高中数学必修4三角函数的图像与性质
必修四第一章第3节 三角函数的图象和性质(一)周期性与图象
年级高一学科数学版本苏教版课程标题必修四第一章第3节三角函数的图象和性质(一)周期性与图象编稿老师王东一校林卉二校黄楠审核王百玲一、考点突破1. 掌握正弦、余弦、正切三角函数的图象和性质,会作三角函数的图象。
通过三角函数的图象研究其性质。
2. 注重函数与方程、转化与化归、数形结合思想等数学思想方法的运用。
3. 掌握正弦型函数y=A sin(ωx+φ)的图象的“五点”作图法,图象的三种变换方法,以及利用三角函数的性质解决有关问题。
高考命题趋势考查内容1. 对三角函数图象的考查多以选择题、填空题为主。
对数形结合思想的考查主要通过三角函数图象和单位圆中的三角函数线等来体现。
2. 三角函数的性质是考查的重点,这类题目概念性强,具有一定的综合性与难度。
能力要求熟练掌握基本技能与基本方法。
难度与赋分高考中以三基为主,多为基础题目,每年分值约为8分。
二、重难点提示重点:正弦、余弦、正切函数的周期性、图象及性质;函数y=A sin(ωx+φ)的图象及参数对函数图象变化的影响。
难点:周期函数的概念;画三角函数的图象;函数y=A sin(ωx+φ)的图象与正弦曲线的关系。
一、知识脉络图正弦函数y=sinx三角函数的图象余弦函数y=cosx正切函数y=tanxy=Asin(ωx+φ)作图象描点法(五点作图法)几何作图法性质定义域、值域单调性、奇偶性、周期性对称性最值二、知识点拨1. 正弦、余弦、正切函数的主要性质函数性质y=sin x y=cos x y=tan x定义域R R{x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:)(0,2Zkk∈⎪⎭⎫⎝⎛+ππ无对称轴对称中心:⎝⎛⎭⎫kπ2,0(k∈Z)周期2π2ππ单调性单调增区间⎣⎡2kπ-π2,2kπ+⎦⎤π2(k∈Z);单调减区间⎣⎡2kπ+π2,2kπ+⎦⎤3π2(k∈Z)单调增区间[2kπ-π,kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间⎝⎛kπ-π2,kπ+⎭⎫π2(k∈Z)奇偶性奇偶奇2. 函数y=A sin(ωx+φ)(1)用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找到五个特征点。
人教A版高中数学必修四课件福建省福鼎市第二中学人教版1-4三角函数的图象与性质
(2)求函数y=sinx-cosx+sinxcosx,x∈[0,π ]的最大值和
最小值.
【解析】(1)由2sinx-1≥0得sinx≥又s1i,nx≤1,
2
∴≤1 sinx≤1,
2
∴ 2k x 2k 5 k Z.
6
6
答案:[2k ,2k 5](k Z)
【规范解答】(1)选C.由题意可得 cos x 1 0,
2
即cosx≥如1图, 可知.
2
角的终边落在与之 间的 阴影部分
33
(包括边界).
故故2k选 C. x 2k , k Z,
3
3
(2)选A.画出函数y=sinx的草图分析,当定义域为 [5 ,13 ]
33
数,则ω 的取值范围是()
(A)[(B)3[,0-)3,0]
2
(C)((0D,)3(]0,3]
2
【解析】选A.方法一:由题意可知ω<0,
由x∈[得,ω, x]∈
33
[ , ]. 33
又∵函数在区间[上为 减, ]函数,
33
∴解得3
2
,
3
22
1.周期函数和最小正周期 (1)周期函数:对于函数f(x)的定义域中的每一个值x,都存在 一个_非__零__常__数__T,使得_f_(_x_+_T_)_=_f_(_x_)_,则称f(x)为周期函数,T 为f(x)的一个周期. (2)最小正周期:周期函数f(x)的所有周期中,最小的一个_正__ _数__.
= 2(sin x 1)2 7 ,
48
所以当时sin,x 1
4
ymin
高考数学必修4总复习《三角函数:三角函数的图像与性质》
∴y=sin2x+52π为偶函数.
答案:B
4. (教材改编题)函数 f(x)=tanx+π4的单调递增区间为(
)
A. kπ-2π,kπ+π2(k∈Z)
B. (kπ,(k+1)π)(k∈Z)
C. kπ-34π,kπ+4π(k∈Z)
D. kπ-π4,kπ+34π(k∈Z)
(2)求满足 f(x)=0 的 x 的取值;
(3)求函数 f(x)的单调递减区间.
解 (1) 2sin2x-3π>0⇒
sin2x-π3>0⇒2kπ<2x-π3<2kπ+π,
k
∈
Z
⇒
kπ
+
π 6
<x<kπ
+
2 3
π
,
k
∈
Z.
故
函
数
的
定
义
域
为
kπ+π6,kπ+23π,k∈Z.
(2)∵f(x)=0,∴sin 2x-3π =
第五节 三角函数的图像与性质
1. 理解正弦函数、余弦函数、正切函数的图像和性质,会用 “五点法”画正弦函数、余弦函数的简图. 2. 了解周期函数与最小正周期的意义.
1. 周期函数
(1)周期函数的定义
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值
时,都有 f(x+T)=f(x,) 那么函数f(x)就叫做周期函数. 非零常数T 叫做这个函数
2 2
⇒2x-
π 3
=2kπ+
π 4
或2kπ+
3 4
π,k∈Z⇒x=kπ+
7 24
π或x=kπ+
13 24
π,k∈Z,故x的取值是
x|x=kπ+274π或x=kπ+1234π,k∈Z. (3)令2kπ+π2≤2x-π3<2kπ+π,k∈Z⇒2kπ+56π≤2x<2kπ+43π,
数学必修4——三角函数的图像与性质
数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。
4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。
利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。
途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。
途径⼆:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。
5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。
6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。
【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。
三角函数的图像与性质说课课件
二.学 情 分 析
(1)高一学生有一定的抽象思维能力,而形象思
维在学习中占有不可替代的地位,所以本节要紧 紧抓住数形结合方法进行探索.
(2)本班学生对数学科特别是函数内容的学
可知:正弦函数图像每经过 2k (k Z) 单位长度就重复出现,所以
...... 6 ,4 ,2 ,2 ,4 ,6..... 都是函数的周期.
2k(kZ)
最小正周期:如果周期函数f(x)的所有周期中存在一个最小整数, 那么这个最小整数就叫做f(x)的最小正周期 根据上述定义,我们有:
正弦函数是周期函数,2k (k Z且k 0) 都是它的周期,最小正周期为2
1
6
4
2
0
2
4
x
-1
1、定义域 3、最小正周期 4、单调性 : 增区间 5、最值 当x=
余弦曲线
2、值域
减区间
时,ymin
当x= 6、奇偶性
时,ymax
[设计意图]:通过把学习任务转移给学生,激发学生的主体意识和成就 动机,通过自主探索,给予学生解决问题的自主权,促进生生交流 ,最 终使学生成为独立的学习者 ,随着问题的解决,学生的积极性将被调动
单调区间为
2k
2
,2k
2
(k
Z
)
【设计意图】:通过列举正弦函数的几个
单调区间,最后归纳出函数所有的单调区 间,体现从特殊到一般的知识认识程 ,
培养学生观察、归纳的学习能力,有助于 以后理解记忆正弦型函数的相关性质.
思考:正弦函数的减区间是? 当x取何值时,y取最值?
