11】 如图1,已知点D 在AC 上,△ABC 和△ADE 都是等腰直角三角形,点M 为EC 的中点.(1) 求证:△BMD 为等腰直角三角形;(2) 将△ADE 绕点A 逆时针旋转45°,如图2所示,(1)中的结论是否仍然成立,请说明理由;(3) 将△ADE 绕点A 逆时针旋转135°,(1)中的结论是否仍然成立,请说明理由.ABCDPEO图1 ABCDEMA BCDE图2 MB。
(完整版)三角形的性质及判定归纳
(完整版)三角形的性质及判定归纳1. 三角形的定义三角形是由三条线段连接而成的图形,其中每条线段称为三角形的边,相邻的两条边之间的交点称为三角形的顶点。
根据三角形的边的长度,可以将三角形分为等边三角形、等腰三角形和普通三角形。
2. 三角形的性质2.1. 三角形的内角和对于任意一个三角形,三个内角的和始终为180度。
根据角度的大小,可以将三角形分为钝角三角形、直角三角形和锐角三角形。
2.2. 等边三角形等边三角形是指三条边的长度相等的三角形。
等边三角形的三个内角的度数都为60度。
由于边长相等,所以等边三角形的三条高度、三条中线和三条角平分线也相等。
2.3. 等腰三角形等腰三角形是指两条边的长度相等的三角形。
等腰三角形的两个底角(非顶角)的度数相等。
等腰三角形的两条高度、两条中线和两条角平分线相等。
2.4. 直角三角形直角三角形是指其中一个内角为90度的三角形。
直角三角形的边的长度满足勾股定理:a^2 + b^2 = c^2,其中a、b为两条边的长度,c为斜边的长度。
2.5. 锐角三角形和钝角三角形除了等边三角形、等腰三角形和直角三角形之外,剩下的三角形都属于锐角三角形和钝角三角形。
锐角三角形指的是三个内角的度数都小于90度的三角形,钝角三角形指的是至少有一个内角大于90度的三角形。
3. 三角形的判定3.1. 等边三角形的判定当三个边的长度都相等时,该三角形为等边三角形。
3.2. 等腰三角形的判定当两个边的长度相等或两个底角(非顶角)的度数相等时,该三角形为等腰三角形。
3.3. 直角三角形的判定当三条边的长度满足勾股定理时,该三角形为直角三角形。
3.4. 锐角三角形和钝角三角形的判定当三个内角的度数都小于90度时,该三角形为锐角三角形;当至少有一个内角的度数大于90度时,该三角形为钝角三角形。
结论通过对三角形的性质及判定的归纳,我们可以更好地理解和解决三角形相关的问题,而且可以辅助我们进行三角形的分类和运用。
湘教版八年级下册数学教案:1.1直角三角形性质和判定(I)
课题直角三角形性质和判定(1)课时安排2课时教学目标1、了解直角三角形定义,掌握符号语言表示法。
2、探讨直角三角形性质,掌握“两锐角互余”和“斜边上中线等于斜边一半”的性质。
3、能用“有两个角互余的三角形是直角三角形”判定直角三角形。
4、培养逆向思维。
重点直角三角形性质和判定的探索、理解和应用。
难点直角三角形性质“斜边上中线等于斜边一半”的理解和应用。
教学过程复习导入出示问题:①三角形有怎样的性质?(边、角)②直角三角形ABC,角C为90度,用符号语言表述是怎样?学生回答,全班交流。
引入课题:直角三角形性质和判定(1)。
自学指导提出问题,学生带着问题自学教材P2~P3内容:1、直角三角形的角有怎样的性质?2、直角三角形的斜边上中线有怎样的性质?3、用角判定直角三角形的方法是什么?完成学法P1“课前预习”1、⑴;2、⑴⑵。
合作交流讲述:1、直角三角形性质:角的性质:“直角三角形两锐角互余”。
斜边上中线性质:“直角三角形斜边上中线等于斜边一半”。
2、直角三角形判定:“有两个角互余的三角形是直角三角形”注意:数学语言的表述(图形语言和符号语言)。
应用:教材P4 例1(直角三角形的判定定理)。
学法P1 例2(直角三角形斜边上中线性质应用)注意:语言的规范,格式的统一。
练习:教材P4“练习”T1、T2(学生板演)。
小结归纳1、直角三角的性质。
2、直角三角形的判定。
3、注意事项。
4、数学思想。
作业布置必做:教材习题1.1A组P7 T1;T2。
选做:学法P1 “课堂探究”:探究一、变式1和探究二、变式2。
板书设计反思回顾直角三角形(1)课件展示1、角的性质2、斜边中线3、符号语言应用:例1例2学生板演课题直角三角形性质和判定(2)课时安排2课时教学目标1、掌握“直角三角形中若一锐角为30度,则其所对直角边等于斜边一半”和“直角三角形中一直角边等于斜边一半,则其所对叫为30度”的性质。
2、能用“有两个角互余的三角形是直角三角形”判定直角三角形。
《第1课时 直角三角形的性质和判定》课件 (同课异构)2022年精品课件
∴PD = PE 〔在角的平分线上的点到这个角的两边的距离相等〕.
