大学物理静电场中的导体和电介质[毕业论文]

合集下载

大学物理,静电场中的导体和电介质8-5 静电场的能量

大学物理,静电场中的导体和电介质8-5 静电场的能量
取一体积元, dV 4πr 2 dr
2
R1
r
dr
Q R2 dWe wedV dr 2 8 π εr 2 2 R Q Q 1 1 2 dr We dWe ( ) 2 8 π ε R1 r 8 π ε R1 R2 9
8.5 静电场的能量
2
第8章 静电场中的导体和电介质
第8章 静电场中的导体和电介质
例:同轴电缆由内径为 R1、外径为 R2的两无限长金属圆柱 面构成,单位长度带电量分别为 +、 -,其间充有 r 电介 质。求: 1)两柱面间的场强 E;2)电势差 U;3)单位长 度电容 ;4)单位长度贮存能量。
介质中高斯定理: D dS q 0
5
8.5 静电场的能量
第8章 静电场中的导体和电介质
二、静电场的能量 能量密度 以平行板电容器为例,将电能用电场的量表示。
1 1 1 1 εS 2 2 2 2 ( Ed ) εE Sd εE V We CU 2 2 2 d 2
电场中单位体积的能量 称为电场能量密度:
d
S
εr
We we V
8.5 静电场的能量
第8章 静电场中的导体和电介质
静电场的能量 ( Electrostatic Energy ) 一个带电系统包含许多的电荷。电荷之间 存在着相互作用的电场力。 任何一个带电系统在形成的过程中,外力 必须克服电场力做功,即要消耗外界的能量。 外界对系统所做的功,应该等于系统能量 的增加。 因此,带电系统具有能量。
第8章 静电场中的导体和电介质
1 We QU 2

R1
1 λ R2 λh ln 2 2πε0 εr R1 2 λh R2 ln 4πε0 εr R1

大学物理 导体和电介质中的静电场

大学物理  导体和电介质中的静电场

x
(1 2)S q (3 4)S q
1


2


3


4

q S

q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1


2 2 0

3 2 0
2 2 0

3 2 0

4 2 0
2 0
q1 q2
2 0 S
E3

1 2 0

2 2 0

3 2 0

4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.

第六章静电场中的导体与电介质

第六章静电场中的导体与电介质
(任何介质) (各向同性线性介质)
第六章 静电场中的导体和电介质
33
物理学
第五版
6 静电场中的导体与电介质
电位移线
方向: 切线 大小:
电位移线起始于正自由电荷终止于负自由电荷, 与束缚电荷无关。
电场线起始于正电荷终止于负电荷,包括自由 电荷和与束缚电荷。
第六章 静电场中的导体和电介质
34
物理学
第五版
SD dS
有介质时的高斯定理
n
D dS S
Q0i
i 1
第六章 静电场中的导体和电介质
28
物理学
第五版
6 静电场中的导体与电介质
第三节 电介质中的高斯定理 电位移矢量
电介质中的高斯定理 电介质中高斯定理的应用
第六章 静电场中的导体和电介质
29
物理学
第五版
6 静电场中的导体与电介质
一、电位移矢量 电介质中的高斯定理
电介质 有极分子:(水、有机玻璃等) 正电荷的
等效中心
定义:分子电矩——由分子(或
原子)中的正负电荷中心决定的
电偶极子的电偶极矩,用 表
示:
电子云的
第六章 静电场中的导体和电介质 负电中心
5
物理学
第五版
6 静电场中的导体与电介质
1)无极分子(非极性分子)
分子内正负电荷中心重合
甲烷分子 CH4
+H 正负电荷
真空中:
自由电荷
电介质中:
极化电荷如何求?
极化电荷 自由电荷
向外,'>0,正极化电荷在外,闭合曲
面内留下负极化电荷;
+
向内,'<0,负极化电荷在外,闭合曲 -