人教版高数必修四第4讲:三角函数的图像与性质(教师版)
三角函数的图像与性质一、三角函数的图像:1. 正弦线:设任意角α的终边与单位圆相交于点P(x ,y),过P 作x 轴的垂线,垂足为M ,则有MP ry==αsin ,向线段MP 叫做角α的正弦线, 2.用单位圆中的正弦线作正弦函数y=sinx ,x ∈[0,2π]的图象(几何法):把y=sinx ,x ∈[0,2π]的图象,沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 叫做正弦曲线-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = sin x ()3.用五点法作正弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是: 1、用单位圆中的余弦线作余弦函数的图象(几何法): 为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.2、余弦函数y=cosx x ∈[0,2π]的五个点关键是(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 现在把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=cosx ,x ∈R 的图象,-11y x-6π-5π6π5π-4π-3π-2π-π4π3π2ππf x () = cos x ()3、正切函数x y tan =的图象: 我们可选择⎪⎭⎫⎝⎛-2,2ππ的区间作出它的图象根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数R x x y ∈=tan ,且()z k k x ∈+≠ππ2的图象,称“正切曲线”(0,0) (2π,1) (π,0) (23π,-1) (2π,0)二、三角函数的性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+时,max1y=;当22x kππ=-时,min1y=-.当2x kπ=时,max1y=;当2x kππ=+时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦上是减函数.在[]2,2k kπππ-上是增函数;在[]2,2k kπππ+上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭上是增函数.对称性对称中心(),0kπ对称轴2x kππ=+对称中心,02kππ⎛⎫+⎪⎝⎭对称轴x kπ=对称中心,02kπ⎛⎫⎪⎝⎭无对称轴类型一、三角函数的图像:例1. 作出函数xy2cos1-=的图象分析:首先将函数的解析式变形,化为最简形式,然后作出函数的图象。
高中数学必修4三角函数的图像与性质
三角函数的图像和性质课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念还 不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析 1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法导入法、讲授法、归纳总结法1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x定义域R R{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.函数)3cos(π+=x y ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数)4tan(x y -=π的定义域为( ). A .},4|{Z k k x x ∈-≠ππ B .},42|{Z k k x x ∈-≠ππ C .},4|{Z k k x x ∈+≠ππD .},42|{Z k k x x ∈+≠ππ3.)4sin(π-=x y 的图象的一个对称中心是( ).A .(-π,0)B .)0,43(π-C .)0,23(πD .)0,2(π4.函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的周期【例1】►求下列函数的周期:(1))23sin(x y ππ-=;(2))63tan(π-=x y考向二 三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4|(|π≤x 的最大值与最小值.【训练2】 (1)求函数y =sin x -cos x 的定义域;(2))1cos 2lg(sin )4tan(--=x xx y π的定义域(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.考向三 三角函数的单调性求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.(1))23cos(x y -=π,(2))324sin(21x y -=π,(3))33tan(π-=x y .【训练3】 函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12(2)若0<α<π2,)42sin()(απ++=x x g 是偶函数,则α的值为________.【训练4】 (1)函数y =2sin(3x +φ))2|(|πϕ<的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.难点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.【示例】► 已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为]12,125[ππππ+-k k (k ∈Z ),单调递减区间为]127,12[ππππ++k k (k ∈Z ),则ω的值为________.练一练:1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.课后练习:三角函数的图象与性质·练习题一、选择题(1)下列各命题中正确的是 [ ](2)下列四个命题中,正确的是 [ ]A.函数y=ctgx在整个定义域内是减函数B.y=sinx和y=cosx在第二象限都是增函数C.函数y=cos(-x)的单调递减区间是(2kπ-π,2kπ)(k∈Z)(3)下列命题中,不正确的是 [ ]D.函数y=sin|x|是周期函数(4)下列函数中,非奇非偶的函数是 [ ](5)给出下列命题:①函数y=-1-4sinx-sin2x的最大值是2②函数f(x)=a+bcosx(a∈R且b∈R-)的最大值是a-b以上命题中正确命题的个数是 [ ]A.1B.2C.3D.4[ ] A.sinα<cosα<tgαB.cosα>tgα>sinαC.sinα>tgα>cosαD.tgα>sinα>cosα(7)设x为第二象限角,则必有 [ ][ ]二、填空题(9)函数y=sinx+sin|x|的值域是______.的值是______.(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是______.(12)给出下列命题:①存在实数α,使sinαcosα=1⑤若α,β是第一象限角,α>β则tgα>tgβ其中正确命题的序号是______.三、解答题(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.答案与提示一、(1)B (2)D (3)D (4)B (5)D (6)D (7)A (8)D提示(2)y=ctgx在(kπ,kπ+π)(k∈Z)内是单调递减函数.y=cos(-x)=cosx在[2kπ-π,2kπ](k∈Z)上是增函数,而在[2kπ,2kπ+π]上是减函数.(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之.(5)①=-y(sinx+2)2+3 sinx=-1时,y max=2②当cosx=-1时,f(x)max=a-b∴cosα<sinα<tgα二、(9)[-2,2] (10)2或3 (11)y=arctg(x+2) (12)③④提示(11)C:y=arctg(x-2),C1:-y=arctg(-x-2),∴y=arctg(x+2)由390°>45°,但tg390°=tg30°<tg45°,故⑤不正确.综上,③④正确.三、。
人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT
解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2
必修四-第一章-三角函数知识点及例题详解
第一章 三角函数 知识点详列一、角的概念及其推广 正角:一条射线绕着端点以逆时针方向旋转形成的角1、任意角 零角:射线不做任何旋转形成的角 负角:一条射线绕着端点以顺时针方向旋转形成的角记忆法则:第一象限全为正,二正三切四余弦.ααcsc sin 为正 全正ααcot tan 为正ααsec cos 为正例1、(1)判断下列各式的符号: ①,265cos 340sin∙ ②,423tan 4sin ⎪⎭⎫⎝⎛-∙π③)cos(sin )sin(cos θθ其中已知)0tan ,cos cos (<-=θθθ且答案:+ — —2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z3、终边相同的角:一般地,所有与α角终边相同的角连同α在内(而且只有这样的角),cot α<0tan α<0cos α>0sin α<0cot α>0tan α>0cos α<0sin α<0cot α<0tan α<0cos α<0sin α>0sin α>0tan α>0cot α>0cos α>0可以表示为.,360Z k k∈+∙α4、特殊角的集合:(1)终边在X 轴非负半轴上的角的集合为{};,2Z k k ∈=παα(2)终边在X 轴非正半轴上的角的集合为(){};,12Z k k ∈+=πα (3)终边在X 轴上的角的集合为{};,Z k k ∈=παα(4)终边在Y 轴非负半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (5)终边在Y 轴非正半轴上的角的集合为;,22⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα(6)终边在Y 轴上的角的集合为;,2⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (7)终边在坐标轴上角的集合为;,2⎭⎬⎫⎩⎨⎧∈=Z k k παα(8)终边在一、三象限角平分线上的角的集合为;,4⎭⎬⎫⎩⎨⎧∈+=Z k k ππαα (9)终边在二、四象限角平分线上的角的集合为.,4⎭⎬⎫⎩⎨⎧∈-=Z k k ππαα 二、弧度1、定义:长度等于半径长的弧所对的圆心角叫做1弧度2、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 3、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= 4、两个公式:若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.三、三角函数1.