判一判:〔1〕∵ 如下左图,AD平分∠BAC〔〕, ∴ BD = CD ,
× ( 在角的平分线上的点到这个角的两边的距离相等 )
B
B
A
D
A
C
(2)∵ 如上右图, DC⊥AC,DB⊥AB 〔〕.
D C
∴ BD = CD ,
2
2
DF=AF= 1 AC= 1 ×8=4,
∴四边形AED2 F的周长2 =AE+DE+DF+AF
=5+5+4+4=18;
(2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF, ∴E、F在线段AD的垂直平分线上, ∴EF垂直平分AD. 归纳 当条件含有线段的中点、直角三角形的条件 时,可联想直角三角形斜边上的中线的性质进行求 解.
在Rt△BDE 和 Rt△CDF中,
B
D
C
在Rt△ABC 中,∵ Biblioteka C =90°,BC
∴ ∠A +∠B =90°.
直角三角形的表示:直角三角形可以用符号“Rt△ 〞表示,直角三角形ABC 可以写成Rt△ABC .
典例精析
例1〔1〕如图 ,∠B=∠C=90°,AD交BC于点O,∠A
与∠D有什么关系?
方法一〔利用平行的判定和性质〕: A B
∵∠B=∠C=90°,
2021 年 “精 英 杯〞 全国公开课大赛
获奖作品展示
教育部“精英杯〞公开课大赛简介
• 2021年6月,由教育学会牵头,教材编审委员会具体 组织实施,在全国8个城市,设置了12个分会场,范围从“ 小学至高中〞全系列部编新教材进行了统一的培训和指导 。每次指導,都輔以精彩的優秀示範課。在這些示範課中 ,不乏全國名師和各省名師中的佼佼者。
直角三角形-的性质判定(HL)
直角三角形的性质、判定(HL )1、如果一个△ABC 有一个角是直角,则它是直角三角形,记作Rt △ABC 。
直角三角形两锐角互余。
2、直角三角形的判定定理:如果两个直角三角形的斜边和一条直角边对应相等,则这个两个直角三角形全等,简称HL 。
3、直角三角形性质定理(一):在直角三角形中,斜边上的中线等于斜边的一半.4、直角三角形性质定理(二):在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;5、直角三角形性质的逆定理(1):如果一个三角形一边上的中线,等于这条边的一半,则这个三角形式直角三角形.(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.二、知识运用典型例题例1:已知:△ABC 中,∠ACB=90°,CD 是高, ∠A=30°.求证:BD=14AB.例2:已知:如图, △ABC 中,AB=AC,BD ⊥AC 于D 点,BD=12AC. 则∠A=_____.例3:已知:如图,AD 为△ABC 的高,E 为AC 上的一点,BE 交AD 于F,且有BF=AC,FD=CD, 求证:BE ⊥AC.例4:如图3,AD 是ΔABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF , 求证:(1)AD 是∠BAC 的平分线AD CBAE DC BF 12 A12(2)AB=AC例5:已知如图,AE ⊥ED ,AF ⊥FD ,AF=DE ,EB ⊥AD ,FC ⊥AD ,垂足分别为B 、C.试说明EB=FC.例6:如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.三、知识运用课堂训练1、△ABC 中各角的度数之比如下,能够说明△ABC 是直角三角形的是( ) A.1:2:3 B.2:3:4 C.3:4:5 D.3:2:52、直角三角形中,两锐角的角平分线相交所成的角的度数为 .3、等腰三角形一腰上的高等于该三角形一条边长度的一半,则其顶角为 .4、如图,CD 为△ABC 的中线,∠ACB=90°,CE ⊥AB 于E, AE=ED,则图中30°的角有 个.ABCD FEABCD E5、如图,AC=BD,AD ⊥AC,BC ⊥BD,求证:AD=BC.6、如图所示,D 是△ABC 的边BC 上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,且BF =CE 。
直角三角形的性质及判定练习题(1)