静电场中的导体和电介质

静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。

(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。

导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。

定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。

拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。

测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。

库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。

所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。

所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。

以上是库仑平方反比定律验证的发展历史。

见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。

使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。

则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。

孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。

电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。

然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。

静电场中的导体和电解质

静电场中的导体和电解质

Q + + + + ++ + + + + E= 0 S+ + + + + + + + ++
Q q + + + +++ + +-q + + - E= 0 S + 结论: 电荷分布在导体外表面, 导体 + q + + 内部和内表面没净电荷. + - - + + + + ++ 腔内有电荷q: E 0 q 0

i
结论: 电荷分布在导体内外两个表面,内表面感应电荷为-q. 外表面感应电荷为Q+q.
NIZQ
第 5页
大学物理学 静电场中的导体和电介质
结论: 在静电平衡下,导体所带的电荷只能分布在导体的 表面,导体内部没有净电荷. • 静电屏蔽 一个接地的空腔导体可以隔离内 外电场的影响. 1. 空腔导体, 腔内没有电荷 空腔导体起到屏蔽外电场的作用. 2. 空腔导体,腔内存在电荷 接地的空腔导 体可以屏蔽内、 外电场的影响.
NIZQ
第 3页
大学物理学 静电场中的导体和电介质
• 静电平衡时导体中的电场特性
E内 0
场强:
ΔVab
b
a
E dl 0
• 导体内部场强处处为零 E内 0 • 表面场强垂直于导体表面 E表面 // dS
• 导体为一等势体 V 常量 • 导体表面是一个等势面
S
0 E P dS qi

静电场中的导体和电介质

静电场中的导体和电介质
-
-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理

6 大学物理 第06章 静电场中的导体和电介质

6 大学物理 第06章 静电场中的导体和电介质
第六章 静电场中的导体和电介质 加上外电场后
E外
16
物理学
第五版
+ + + + + + + + + +
第六章 静电场中的导体和电介质 加上外电场后
E外
17
物理学
第五版
+ + + + + + + + + +
E外
加上外电场后 第六章 静电场中的导体和电介质
18
物理学
第五版
导体达到静平衡
+ + + + + + + + + +
介质电容率 ε ε0 εr
41
- - - - - - - σ
相对电容率 εr 1
第六章 静电场中的导体和电介质
物理学
第五版
+++++++
- - - - - - - σ
σ E0 ε0
ε0
σ
+++++++
- - - - - - - σ
σ E ε
ε
σ
第六章 静电场中的导体和电介质
②用导线连接A、B,再作计算
连接A、B,
Q q
q
( q )
中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
R3
E0

Qq uo Edr Edr 4 0 R3 0 R3

电场中的导体和电介质

电场中的导体和电介质

二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。




根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9





R


q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V

6静电场中的导体和电介质

6静电场中的导体和电介质


二、第二类导体空腔— [腔内有带电体]
(1)腔内电场不受外电场影响。 (可用高斯定理证明)
QQ q
q

q









(2)空腔导体腔外电场不受导体腔内电场影响。
与腔内电荷分布无关,但与腔内 放置的带电体电量有 关。
QQ q
q

q




- - --q +
+Qq+++++=+0 -
--
+
-+
+ +
2、空腔导体带电荷Q
腔内无电荷:导体的电荷只能分布在外表面。
腔内有电荷q: 导体的内表面电荷-q,外表 面电荷Q+q
二、导体处于静电平衡状态时的场强分布
导体上的电荷分布
3. 火花放电
当高压带电体与导体靠得很近时, 强大的电场会使它们 之间的空气瞬间电离,电荷通过电离的空气形成电流. 由于 电流特别大, 产生大量的热, 使空气发声发光,产生电火花. 这种放电现象叫火花放电.
火花放电在生活中常会遇到. 干燥的冬天,身穿毛衣和化纤 衣服,长时间走路之后,由于摩擦,身体上会积累静电荷. 这时如 果手指靠近金属物品, 你会感到手上有针刺般的疼痛感。这就 是火花放电引起的. 如果事先拿一把钥匙, 让钥匙的尖端靠近其 他金属体, 就会避免疼痛. 在光线较暗的地方试一试,在钥匙尖 端靠近金属体的时候, 不但会听到响声, 还会看到火花.
若 A,B 处出现等量异号电荷(如图),则必有电场线由 A 到 B,则 UA≠UB ,这违背等势体性质。
总结:空腔内无带电体的情况