设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )则P 与原点的距离02222>+=+=y x yx r2.比值r y 叫做α的正弦 记作: r y =αsin 比值r x 叫做α的余弦 记作: r x =αcos比值x y 叫做α的正切 记作: x y =αtan比值y x叫做α的余切 记作: yx =αcot比值x r 叫做α的正割 记作: x r =αsec 比值y r叫做α的余割 记作: yr =αcsc 以上六种函数,统称为三角函数.2.同角三角函数的基本关系式: (1)倒数关系:tan cot 1αα⋅=;(2)商数关系:sin cos tan ,cot cos sin αααααα==; (3)平方关系:22sin cos 1αα+= .3.诱导公式,奇变偶不变,符号看象限.()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.例2.化简(1)sin()cos()44ππαα-++;(2)已知32,cos(9)5παπαπ<<-=-,求11cot()2πα-的值. ry)(x,αP解:(1)原式sin()cos[()]424πππαα=-++-sin()sin()044ππαα=---=.(2)3cos()cos(9)5απαπ-=-=-,∴3cos 5α=,∵2παπ<<,∴4sin 5α=-,sin 4tan cos 3ααα==,∴1134cot()cot()tan 223ππααα-=--=-=.例3 确定下列三角函数值的符号(1)cos250° (2))4sin(π-(3)tan (-672°) (4))311tan(π解:(1)∵250°是第三象限角 ∴cos250°<0(2)∵4π-是第四象限角,∴0)4sin(<-π(3)tan (-672°)=tan (48°-2×360°)=tan48°而48°是第一象限角,∴tan (-672°)>0(4) 35tan)235tan(311tanππππ=+= 而35π是第四象限角,∴0311tan<π. 例4 求值:sin(-1320°)cos1110°+cos(-1020°)sin750°+tan495°. 解:原式=sin(-4×360°+120°)·cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin120°·cos30°+cos60°·sin30°+tan135°=21212323⨯+⨯-1=0 题型一 象所在象限的判断 例5(1)如果α为第一象限角,试问2α是第几象限角?(2)如果α为第二象限角,试问:απαπα+--,,分别为第几象限角?答案:(1)第一或者第三;(2)第三,第一,第四。
人教版高中数学高一A版必修4 第一章第四节三角函数的图象与性质(第三课时)
第一章第四节三角函数的图象与性质第三课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sin x,y=cos x是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么?③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么?由值域又能得到什么?④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思路的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sin x |≤1,|cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y =sin x (x ∈R ),(1)当且仅当x =π2+2k π,k ∈Z 时,取得最大值1. (2)当且仅当x =-π2+2k π,k ∈Z 时,取得最小值-1. 对于余弦函数y =cos x (x ∈R ),(1)当且仅当x =2k π,k ∈Z 时,取得最大值1.(2)当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-π2,3π2](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3图4就是说,函数y =sin x ,x ∈[-π2,3π2]. 当x ∈[-π2,π2]时,曲线逐渐上升,是增函数,sin x 的值由-1增大到1; 当x ∈[π2,3π2]时,曲线逐渐下降,是减函数,sin x 的值由1减小到-1. 类似地,同样可得y =cos x ,x ∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-π2+2k π,π2+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[π2+2k π,3π2+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O 对称,余弦曲线关于y 轴对称.在R 上,y =sin x 为奇函数,y =cos x 为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x )=-sin x ,cos(-x )=cos x ,∴y =sin x 为奇函数,y =cos x 为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x =π2对称,余弦曲线还关于点(π2,0)对称等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习埋下伏笔.讨论结果:①略.②定义域为R .③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R ,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y 轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x 轴的直线为对称轴.但是由于y 轴的位置不同,对称中心及对称轴与x 轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y 轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么.(1)y =cos x +1,x ∈R ;(2)y =-3sin2x ,x ∈R .活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z };使函数y =cos x +1,x ∈R 取得最小值的x 的集合,就是使函数y =cos x ,x ∈R 取得最小值的x 的集合{x |x =(2k +1)π,k ∈Z }.函数y =cos x +1,x ∈R 的最大值是1+1=2,最小值是-1+1=0.(2)令z =2x ,使函数y =-3sin z ,z ∈R 取得最大值的z 的集合是{z |z =-π2+2k π,k ∈Z }, 由2x =z =-π2+2k π,得x =-π4+k π. 因此使函数y =-3sin2x ,x ∈R 取得最大值的x 的集合是{x |x =-π4+k π,k ∈Z }. 同理,使函数y =-3sin2x ,x ∈R 取得最小值的x 的集合是{x |x =π4+k π,k ∈Z }. 函数y =-3sin2x ,x ∈R 的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x 的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y =A sin(ωx +φ)+B 的函数,一般通过变量代换(如设z =ωx +φ化归为y =A sin z +B 的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2利用三角函数的单调性,比较下列各组数的大小:(1)sin(-π18)与sin(-π10);(2)cos(-23π5)与cos(-17π4). 活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为-π2<-π10<-π18<0,正弦函数y =sin x 在区间[-π2,0]上是增函数, 所以sin(-π18)>sin(-π10). (2)cos(-23π5)=cos 23π5=cos 3π5,cos(-17π4)=cos 17π4=cos π4. 因为0<π4<3π5<π,且函数y =cos x ,x ∈[0,π]是减函数, 所以cos π4>cos 3π5,即cos(-23π5)<cos(-17π4). 点评:推进本例时应提醒学生注意,在今后遇到的三角函数值大小比较时,必须将已知角化到同一个单调区间内,其次要注意首先大致地判断一下有没有符号不同的情况,以便快速解题,如本例中,cos π4>0,cos 3π5<0,显然大小立判. 例3求函数y =sin(12x +π3),x ∈[-2π,2π]的单调递增区间. 活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把12x +π3看成z ,这样问题就转化为求y =sin z 的单调区间问题,而这就简单多了. 解:令z =12x +π3.函数y =sin z 的单调递增区间是[-π2+2k π,π2+2k π]. 由-π2+2k π≤12x +π3≤π2+2k π,得-5π3+4k π≤x ≤π3+4k π,k ∈Z .由x ∈[-2π,2π]可知,-2π≤-5π3+4k π且π3+4k π≤2π,于是-112≤k ≤512,由于k ∈Z ,所以k =0,即-5π3≤x ≤π3.而[-5π3,π3]⊂[-2π,2π], 因此,函数y =sin(x 2+π3),x ∈[-2π,2π]的单调递增区间是[-5π3,π3]. 点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x 的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1求下列函数的定义域:(1)y =11+sin x;(2)y =cos x . 活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sin x ≠0,得sin x ≠-1,即x ≠3π2+2k π(k ∈Z ). ∴原函数的定义域为{x |x ≠3π2+2k π,k ∈Z }. (2)由cos x ≥0,得-π2+2k π≤x ≤π2+2k π(k ∈Z ). ∴原函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ). 点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.例2在下列区间中,函数y =sin(x +π4)的单调增区间是( ) A .[π2,π] B .[0,π4] C .[-π,0] D .[π4,π2] 活动:函数y =sin(x +π4)是一个复合函数,即y =sin[φ(x )],φ(x )=x +π4,欲求y =sin(x +π4)的单调增区间,因φ(x )=x +π4在实数集上恒递增,故应求使y 随φ(x )递增而递增的区间.也可从转化与化归思想的角度考虑,即把x +π4看成一个整体,其道理是一样的. 解析:∵φ(x )=x +π4在实数集上恒递增,又y =sin x 在[2k π-π2,2k π+π2](k ∈Z )上是递增的,故令2k π-π2≤x +π4≤2k π+π2. ∴2k π-3π4≤x ≤2k π+π4. ∴y =sin(x +π4)的递增区间是[2k π-3π4,2k π+π4]. 