直角三角形的性质及判定练习题(1)◆◆知识点:1、直角三角形的性质:(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30°角所对的直角边等于斜边的一半(4)直角三角形中,如直角边等于斜边的一半,则这直角边所对的角等于30度(5)勾股定理:直角三角形的两条直角边平方的和等于斜边的平方.2、直角三角形的判定:(1)有一个角是直角的三角形是直角三角形(2)有两个角互余的三角形是直角三角形(3)三角形中一边上的中线等于这边的一半,则这个三角形是直角三角形(4)三角形中如两边的平方和等于第三边的平方,则这个三角形是直角三角形一、性质题型精练:1、在RtΔABC中,∠A=30°则∠B=60°最直接的理由是.2、在RtΔ中,斜边长为6cm,则斜边上的中线为cm.3、在Rt△ABC中,∠C=90º,∠A=30º,AB=10cm,则BC=_____cm。
4、如图,AB//CD,AE交CD于C,∠A=34°,∠A=90°∠DEC=90°,则∠D的度数是5、在直角三角形中,斜边和斜边上的中线和为30是6、如图,直线L1,L2被直线L3所截,∠1=∠2=35°,∠P=90°,则∠3= 度7、在Rt△ABC中,∠C=90°,AC=2,AB=4,则∠B= 度8、在△ABC中,如果∠A+∠B=∠C,且AC=21AB,则∠B= 度9、等腰三角形的底角为15°,腰长为12,则腰上的高为10、如图,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=4厘米,则CD= 厘米11、如图,在△ABC中,∠1=∠2,∠3=∠4,求证△ABC是直角三角形12、如图,在Rt△ABC中,∠ACB=90°,AB=8厘米,D为AB的中点,DE ⊥AC于E,∠A=30°,求BC、CD和DE的长二、勾股定理题型精练题型一:直接考查勾股定理例1.在ABC∆中,90C∠=︒.⑴已知6AC=,8BC=.求AB的长⑵已知17AB=,15AC=,求BC的长ED CBP321L1DC4321DAEDCBA题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.练习:1. 下列各组中,不能构成直角三角形的是 ( ) (A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,412. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是 (A )锐角三角形(B )钝角三角形 (C )等腰直角三角形(D )直角三角形 3. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )13604.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=______;②若a=15,c=25,则b=____;③若c=61,b=60,则a=_______;④若a ∶b=3∶4,c=10则S Rt △ABC =________。
直角三角形的性质及勾股定理(超级好)
直角三角形的性质及判断一:知识要点填空:1、直角三角形的性质:(1)直角三角形的两个锐角_________(2)直角三角形斜边上的中线等于斜边的_________;(3)直角三角形30°角所对的直角边是______的一半;(4)直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30°.2、直角三角形的判定方法:(1)有一个角是直角的三角形是直角三角形;(2)有两个角______的三角形是直角三角形;(3)如果一条边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)勾股定理:三角形两边的平方之和等于第三边的平方和3、等腰直角三角形是特殊的直角三角形,它的两个底角都是_____,且两条直角边相等。
等腰直角三角形具有等腰三角形和直角三角形的所有性质,是很常见的特殊三角形。