大学物理-第18章静电场中的导体与电介质

大学物理-第18章静电场中的导体与电介质
1)无极分子---正负电荷作用中心重合的分子。如H2、 N2、O2、CO2 2)有极分子---正负电荷作用中心不重合的分子。如H2O、 CO、SO2、NH3…..
+
O
+- H+ - H+
++
-
++
+
He
H2O
有极分子对外影响等效为一个电偶极子,电矩 Pe ql
事只实不上过lq所在为中为有无从心分分电负 的子子 场电 有中均 时荷 向所可 ,作 线有等 无用 段正效 极中电为 分心荷电 子指的偶 的向代极电正数子偶电和的极作;模矩用型为
综 1)不管是位移极化还是取向极化,其最后的 述:宏观效果都是产生了极化电荷。
2)两种极化都是外场越强,极化越厉害 所产生的分子电矩的矢量和也越大。
三、电介质内的场强、有介质时的高斯定理
1、电介质内的场强
EE0E'
c


E0
E'
a
b
EE0E'
实验发现,在均匀介质中
E

2 3 0 ……(3)
在板内任选一点P,其场强是四个面的场强的叠加,有
EP210220230240
又 EP 0 12340 Q
联立四式得:
……(4) 1 2 3 4
12432Q S
I
II III
P
由于静电平衡时表面面电荷密度与表面附近场强大小成
E0

E

E0
r
r 1
0
++
E0
+ +-
E
+ +-

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。

导体和电介质是静电场中两种常见的物质类型。

理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。

本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。

导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。

由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。

导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。

这意味着在静电平衡条件下,导体表面任意一点的电势相等。

导体内部的电场分布特性在导体内部,电场强度为零。

这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。

这种现象称为电荷迁移。

因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。

这也是为什么导体内部没有电场线存在的原因。

电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。

当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。

电极化是指电介质分子在电场作用下产生偶极矩。

在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。

这种电极化现象可以分为两种类型:取向极化和感应极化。

取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。

电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。

介电常数是一个比值,代表了电介质在电场力下的相对表现。

介电常数决定了电介质的极化程度和电场中的电场强度。

电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。

在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。

大学物理第十章静电场中的导体和电介质

大学物理第十章静电场中的导体和电介质

q
例 半径为R1的导体球带电量为Q1,内、外 半径分别为R2、R3的同心导体球壳带电量为Q2, 求电场强度的分布。 导体空腔 电荷Q1 均匀分布在导体球的 表面,导体球壳的内表面电 -Q1 R1 R2 Q2 +Q1 荷量为-Q1 ,外表面电荷量 为Q2 + Q1 ,均均匀分布。 Q1 r r 作半径为r的同心球面为高斯面。 r R3 2 r<R1时 4πr E 0 E 0 R1 < r<R2时 R2 < rq iin 0
i 1
q iin 0
i 1
S S
闭合曲面内无净电荷 (电荷的代数和为零) 闭合曲面S是任意的 导体内部任意处都没有净电荷
空腔导体
Q
?
( S )
0 i 1 内表面电荷的 代数和为零
1 E d S
1.空腔内无电荷时 在带电的空腔导体上,电荷 分布在其外表面上,空腔导体的 内表面无电荷。 空腔内部的电场强度为零 , 空腔内各点的电势等于空腔导 体的电势。
S
0 r 电介质的电容率(介电常数)
S
一般情况:
D d S Q0
in Q0 i 1 n
S
D d S
有电介质时的高斯定理: 在静电场中,通过任意闭合曲面的电位移 通量等于该闭合曲面内所包围的自由电荷的代 数和。 D只是一个辅助矢量,描述电场性质的物 理量是电场强度E和电势V,而不是D。
D r R2 R1
S
D d S D 2 rl l
λ D= 2πr
E 0 r 2 0 r r (R1<r< R2)
D
l
(2)电介质内、外表面的极化电荷面密度
在电介质的内表面处, r =R1 E1 2 0 r R1 ( r 1) 1 ( r 1) 0 E1 2 r R1 在电介质的外表面处, r =R2

大学物理 第6章 静电场中的导体和电介质(小结)

大学物理 第6章 静电场中的导体和电介质(小结)
Q 解:看成是带电球,电量为Q, 电势: V 以无限远为电势零点。 4 0 R
Q Q
静电能:
We A
Vdq
0