取k =-1、0、1分别得[-11π4,7π4]、[-3π4,π4]、[5π4,9π4], 故选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y =A sin(ωx +φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y =f (t ),t =φ(x );(3)根据函数f (t )的单调性确定φ(x )的单调性;(4)写出满足φ(x )的单调性的含有x 的式子,并求出x 的范围;(5)得到x 的范围,与其定义域求交集,即是原函数的单调区间.知能训练课本本节练习解答:1.(1)(2k π,(2k +1)π),k ∈Z ;(2)((2k -1)π,2k π),k ∈Z ;(3)(-π2+2k π,π2+2k π),k ∈Z ;(4)(π2+2k π,3π2+2k π),k ∈Z . 点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果的规范及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cos x =32>1. (2)成立.因为sin 2x =0.5,即sin x =±22,而正弦函数的值域是[-1,1],±22∈[-1,1]. 点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、余弦函数的最大值、最小值性质.3.(1)当x ∈{x |x =π2+2k π,k ∈Z }时,函数取得最大值2;当x ∈{x |x =-π2+2k π,k ∈Z }时,函数取得最小值-2.(2)当x ∈{x |x =6k π+3π,k ∈Z }时,函数取得最大值3;当x ∈{x |x =6k π,k ∈Z }时,函数取得最小值1.点评:利用正弦、余弦函数的最大值、最小值性质,结合本节例题巩固正弦、余弦函数的性质,快速写出所给函数的最大值、最小值.4.B点评:利用数形结合思想认识函数的单调性.这是一道选择题,要求快速准确地选出正确答案.数形结合是实现这一目标的最佳方法.5.(1)sin250°>sin260°;(2)cos 15π8>cos 14π9;(3)cos515°>cos530°;(4)sin(-54π7)>sin(-63π8). 点评:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.6.[k π+π8,k π+5π8],k ∈Z . 点评:关键是利用转化与化归的思想将问题转化为正弦函数的单调性问题,得到关于x 的不等式,通过解不等式求得答案.课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.作业判断下列函数的奇偶性:(1)f (x )=x sin(π+x );(2)f (x )=-1+sin x +cos 2x 1-sin x. 解答:(1)函数的定义域为R ,它关于原点对称.∵f (x )=x sin(π+x )=-x sin x ,f (-x )=-(-x )sin(-x )=-x sin x =f (x ),∴函数为偶函数.(2)函数应满足1-sin x ≠0,∴函数的定义域为{x |x ∈R 且x ≠2k π+π2,k ∈Z }. ∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数、余弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在讲完正弦函数性质的基础上,应着重引导学生用类比的方法写出余弦函数的性质,以加深他们对两个函数的区别与联系的认识,并在解题中突出数形结合思想,在训练中降低变化技巧的难度,提高应用图象与性质解题的力度.较好地利用图象解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sin α这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.备课资料一、近几年三角函数知识的变动情况三角函数一直是高中固定的传统内容,但近几年对这部分内容的具体要求变化较大.1998年4月21日,国家教育部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆”.1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,在仅有的一次应用中,还将公式印在试卷上,以供查阅.而当时调整意见尚未生效(应在1999年生效),这不能不说对和积互化的8个公式的要求是大大降低了.但是,如果认为这次调整的仅仅是8个公式,仅仅是降低了对8公式的要求,那就太表面、太肤浅了.我们知道,三角中的和积互化历来是三角部分的重点内容之一,相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力.现在要求降低了,有关的题目已不再适合作为例(习)题选用了.这样一来,三角部分还要我们教些什么呢?又该怎样教?立刻成了部分教师心头的一大困惑.有鉴于此,我们认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育教学秩序)”的既定目标.1.是“三角”还是“函数”应当说,三角函数是由“三角”和“函数”两部分知识构成的.三角本是几何学的衍生物,起始于古希腊的希帕克,经由托勒玫、利提克思等至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科,历史上的很长一段时期,只有《三角学》盛行于世,却无“三角函数”之名.“三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年.但是,此概念一经引入,立刻极大地改变了三角学的面貌,特别是经过罗巴切夫斯基的开拓性工作,致使三角函数可以完全独立于三角形之外,而成为分析学的一个分支,其中的角也不限于正角,而是任意实数了.有的学者甚至认为可将它更名为角函数,这是有见地的,所以,作为一门学科的《三角学》已经不再独立存在.现行中学教材也取消了原来的《代数》《三角》《几何》的格局,将三角并入了代数内容.这本身即足以说明“函数”在“三角”中应占有的比重.从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的,所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍,所在皆是.这是由当时的数学认知水平决定的.而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值.1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”.现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写.所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点.2.是“图象”还是“变换”现行高中三角函数部分,单列了一章专讲三角函数,这是与数学发展的潮流相一致的.大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和性质”倒是在其次的,这一点,与前面所述的“幂、指、对”函数有着极大的反差.调整以后,降低这部分的要求,大面积地减少了题量.把“函数”作为关键词,将目光放在“图象和性质”上,应当是正确的选择,负担轻了,障碍小了,这更方便于我们将注意力转移到对函数图象和性质的关注上,这才是“三个有利于”得以贯彻的根本.3.国外的观点及启示下面来看一下美国和德国的观点:美国没有全国统一的教材和《考试说明》,只有一个《课程标准》,在《课程标准》中,他们对三角函数提出了下面的要求:“会用三角学的知识解三角形;会用正弦、余弦函数研究客观实际中的周期现象;掌握三角函数图象;会解三角函数方程;会证基本的和简单的三角恒等式;懂得三角函数同极坐标、复数等之间的联系”.他们还特别指出,不要在推导三角恒等式上花费过多的时间,只要掌握一些简单的恒等式推导就可以了,比较复杂的恒等式就应该完全避免了.德国在10到12年级(相当于中国的高一到高三)每年都有三角内容,10年级要求如下:(1)一个角的弧度;(2)三角函数sin x 、cos x 、tan x 和它们的图象周期性;(3)三角形中角和边的计算;(4)重要关系(特指同角三角函数的平方关系、商数关系和倒数关系).另外,在11年级和12年级的“无穷小分析”中,继续研究三角函数的图象变换、求导、求积分、求极限.从以上罗列,我们可以看出下面的共同点:第一,突出强调三角函数的图象和性质;第二,淡化三角式的变形,仅涉及同角变换,而且要求较低,8个公式根本不予介绍; 第三,明确变换的目的是为了三角形中的实际计算;第四,注意三角函数和其他知识的联系.这带给我们的启示还是很强烈的,美国和德国的中学教育以实用为主,并不太在乎教材体系是否严谨,知识系统是否完整;我国的教材虽作调整,怎样实施且不去细说,有一个意图是可猜到的,那就是要让学生知道教材是严谨与完整的.现在看来严谨的东西,在更高的观点下是否还严谨?在圈内看是完整的,跳出圈子看,是否还完整?在一个小地方钻得太深,在另外更大的地方就可能无暇顾及.人家能在中学学到向量、行列式、微分、积分,我们却热衷于在个别地方穷追不舍,这早已引起行家的注意,从这个意义上说,此次调整应当只是第一步.在中学阶段即试图严谨与完整,其实是受前苏联教育家赞可夫的三高(高速度、高难度、高理论)影响太深的缘故.二、备用习题1.函数y =sin(π3-2x )的单调减区间是( ) A .[2k π-π12,2k π+5π12](k ∈Z ) B .[4k π-5π3,4k π+11π3](k ∈Z ) C .[k π-5π12,k π+11π12](k ∈Z ) D .[k π-π12,k π+5π12](k ∈Z ) 答案:D2.满足sin(x -π4)≥12的x 的集合是( ) A .{x |2k π+5π12≤x ≤2k π+13π12,k ∈Z } B .{x |2k π-π12≤x ≤2k π+7π12,k ∈Z } C .{x |2k π+π6≤x ≤2k π+5π6,k ∈Z } D .{x |2k π≤x ≤2k π+π6,k ∈Z }∪{x |2k π+5π6≤x ≤(2k +1)π,k ∈Z } 答案:A3.求下列函数的定义域和值域:(1)y =lgsin x ;(2)y =2cos3x .答案:解:(1)由题意得sin x >0,∴2k π<x <(2k +1)π,k ∈Z .又∵0<sin x ≤1,∴lgsin x ≤0.故函数的定义域为[2k π,(2k +1)π],k ∈Z ,值域为(-∞,0].(2)由题意得cos3x ≥0,∴2k π-π2≤3x ≤2k π+π2,k ∈Z . ∴2k π3-π6≤x ≤2k π3+π6,k ∈Z . 又∵0≤cos x ≤1,∴0≤2cos3x ≤2.故函数的定义域为[2k π3-π6,2k π3+π6],k ∈Z ,值域为[0,2].。
(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π
2π
sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π
2π
cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.