二:题型的分类1.和等腰三角形结合2.和角平分线,垂直平分线,平行线结合(重点是提供角相等)3.特殊角度,60度,45度,30度直接利用直角三角形的性质及推论来解题4.多个直角三角形共斜边5.勾股定理提供的边长6.利用三角形或直角三角形全等提供角度相等,直角三角形面积提供边长7.翻折旋转提供全等三角形边角对应相等综合:三角形性质,主要考察的是利用角相等,来求角度,求边长,证明线段倍数关系等等期间有需要做辅助线,如构造直角三角形,延长中线长构造全等三角形将一边进行转化,角平分线做垂线,连接直角顶点和斜边重点等等三:经典例题例1.(基础性质题)(1)在Rt△ABC中,∠C=90°,∠B=35°,则∠A=()A.45°B.55°C.65°D.75°(2)三角形的一个锐角∠A是另一个锐角∠B的3倍,那么∠B的度数是()A.22.5°B.45°C.67.5°D.135°(3)下列说法中,正确的是()A.直角三角形中,已知两边长为3和4,则第三边长为5B.三角形是直角三角形,三角形的三边为a,b,c则满足a2﹣b2=c2C.以三个连续自然数为三边长不可能构成直角三角形D.△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形(4)已知:如,△ABC中,∠ACB=90°,CD是高,∠A=30°.求证:BD=14AB.DCABFDB ECBA (5)在等腰直角三角形ABC 中,∠ACB=90度,CD 是AB 边上中线,若CD=5cm,则AB=_____ 三角形ABC 的面积=____________(6)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD =( ) A 、3 B 、4 C 、4.8 D 、5图2D ACEB(7)如图,在△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能的是( ) A .3.5 B .4.2 C .5.8 D .7 (8)已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为___________________.例2.已知:四边形ABCD 中,∠ABC= ∠ADC=90度,E 、F 分别是AC 、BD 的中点。
直角三角形的定义
有一个内角是直角的三角形 叫直角三角形.
直角三角形的表示法:如图
B
所示的三角形,可记为 Rt△ABC 斜边
直 角
C
边
A
C
直角边
A D
B
B
直角三角形的内角有什么特征?
直角三角形的性质:
A
C
(1)直角三角形的两个锐角互余。
C 90
A B 90
1.是否存在这样的三角形,它既是等腰三角形,
又是直角三角形?
A
定义:两条直角边相等的直角三角形
叫做等腰直角三角形
B
2.等腰直角三角形的两个锐角各是多少度呢?
C
性质:等腰直角三角形的两个锐角都是45 °
1.如图,CD是Rt△ABC斜边 上的高.请找出
(1)图中各对互余的角.
(2)图中所有相等的角。
C
A D
A B 90 A ACD 90 B BCD 90 ACD BCD 90
发,以相同的速度分别沿
E
AC 和 A-B-E 线路前进,甲
的目的地为 C,乙的目的地
A
B
为 E ,请你判断一下,甲,
乙谁先到达目的地?并说
明理由。
.
A
D
C
3.如图,在△ABC中, ∠ ACB=90°,
AE平分∠ CAB,CD ⊥ AB于D,
它们交于点F, △ CFE是等腰 三角形吗? 试说明理由.
C
E F
A
D
B
4.如图,已知△ABC中,点A在DE上, CD⊥DE,BE⊥DE,垂足分别是D E.且AD=BE,CD=AE, △ABC 是等腰直角三角形吗?说明理由.
直角三角形性质和判定教案1(新湘教版)
教学难点:定理的理解和运用、几何语言和逻辑的正确运用
一、引
自学内容:1、阅读教材P4至P6页,找出直角三角形的性质,特别注意直角三角形性质的条件;2、完成自主学习;3、并找出你存在的疑难,并用红笔标记。
二.探
1、直角三角形的性ห้องสมุดไป่ตู้定理2:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的__________.
且 ,CD=6cm,求BC的长。
例2、一棵大树高为15米,一天被狂风吹倒,树梢与地面所成的角为30度,求留在地面上树桩的高。
【当堂检测】
1、△ 中, , ,则 边上的高 =_______________.
2、在直角三角形中,若一锐角为 ,而斜边与 角所对的边的和为 ,则斜边的长
为___________ .
长乐中学八年级数学导学训练案教案
编制人:周浩雄审核人:日期:总课时数:第2课时
课题:直角三形的性质和判定(1)
教学目标
1、知识与技能:掌握有一个锐角是 的直角三角形的性质定理及应用。
2、过程与方法:体会由“一般到特殊”的探索过程。
3、情感态度、价值观:渗透建立几何模型的数学思想和培养学生解决实际问题的能力。
3、已知三角形的的三个内角的度数之比为1:2:3,它的最大边长为6 ,那么它的最小边长为_________ .
4、在△ 中, , , .