4
0
qdq
0
R
Q
2
8 0 R
当Q不变时,使R增大到R’=2R时,We’=We / 2 ;可见, 当R增大时,静电能减小,说明电场力对外作正功, 即帮助汽泡增大;从受力情况看,肥皂泡上每个电荷 元都受到其他电荷的电场力作用,力的方向沿半径向 外,半径增大时,电场力作正功,电场能减小。
4 0 r 4 0 r r 为该点到球心的距离. (2)球内(无论是空心与实心)的场强E=0, (内无电荷);电势不为零,等于球面上的电势。 (3)求E和V时,要将形成场的所有电荷都考虑 到,然后求矢量(E)和或代数和(V)。
2
E

V
例题5 有一带正电的肥皂泡,吹大到使它的半径为原 来的2 倍,问静电能有什么变化?电荷的存在对吹泡 有帮助还是有妨碍?
解(1)设q2 、 q3为外球壳内、外 层所带电荷。 由高斯定理可得:
R2 R1 D C B A 0
R3
q 2 q1
2 3
10
8
C
q2 q3 q
q3 4 3 10
8
q1
C
q2
q3
(2)各点的场强和电势 B点: q1 由高斯定理得: E B 2 4 0 rB
VB
q1 4 0 rB
q1 4 0 rB


q2 4 0 rB
q2 4 0 R 2


q3 4 0 rB
q3 4 0 R 3

大学物理13 静电场中的导体和电介质

大学物理13 静电场中的导体和电介质

不是都平行于E

有极分子也有位移极化,不过在静电场中主要是取向极化,
但在高频场中,位移极化反倒是主要的了。
34
均匀电介质在静电 场中
E0



E'
+– +–
E0
+ E' +
– 取向极化
+
P分

?
位移极化
+
电介质极化:在外电场作用下,电介质产生一附加电场或电
介质表面出现束缚电荷的现象。
B
上的电荷消失。两球的电势分别为
Qq
A
UA

q
4 0

1 R0

1 R1

q R0
U B U R1 U R2 0
R2 R1 q
两球电势差仍为:
UA
UB

q
4 0

1 R0

1 R1

由结果可以看出,不管外球壳接地与否,两球的电势 差恒保持不变。当q为正值时,小球的电势高于球壳;当q 为负值时,小球的电势低于球壳。
3
§1 导体的静电平衡
一. 导体的静电平衡
1. 静电感应现象:
电场一般利用带电导体形成。
有导体存在时电场的性质?
在静电场力作用下,导体中自由电子在电场力的作用下
作宏观定向运动,使电荷产生重新分布的现象。
Ε 0
-
Ε 0
- + -+
E内 0
-
-+
2. 静电平衡状态:
导体内部和表面无自由电荷的定向移动 —称电场和导体之间达到静电平衡

大学物理静电场中的导体和电介质

大学物理静电场中的导体和电介质

03
在静电场中,导体和电介质的 性质和行为表现出显著的差异 ,因此了解它们的特性是学习 大学物理静电场的重要基础。
学习目标
01
掌握导体和电介质的定义、性质和分类。
02
理解静电场中导体和电介质的电场分布和电荷分布。
03
掌握导体和电介质在静电场中的行为和相互作用, 以及它们在电路中的作用。
02
导体
导体的定义与性质
感应电荷的产生是由于导体内 部自由电荷受到电场力的作用 而重新分布,这种效应称为静 电感应现象。
静电感应现象在生产和生活中 的应用十分广泛,如静电除尘、 静电喷涂等。
导体的静电平衡状态
当导体放入静电场中并达到稳定状态时,导体内部的自由电荷不再发生定向移动, 此时导体的状态称为静电平衡状态。
在静电平衡状态下,感应电荷在导体内、外表面产生附加电场,该电场与外界电场 相抵消,使得导体内部的总电场为零。
应用
了解电场强度在电介质中 的分布和变化规律,有助 于理解电子设备和器件的 工作原理。
电介质的电位移矢量
01
02
03
04
定义
电位移矢量是指描述电场中电 荷分布情况的物理量。
特点
在静电场中,电位移矢量与电 场强度之间存在线性关系,可
以用介电常数表示。
计算
根据电位移矢量的定义和电场 强度的计算公式,可以计算出
定义
导体是指能够让电流通过的物质。在 静电场中,导体内部自由电荷会受到 电场力的作用而发生移动,从而形成 电流。
性质
导体具有导电性,其导电能力与温度 、光照、化学状态等因素有关。金属 导体是电导率最高的物质之一,而绝 缘体则几乎不导电。
导体的静电感应现象
当导体放入静电场中时,导体 表面会产生感应电荷,感应电 荷的分布与外界电场有关。