高中数学必修4三角函数的图像与性质
高中数学必修4三角函数的图像与性质高一数学辅导三角函数(四)【三角函数的图像与性质】考点1 求与三角函数有关的函数的定义域【例1】(1)求下列函数的定义域:①y=2+log1x+tan x;②y=2sin(cos x);③y=lg sin(cos x).(2)已知f(x)的定义域为[0,1),求f(cos x)的定义域.解析:(1)①⎩⎪⎨⎪⎧2+log 12x ≥0,tan x ≥0,x >0⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2,k ∈Z , 0<x <π2或π≤x ≤4,所以函数的定义域是⎝⎛⎭⎪⎪⎫0,π2∪[π,4].②sin(cos x )≥00≤cos x ≤12k π-π2≤x≤2k π+π2,k ∈Z ,所以函数的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪2k π-π2≤x ≤2k π+π2,k ∈Z . ③由sin(cos x )>02k π<cos x <2k π+π(k ∈Z),又∵-1≤cos x ≤1,∴0<cos x ≤1,∴所求定义域为⎝⎛⎭⎪⎫2k π-π2,2k π+π2,k ∈Z.(2)0≤cos x <12k π-π2≤x ≤2k π+π2,且x ≠2k π(k ∈Z),∴所求函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫2k π-π2,2k π∪(2k π,2k π+π2],k ∈Z.考点2 求三角函数的单调区间 【例2】 求下列函数的单调区间:(1)y =12sin ⎝ ⎛⎭⎪⎫π4-2x 3; (2)y =-⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π4.解析:(1)∵y =12sin ⎝ ⎛⎭⎪⎪⎫π4-2x 3=-12sin ⎝ ⎛⎭⎪⎪⎫2x 3-π4,且函数y =sin x 的单调递增区间是⎣⎢⎢⎡⎦⎥⎥⎤2k π-π2,2k π+π2,单调递减区间是⎣⎢⎢⎡⎦⎥⎥⎤2k π+π2,2k π+3π2(k ∈Z). ∴由2k π-π2≤2x 3-π4≤2k π+π23k π-3π8≤x ≤3k π+9π8(k ∈Z),由2k π+π2≤2x 3-π4≤2k π+3π23k π+9π8≤x ≤3k π+21π8(k ∈Z),即函数的单调递减区间为[3k π-3π8,3k π+9π8](k ∈Z),单调递增区间为[3k π+9π8,3k π+21π8](k ∈Z ). (2)作出函数y =-⎪⎪⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎪⎫x +π4的简图(如图所示),由图象得函数的单调递增区间为⎣⎢⎢⎡⎦⎥⎥⎤k π+π4,k π+3π4(k ∈Z),单调递减区间为⎣⎢⎢⎡⎦⎥⎥⎤k π-π4,k π+π4(k ∈Z).考点3 求三角函数的最小正周期、最值(值域) 【例3】(1)求下列函数的值域。
第2讲 三角函数的诱导公式和三角函数的图像与性质(必修4)
三角函数的诱导公式和三角函数的图像与性质一、知识温故:诱导公式◆ 终边相同的角的三角函数值相等()()()zk , t an 2t an z k , 2zk , 2∈=+∈=+∈=+απααπααπαk Cos k Cos Sin k Sin轴对称关于与角角x αα-()()()ααααααt a n t a n -=-=--=-C o s C o s S i n S i n♦ 轴对称关于与角角y ααπ-()()()ααπααπααπt a n t a n -=--=-=-C o s C o s S i n S i n⌧ 关于原点对称与角角ααπ+()()()ααπααπααπt a n t a n =+-=+-=+C o sC o s S i n S i n⍓对称关于与角角x y =-ααπ2ααπααπααπcot 2t an 22=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-Sin Cos Cos Sin ααπααπααπc o t2t a n 22-=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+S i nC o s C o s S i n 注:上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”周期问题◆()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A y三角函数的图像及性质(i )正弦函数、余弦函数的图像1. 函数sin ,cos y x y x ==的图像2. 函数sin ,cos y x y x ==的性质 正弦函数余弦函数 定义域 定义域 值域 值域 周期性 周期性 奇偶性 奇偶性 单调性单调性最大(小)值最大(小)值 对称性对称性3. 周期函数的定义:一般地,对于函数()f x ,如果存在一个非零数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。
2021年高中苏教版数学必修4名师导学:第1章 第10课时 三角函数的图象与性质(1)
第10课时三角函数的图象与性质(1)教学过程一、问题情境先观看一个物理试验:这个试验的名称叫做“砂摆试验”,就是将一个装满细砂的漏斗挂在一个铁架上做单摆运动时,沙子落在与单摆运动方向垂直的木板上,我们通过试验看看落在木板上的细砂轨迹是什么?二、数学建构这个曲线在实际生活中经常遇到,同时它也是我们平常所学习过的一个函数的图象,该曲线就是我们这阶段正在学习的正弦函数或余弦函数的图象,点明课题:正弦函数、余弦函数的图象及其画法.首先争辩一下正弦函数y=sin x的图象画法,问题1对于正弦函数y=sin x,在上节课我们已知道正弦函数是周期函数,那么这对作出正弦函数y=sin x的图象有没有挂念?(正弦函数y=sin x是周期函数,它的最小正周期为2π;由于正弦函数的周期为2π,因此我们只需画出一个周期的图象,然后依据周期性就可以得到整个函数的图象了)问题2假如请你画,你会选择怎样的区间?(选择最生疏的区间[0,2π])问题3作函数y=sin x,x∈[0,2π]的图象最基本的方法是什么?其具体步骤又是什么?(描点法(列表、描点、连线))下面可以结合同学的预习,投影呈现利用描点法作出正弦函数y=sin x,x∈[0,2π]上的图象.(1)列表:x0πππ…2πy010 0(2)描点;(3)连线.(如图1)(图1)问题4以上我们利用描点法作出了正弦函数y=sin x,x∈[0,2π]的图象,在上面作图中,你觉得有不满足的地方吗?(描点越多,图象越精确,感觉描的点还不够多(等等))同学可能不会留意点的位置精确度不高,老师可作如下点评:在上面的作图中,我们只是借助于有限的几个特殊角进行描点,这样作出的图象精确度就会打折扣,假如图画得不精确,会影响后面更深化地争辩正弦函数的性质.问题5有没有方法精确地标出正弦函数y=sin x,x∈[0,2π]上任意一点Q(x0, sin x0)呢?(同学可能会供应下面的方法1,在前面指、对数函数和幂函数中已经多次使用过:方法1:我们可以借助计算机计算出sin x0,从而接受描点法作出正弦函数的图象(如图2):x sin x x sin x0010.8414710.10.0998331.10.8912070.20.1986691.20.9320390.30.295521.30.9635580.40.3894181.40.985450.50.4794261.50.9974950.60.5646421.60.9995740.70.6442181.70.9916650.80.7173561.80.9738480.90.7833271.90.9463(图2)老师可以接着提问下面的问题:可不行以不借助电脑而直接利用尺规来描点作图呢?(换句话说就是能否利用几何图形表示出sin x0)方法2:借助正弦线描点作出正弦函数的图象.第一步:列表.首先在单位圆中画出0,,,,…,2π的正弦线,并在x轴上[0,2π]这一段相应的分成12等份.其次步:描点.把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点.第三步:连线.用光滑曲线把这些正弦线平移后的终点连接起来,就得到正弦函数y=sin x,x∈[0,2π]的图象(如图3).