(1)若 ,求 的长
(2)若 ,求 的长
6、如图,在Rt△ 中, 是斜边上的中线, ,已知 , ,求 和 .
说明 .
五.作业P6练习1、2题
课后反思
2、直角三角形的性质定理3:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)与前后桌同学讨论一下,如何证明AD=DC=BD ?
D′
1
A
练习 :
在△ABC中, ∠ACB=90 °,CE是AB边上的中线, BE和AE 那么与CE相等的线段有_________,与∠A相等 ∠ACE 的角有_________,若∠A=35°,那么 ∠ECB= _________。 551、已知:∠ABC=∠ADC=90O,E是AC中点。 求证:(1)ED=EB (2)∠EBD=∠EDB (3)图中有哪些等腰三角形? 证明:(1)∵
∠ABC=∠ADC=90O,E是AC中点。
D
∴D、E分别是RT△ABC与RT△ADC的中线
∴DE=1 AC、BE= AC ∴ED=EB
2
1 2
A
E
C
(2)由(1)可知,因为 ED=EB 所以△DEB
是等腰三角形,∠EBD=∠EDB(等要对等角)
(3) 等腰三角形有:△ADE, △CDE, △ABE, △CBE ,△DEB
B
例2、如果三角形三角形一边上的中线等于 这条边的一半,求证:这个三角形是直 角三角形。
已知:如图,CD是△ABC的斜边AB边上的中线, 1 且CD= 2 AB 求证: △ABC是直角三角形。 B
授课人:黔东中学 李国宏
一、复习引入
提问:(1)什么叫直角三角形?
(2)我们知道直角三角形是特殊的 三角形,那么除了具备一般三角形的性 质外,还有没有其它特殊的性质? 这节课,我们一起来探究这方面的知识
二、动脑筋
B
(一)问题1:在△ABC中,已知∠C=90°, ∠A与∠B有何关系?由此你能得出什么结 C 论?
小结:
这节课主要讲了直角三角形的哪两条性质 定理和什么判定定理?
性质定理1:直角三角形的两个锐角互余
判定定理:有两个角互余的三角形是直角三角形
性质定理2:在直角三角中,斜边上的中线等于斜边的一半
请把作业当作考试
真金才不怕火炼
课外作业 P87:练习题
2、如图,在△ABC中,∠ACB=90 °, CD是斜边AB上的高,那么 (1)与∠B互余的角有 ∠A和∠1 ; (2)与∠A相等的角有 ∠1 ; (3)与∠B相等的角有 ∠2 。
B
1
D
2
C
A
三、操作,探究
(1)每人在纸上画一个直角三角形ABC,∠C=90°,
B D C A
找到斜边的中点,画出斜边上的中线DC。 (2)量一量如图中斜边AB和斜边上的中线CD的长度,你发现斜边上的中线CD 与斜边AB长度之间有何关系? 与同学交流一下,也有类似的发现吗?你能 得出什么结论?
性质定理2: 在直角三角形中,斜边上的中线等于斜边的一半。
证明:作∠1= ∠A,交AB 于D′,∴AD′=CD′ B ∵ ∠A+∠B= 90°, ∠1+∠2= 90° ∴ ∠2=∠B, ∴ BD ′ =CD ′ 2 ∴ AD`=BD ′,即D ′是AB的中点, CD ′是RT△ABC斜边AB上的中线,从而CD ′与 C 1 CD重合,因此CD= 2 AB
A
直角三角形的性质定理1:直角三角形的两个锐角 互余 (二)问题2:如果∠A+∠B=90°,那么△ABC是什 么三角形?由此你能得出什么结论? 直角三角形的判定定理:有两个角互余的三角形是 直角三角形。
巩固练习
1、(1)在直角三角形中,有一个锐角为52°,那么另 一个锐角度数是 38°。 (2)在Rt△ABC中,∠C=90 °,∠A -∠B =30 °,那 么∠A= 60° ,∠B= 30° 。
2
D
1
1 证明 因为CD = AB=BD=AD 所以∠1= ∠A ,∠2= ∠B. 2 (等边对等角)
C
A
根据三角形的内角和性质, ∠A+ ∠B+ ∠ACB=1800, 即得∠A +∠B + ∠1+∠2=1800,
2( ∠A +∠B )=1800,所以∠A +∠B =900
根据直角三角形的判定定理,所以△ABC是直角三角形