静电场中的导体和电介质

静电场中的导体和电介质

平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8

R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:

q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布

q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。

大学物理静电场中的导体

大学物理静电场中的导体
E仅由S 处电荷产生而与其它电荷无关吗?为什么?
★ 注意:
导体表面外侧附近的场强 E是空间所有电荷共同激发的!
例:
q
P
E内0
EP4q0R20
q
P
E内0
Q
E
P
0

q 共同激发 。
Q
.
27
电导块势场
.
28
尖端放电 原理
尖端场强特别强,足以使周围空气分子电离而使 空气被击穿,导致“尖端放电” ,避雷针原理在此。
+ SA++
+
+
B--B +
+ +
+ +
32
b、空腔内有带电体
EdS0 S1
qi 0
Qq
电荷分布在表面上
思考:内表面上有电荷吗?
S E 2 d S0qi0
S2
q
q
S1
结论:
q内 q
腔体内表面所带的电量和腔内带电体所带的电量等量 异号,腔体外表面所带的电量. 由电荷守恒定律决定。33
三 静电屏蔽
ua ub E•dl
p 等势面 等势体
体体 是
a
a
Q

E内0 ua ub
b
导体表面
Q Q
u Pu QE •dlE co 90 s0 d l0
P
P
uP uQ
.
16
处于静电平衡状态的 导体的性质:
1、导体是等势体,导体表面是等势面。
2、导体外部附近空间的场强与导体表面正交。
3、导体内部处处没有未被抵消的净电荷,净电荷只 分布在导体的表面上。
1 R2 2 R1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气中的直流高压放电图片:
闪电的图片: 云层和大地间的闪电
雷击大桥
遭雷击后的草地
“电风”吹蜡烛
< 电风实验 >
++ +++
+ +
+++
尖端放电现象的利与弊 尖端放电会损耗电能, 还会干扰精密测量和对通
讯产生危害 . 然而尖端放电也有很广泛的应用 .
< 避雷针 >
三 静电屏蔽
1 屏蔽外电场
结论1: 处于静电平衡的平行导体板, 相对的两个面带等 量异号电荷.
结论2: 平行导体板外侧带等量同号电荷.
推论1: 两导体板的总电量相等而符号相反时, 外侧带 电量为零.
对于导体板本来带电或不带电的情形均适用.
课后练习:
已知:面电荷密度为0 的均匀带电大平板旁,
0
平行放置一大的不带电导体平板。
求:导体板两表面的面电荷密度。
1
E
实心导体 0 E
S
dS
0
q
0
++ + +
+ +
S+
+
++
q 0
结论 导体内部无电荷
2 有空腔导体
空腔 内无电荷
SE dS 0, qi 0
电荷分布在表面上
S
内表面上有电荷吗?
SE dS , qi 0
若内表面带电


U AB AB E dl 0
++
+A
+ S ++
B--
静电平衡:没有电荷的宏观定向运动
条件:
(1)导体内部任何一点处的电场强度为零;
(2)导体表面处的电场强度的方向,都与导体表面垂直.
➢ 导体表面是等势面
en