(图3)作法点评:相比较方法1,方法2作出的图象较为精确了,特殊对于利用正弦线作图,图象的变化一目了然:(老师可以再用动画演示一下)当自变量x由0渐渐增大时,图象在递增并且呈上凸外形,在处函数达到最大值,在递减且上凸,过了π点,在连续递减并且下凸,到π达到最小值,之后在递增且下凸……问题6以上作出了y=sin x,x∈[0,2π]的图象,那么y=sin x,x∈R的图象怎么作出呢?(先作出函数y=sin x,x∈[0,2π]的图象,然后将作出的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象(如图4)).(图4)一般来说,我们将正弦函数的图象叫做正弦曲线.[3]问题7再观看y=sin x,x∈[0,2π]的图象,其图象变化有没有一些关键特征?观看正弦函数在[0,2π]内的图象,可以发觉起关键作用的点有以下五个:(0, 0),,(π, 0),,(2π, 0).事实上,描出这五点后,函数y=sin x,x∈[0,2π]的图象外形就基本确定了.因此在精确度要求不高时,我们经常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就得到函数的简图.五点法的几点总结:(1)留意五点的特征:最高点(波峰)、最低点(波谷)、平衡点(使得sin x, cos x等于0的点),它们属于三种特殊的函数值(正弦值为1,-1, 0);(2)五点的横向间隔相等,其长度等于周期的;(3)五点是连续变化的五点.问题8能否以正弦曲线的画法为基础,作出余弦函数y=cos x,x∈R的图象呢?你现在有几种方法?用平移变换法作y=cos x,x∈R的图象(放手让同学独立思考,自主活动,通过自己的探究得出余弦函数的图象.实际上,只要同学能够想到正弦函数和余弦函数的内在联系,即cos x=sin,通过图象变换,由正弦函数图象得出余弦函数图象的方法是比较简洁想到的),由于cos x=sin,所以只需将y=sin x,x∈R 的图象向左平移个单位即得.课件演示:由于y=cos x=cos(-x)=sin=sin,所以余弦函数y=cos x,x∈R与函数y=sin,x∈R是同一个函数;这样,余弦函数的图象可由正弦函数的图象向左平移个单位得到,如图5所示.(图5)余弦函数的图象叫做余弦曲线.问题9对比正弦曲线、余弦曲线,这两类曲线有相像之处吗?(这两个曲线外形一模一样,只不过是在坐标轴上的位置不同而已)问题10能否也用五点快速作出余弦曲线的图象?(同正弦函数图象一样,打算余弦曲线图象的也是五个关键点:(0, 1),,(π,-1),,(2π, 1),假如精确度要求不高,也可以借助此五点作出余弦函数在一个周期内的图象,进而利用周期性作出整个图象)课件演示:“余弦函数图象的五点作法”(略)三、数学运用【例1】用“五点法”画出下列函数的简图:(1)y=2cos x,x∈R;(2)y=sin2x,x∈R.(见同学用书P19)[处理建议]第(1)小题中,x分别取0,,π,,2π这五个值就可以找到关键的五个点;第(2)小题中,2π相当于正弦函数中的x,所以应当是2x分别取0,,π,,2π这五个值,然后得到x分别取的五个值.可让同学先尝试自己列表、作图,老师然后指出不足.[规范板书]解(1)先用“五点法”画一个周期的图象,列表:x0π2πcos x10-1012cos x20-202描点画图,然后由周期性得整个图象(如图(1)).(例1(1))(2)先用“五点法”画一个周期的图象,列表:x0π2x0π2πsin2x010-10描点画图,然后由周期性得整个图象(如图(2)).(例1(2))[题后反思]如何找到五点是解决本题的关键,应依据五点的图形特征来列表,即应当是图象上的最高、最低点,与x轴的交点.而描点的时候应当是x的取值和对应的y值组成一个点的坐标.思考函数y=2cos x与y=cos x的图象之间有何联系?函数y=sin2x与y=sin x的图象之间有何关系?(函数y=2cos x的图象应当是由函数y=cos x的图象上全部点的横坐标不变而纵坐标变为原来的2倍得到;函数y=sin2x的图象应当是由函数y=sin x 的图象上全部点的纵坐标不变而横坐标变为原来的得到)【例2】画出函数y=sin x+|sin x|的简图.(见同学用书P20)[处理建议]引导同学先求出三角函数的周期,然后作出在一个周期内的图象.要重视对函数解析式的变形.[规范板书]函数的周期为2π,在x∈[0,2π]时,y=作出函数图象如图:(例2)[题后反思]通过本例的学习,体会在数学解题中的等价转化思想,培育同学的分析、解决问题的力气.变式求函数y=sin x+|sin x|的值域.答案[0, 2].[题后反思]通过变题,让同学清楚画好函数图象是今后争辩函数的性质的基础.四、课堂练习1.用“五点法”画出函数y=2sin x的简图.解略.2.用“五点法”画出函数y=cos x-1的简图.解略.3.利用函数y=cos x的图象写出方程cos x=的解集.解.4.利用函数y=sin x的图象写出不等式sin x>的解集.解,k∈Z.五、课堂小结1.正弦函数图象的几何描点作图法(利用三角函数线来描点).2.正弦函数图象的五点作图法(留意五点的选取).3.由正弦函数的图象平移得到余弦函数的图象.4.重视利用正弦、余弦函数的图象来争辩函数的性质.。
第13讲 必修4第一章三角函数的图像与性质(教师版)
11.α是第一象限角,tan α=34,则sin α=()A.45 B.35C.-45D.-35解析:选B tan α=sin αcos α=34,sin2α+cos2α=1,且α是第一象限角,所以sin α=35.2.(2013·安徽名校模拟)已知tan x=2,则sin2x+1=()A.0 B.95 C.43 D.53解析:选B sin2x+1=2sin2x+cos2xsin2x+cos2x=2tan2x+1tan2x+1=95.3.(2013·西安模拟)已知2tan α·sin α=3,-π2<α<0,则sin α=()A.32B.-32 C.12D.-12解析:选B由2tan α·sin α=3得,2sin2αcos α=3,即2cos2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-3 2.4.若cos α+2sin α=-5,则tan α=()A.12B.2 C.-12D.-2解析:选B∵cos α+2sin α=-5,结合sin2α+cos2α=1得(5sin α+2)2=0,∵sin α=-255,cos α=-55,∵tan α=2.5.化简sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-αcos π+α+sin π-α·cos ⎝ ⎛⎭⎪⎫π2+αsin π+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0.答案:01.(教材改编)函数y =12sin x ,x ∵[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎡⎦⎤-π2,π2上是增函数,在⎣⎡⎦⎤-π,-π2和⎣⎡⎦⎤π2,π上都是减函数 C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎡⎦⎤π2,π和⎣⎡⎦⎤-π,-π2上是增函数,在⎣⎡⎦⎤-π2,π2上是减函数 答案 B2.函数y =tan 2x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π4,k ∵Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∵Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+π8,k ∵Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π2+π4,k ∵Z 答案 D解析 由2x ≠k π+π2,k ∵Z ,得x ≠k π2+π4,k ∵Z ,∵y =tan 2x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π4,k ∵Z . 3.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω等于( )A.23B.32 C .2 D .3 答案 B解析 ∵f (x )=sin ωx (ω>0)过原点,∵当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数; 当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∵ω=32. 4.(2015·安徽)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A .f (2)<f (-2)<f (0) B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2) 答案 A解析 由于f (x )的最小正周期为π, ∵ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∵Z ),∵φ=2k π-11π6(k ∵Z ),又φ>0,∵φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6,f (2)=A sin ⎝⎛⎭⎫4+π6=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫4+π6=A sin ⎝⎛⎭⎫5π6-4, f (-2)=A sin ⎝⎛⎭⎫-4+π6=A sin ⎝⎛⎭⎫13π6-4=A sin ⎣⎡⎦⎤π-⎝⎛⎭⎫13π6-4=A sin ⎝⎛⎭⎫4-7π6. 又∵-π2<5π6-4<4-7π6<π6<π2,又f (x )在⎝⎛⎭⎫-π2,π2上单调递增, ∵f (2)<f (-2)<f (0),故选A.5.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 答案 5 3π4+2k π(k ∵Z )解析 函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5, 此时x +π4=π+2k π(k ∵Z ),即x =3π4+2k π(k ∵Z ).1.用五点法作正弦函数和余弦函数的简图跟踪练习1 (1)函数y =lg(sin x )+cos x -12的定义域为__________________________.(2)函数y =sin x -cos x +sin x cos x 的值域为______________________________________.答案 (1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z(2)⎣⎡⎦⎤-12-2,1 解析 (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧ sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k πk ∵Z ,-π3+2k π≤x ≤π3+2k πk ∵Z , ∵2k π<x ≤π3+2k π(k ∵Z ),∵函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∵Z .(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∵y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.∵函数的值域为⎣⎡⎦⎤-12-2,1.题型二 三角函数的单调性例2 (1)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∵Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∵Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∵Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∵Z ) (2)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________. 答案 (1)B (2)⎣⎡⎦⎤12,54解析 (1)由k π-π2<2x -π3<k π+π2(k ∵Z )得,踪练习3 (1)已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为________. (2)已知函数f (x )=sin x +a cos x 的图象关于直线x =5π3对称,则实数a 的值为( )A .- 3B .-33 C. 2 D.22答案 (1)2或-2 (2)B解析 (1)∵f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,∵x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∵f ⎝⎛⎭⎫π6=±2.(2)由x =5π3是f (x )图象的对称轴,可得f (0)=f ⎝⎛⎭⎫10π3, 解得a =-33.1、 (2014陕西,2,5分,∵∵∵)函数f(x)=cos 的最小正周期是( )A. B.π C.2π D.4π 思路点拨 根据公式T=计算.[答案] B [解析] T===π.故选B.2、(2013江苏,1,5分,∵∵∵)函数y=3sin的最小正周期为________.[答案]π[解析]由题意知ω=2,所以T==π.3、(2015山东烟台模拟,∵∵∵)求下列函数的最小正周期:(1)y=sin;(2)y=|sin x|.思路点拨(1)利用公式求最小正周期;(2)可利用图象法求最小正周期.[答案]答案见解析[解析](1)y=sin,其中ω=2,∵T==π.(2)函数y=|sin x|的图象如下图所示,可知其最小正周期为π.4、(2015四川,5,5分,∵∵∵)下列函数中,最小正周期为π的奇函数是()A.y=sinB.y=cosC.y=sin 2x+cos 2xD.y=sin x+cos x思路点拨利用函数的奇偶性逐项验证.[答案]B[解析]A中,y=cos 2x,最小正周期为π,为偶函数,不符合题意;B中,y=-sin 2x,最小正周期为π,且为奇函数,符合.C,D为非奇非偶的函数.5、(2014陕西西安模拟,∵∵∵)下列函数中是奇函数的是()A.y=-|sin x|B.y=sin(-|x|)C.y=sin |x|D.y=x·sin |x|思路点拨利用f(-x)=-f(x)进行判断.[答案]D[解析]四个函数的定义域都是R,设f(x)=x·sin|x|,则f(-x)=(-x)·sin|-x|=-x·sin|x|=-f(x),∵y=x·sin|x|是奇函数,故选D.6、(2014广东,5,5分,∵∵∵)下列函数为奇函数的是()A.y=2x-B.y=x3sin xC.y=2cos x+1D.y=x2+2x思路点拨根据奇函数的定义判断.[答案]A[解析]由函数奇偶性的定义知,B、C中的函数为偶函数,D中的函数为非奇非偶函数,只有A中的函数为奇函数,故选A.7、(2012天津,6,5分,∵∵∵)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为()A.y=cos 2x,x∵RB.y=log2|x|,x∵R且x≠0C.y=,x∵RD.y=x3+1,x∵R思路点拨根据选项中各个函数的性质判断,有一定的综合性.[答案]B[解析]函数y=cos 2x在区间上单调递减,在区间上单调递增,不合题意,排除A;函数y=是奇函数,排除C;y=x3+1是非奇非偶函数,排除D;y=log2|x|=是偶函数,且在(0,+∞)上是增函数,故选B.8、(2012大纲全国,3,5分,∵∵∵)若函数f(x)=sin (φ∵[0,2π])是偶函数,则φ=()A. B. C. D.思路点拨根据特例来求解.[答案]C[解析]∵f(x)是偶函数,∵=+kπ(k∵Z).∵φ=π+3kπ(k∵Z),又φ∵[0,2π],∵φ=π.9、(2014安徽,14,5分,∵∵∵)若函数f(x)(x∵R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=则f+f=________.思路点拨根据函数的周期性将待求函数值的自变量值转化到分段函数中的定义域范围内,结合奇函数性质求解.[答案][解析]∵f(x)是以4为周期的奇函数,∵f=f=f,f=f=f.∵当0≤x≤1时, f(x)=x(1-x),∵f=×=.∵当1<x≤2时, f(x)=sin(πx),∵f=sin=-.又∵f(x)是奇函数,∵f=-f=-,f=-f=.∵f+f=-+=.10、(2012课标全国,9,5分,∵∵∵)已知ω>0,函数f(x)=sin在单调递减,则ω的取值范围是()A. B. C. D.