E dl
E
体 是 等 势 体
U E dl 0
+
➢ 导体内部电势相等
U AB
E dl
AB
0
+
+
A
e +
dl +
τ
+
B
二 静电平衡时导体上电荷的分布
四 有导体存在时场强和电势的计算
静电平衡条件
+
电荷守恒定律
高斯定理 环路定理
例9-1 有一外半径 R1 10cm 和内半径 R2 7cm 的金属球壳,在球壳内放一半径 R3 5cm 的同心金 属球,若使球壳和金属球均带有 q 108 C 的正电荷,
问 两球体上的电荷如何分布?球心的电势为多少?
四 了解静电场是电场能量的携带者,了解 电场能量密度的概念,能用能量密度计算电场能量.
§9-1 静电场中的导体
一 静电感应 静电平衡条件
+
+ ++++ + + +
感应电荷
+
+
+
+
+
+
E0
+
+
+
+
+
+
E0
+ +
E'
+ + + +
E0
E 0 + +
E E0 E' 0
导体内电场强度 外电场强度 感应电荷电场强度
E
E
外电场
空腔导体屏蔽外电场
空腔导体可以屏蔽外电场, 使空腔内物体不受外电 场影响.这时,整个空腔导体和腔内的电势也必处处相等.
2 屏蔽腔内电场
接地的孤立空 腔导体将使外部空 间不受空腔内的电 场影响.
接地导体电势为零
问:空间各部 分的电场强度如何 分布 ?
+
+
+
q
+
q +
q +
+
+
关于静电屏蔽: 空腔导体可屏蔽外电场 接地的空腔导体可屏蔽腔内电场
守恒)
3 导体表面电场强度与电荷面密度的关系
S
E dS
S
0
E S S
0
E
0
表面电场强度的大
小与该处表面电荷面密 度成正比, 电场强度是由 所有电荷共同产生
为表面电荷面密度
作钱币形高斯面 S E
+ + + + + + + +
+ +
E0
+
4 导体表面电荷分布
, E ; E
++
教学基本要求
一 理解静电场中导体处于静电平衡时的条件, 并能从静电平衡条件来分析带电导体在静电场中的电 荷分布.
二 了解电介质的极化及其微观机理,了解电
位移矢量 D 的概念,以及在各向同性介质中,D 和 电场强度 E 的关系 . 了解电介质中的高斯定理,并
会用它来计算对称电场的电场强度.
三 理解电容的定义,并能计算几何形状简 单的电容器的电容.
E1 0
(r R3 )
E2

q
0r
2
(R3 r R2 )
E3 0
(R1 r R2 )
E4
2q
4π 0r 2
(R1 r)
S4
q 112
VO 4 π 0 ( R3 R2 R1 )
2.31103 V
q
rSS23 q
r
R3
S1
R2 R1
例9-2 在两块面积均为S, 且相互平行的带等量异号电 荷的薄导体板A和B之间, 平行插入两块不带电的薄导 体板C, D, 其中A和C, C和D, D和B的间距均为d/3, 已 知C和D未插入时, A和B间的电势差为U, (1) 分析各导体板上的电荷分布,求各区域的电场强度 和UAC, UCD, UDB (2) 用导线将C和D相连后, 将导线撤去, 再求(1) (3) 在(2)的基础上再用导线将A和B相连后断开, 再求(1)
(1)、(2)解得:
1
2
0
2
思考 若上例中导体板接地,下面结果哪个正确?
-0 0 2 0
0
0
0
2
0 -0 0
(A)
(B)
(C)
§9-2 静电场中的电介质
电介质:绝缘体,无自由电荷。
电介质极化特点:内部场强一般不为零。
一 有极分子和无极分子电介质
有极分子:分子的正电荷
中心与负电荷中心不重合。
p ql
[例] 已知:
面电荷密度为0 的均匀带电大平板旁,
0
1
2
平行放置一大的不带电导体平板。 求:导体板两表面的面电密度。
E2 • E1 E0
解:设导体电荷密度为 1、 2 ,
电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 2 0 2 0 2 0
0 2 1 (2)
+H
无极分子:分子的正电荷
中心与负电荷中心重合。
O l
负电荷 中心
+
+H
正电荷中心
+
+ +
+
+
+
导体是等势体
U AB AB E dl 0
所以内表面不带电
结论 电荷分布在外表面上(内表面无电荷)
空腔内有电荷
E dS 0, S1
qi 0
电荷分布在表面上
内表面上有电荷吗?
E dS 0, S2
qi 0
q内 q
Qq
S2
q q
S1
结论 当空腔内有电荷 q 时,内表面因静电感应出 现等值异号的电荷 q ,外表面有感应电荷 q (电荷
+ ++
++++
E 0
注意 导体表面电荷分布与导体形状以及周围环境有关.
导体凸出部分的表面曲率越大处, 电荷面密度越大, 附近 电场也越强。孤立导体表面的电荷密度与曲率之间不存 在单一的函数关系。
尖端放电现象
E
带电导体尖端附近电场最强
带电导体尖端附近的电场特 别大,可使尖端附近的空气发生 电离而成为导体产生放电现象, 即尖端放电 .
相关文档
最新文档