(0,2]思路点拨利用正弦函数的单调性及单调区间求解.[答案]A[解析]由<x<π得+<ωx+<ωπ+,又y=sin α在(k∵Z)上递减,∵解得由ω>0知+2k>0,∵k>-.若要不等式组有解,则+4k≤+2k,解得k≤,又k∵Z,∵k=0,∵≤ω≤,故选A.11、(2011安徽,9,5分,∵∵∵)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对x∵R恒成立,且f>f(π),则f(x)的单调递增区间是()A. (k∵Z)B. (k∵Z)C. (k∵Z)D. (k∵Z)思路点拨恒成立问题可转化为最值问题,然后根据单调区间等知识求解.[答案]C[解析]∵f(x)≤恒成立,∵=1.∵+φ=+kπ,k∵Z.∵φ=+kπ,k∵Z.又∵f>f(π),即sin(π+φ)>sin(2π+φ),∵-sin φ>sin φ,∵2sin φ<0,∵sin φ<0.∵当k=1时,φ=+π=,满足sin φ<0,∵f(x)=sin=-sin.∵要求f(x)的单调递增区间,只需2kπ+≤2x+≤2kπ+,k∵Z,即kπ+≤x≤kπ+,k∵Z.∵f(x)的单调递增区间是(k∵Z).12、(2015上海长宁区一模,∵∵∵)设ω>0,若函数f(x)=2sin ωx在上单调递增,则ω的取值范围是________.思路点拨∵ω>0,先求出f(x)=2sin ωx的单调递增区间,而是其中的一个子集,由集合关系,求出ω的取值范围.[答案][解析]三角函数f(x)=2sin ωx的图象如图.由图知f(x)在上是单调增函数,结合题意得解得0<ω≤.13、(2014福建,7,5分,∵∵∵)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)思路点拨分段函数问题可以考察各段函数的性质,或结合图象判断.[答案]D[解析]作出f(x)的图象如图所示,可排除A,B,C,故D正确.14、(2014课标∵,6,5分,∵∵∵)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图象大致为()思路点拨列出函数y=f(x)的表达式后判断函数的图象,或取x的几个特殊值来验证.[答案]C[解析]由题图可知:当x=时,OP∵OA,此时f(x)=0,排除A、D;当x∵时,OM=cos x,设点M到直线OP 的距离为d,则=sin x,即d=OMsin x=sin xcos x,∵f(x)=sin xcos x=sin 2x≤,排除B,故选C.15、(2013江西改编,∵∵∵)设f(x)=2sin,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.思路点拨对已知条件“对任意实数x都有|f(x)|≤a”的理解是解答关键,把此条件转化为函数f(x)的最大值问题.[答案] [2,+∞) [解析] ∵≤1,∵≤2,即对任意实数x,有|f(x)|≤2,要使|f(x)|≤a 恒成立,只要a 不小于|f(x)|的最大值即可,∵a≥2.[方法与技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4.对于已知函数的单调区间的某一部分确定参数ω的范围的问题:首先,明确已知的单调区间应为函数的单调区间的子集;其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解. [失误与防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.3.三角函数的最值可能不在自变量区间的端点处取得,直接将两个端点处的函数值作为最值是错误的.A 组 专项基础训练 (时间:35分钟)1.对于函数f (x )=sin ⎝⎛⎭⎫πx +π2,下列说法正确的是( ) A .f (x )的周期为π,且在[0,1]上单调递增B .f (x )的周期为2,且在[0,1]上单调递减C .f (x )的周期为π,且在[-1,0]上单调递增D .f (x )的周期为2,且在[-1,0]上单调递减 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫πx +π2=cos πx ,则周期T =2,在[0,1]上单调递减,故选B. 2.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3B .0C .-1D .-1-3 答案 A解析 利用三角函数的性质先求出函数的最值.∵0≤x ≤9,∵-π3≤π6x -π3≤7π6,∵sin ⎝⎛⎭⎫π6x -π3∵⎣⎡⎦⎤-32,1.由2k π-π2≤2x +π4≤2k π+π2,k ∵Z ,解得k π-3π8≤x ≤k π+π8,k ∵Z .当k =0时,-3π8≤x ≤π8,故选C.12.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C .2 D .3答案 B解析 ∵ω>0,-π3≤x ≤π4,∵-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∵ω≥32.13.(2014·北京)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 答案 π解析 ∵f (x )在⎣⎡⎦⎤π6,π2上具有单调性, ∵T 2≥π2-π6, ∵T ≥2π3.∵f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3,∵f (x )的一条对称轴为x =π2+2π32=7π12.又∵f ⎝⎛⎭⎫π2=-f ⎝⎛⎭⎫π6, ∵f (x )的一个对称中心的横坐标为π2+π62=π3.∵14T =7π12-π3=π4,∵T =π. 14.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图,则f (π24)=________. 答案 3解析 由题中图象可知,此正切函数的半周期等于3π8-π8=π4,即最小正周期为π2,所以ω=2.∵g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∵Z .。
高中数学必修4三角函数的图像与性质
高一数学指导三角函数(四)【三角函数的图像与性质】考点 1 求与三角函数相关的函数的定义域【例 1】 (1)求以下函数的定义域:①y=2+log1x+ tan x;② y=sin( cos x);③ y= lg sin(cos x).2(2) 已知 f(x) 的定义域为 [0, 1),求 f( cos x)的定义域.2+ log1x≥ 0,0< x≤ 4,2 π分析:(1)①π≤xπ0<x< 2或tan x≥0,≤ 4,因此函数kπ≤ x<kπ+2 , k∈Z ,x>0的定义域是π0,∪[ π,4].2② sin(cos x)≥ 00≤ cos x ≤ 1π π2k π- ≤ x ≤ 2k π+ ,k ∈ Z ,因此函数的定义域是2 2π πx 2k π-2≤ x ≤ 2k π+2, k ∈ Z .③由 sin(cos x)> 02k π<cos x <2k π+π(k ∈ Z) ,π π又∵ - 1≤ cos x ≤ 1,∴0< cos x ≤ 1,∴所求定义域为 2k π-2, 2k π+2 , k ∈ Z.π π(2)0≤ cos x < 1 2k π-2 ≤ x ≤ 2k π+2 ,且 x ≠ 2k π(k ∈ Z),ππ∴所求函数的定义域为 2k π-2, 2k π ∪ (2k π,2k π+2 ], k ∈ Z. 考点 2 求三角函数的单一区间 【例 2】求以下函数的单一区间:1 π 2x; (2)y =- sin x +π(1)y = sin-3 4 .24分析 : (1)∵ y = 1 π 2x =- 1 2x π2 sin sin3 - ,且函数 y = sin x 的单一递加区间是4 -3 2 4π π π 3π2k π-2 ,2k π+2 ,单一递减区间是2k π+2, 2k π+ 2 (k ∈ Z).π 2x π π3π 9π∴由 2k π-2 ≤ 3 - 4 ≤ 2k π+23k π- 8 ≤ x ≤ 3k π+ 8 (k ∈ Z) ,π2x π 3π9π 21π由 2k π+≤ - ≤ 2k π+3k π+ ≤x ≤ 3k π+ 8 (k ∈ Z) ,23 4283π9 π9π即函数的单一递减区间为 [3k π- 8 , 3k π+ 8 ](k ∈ Z),单一递加区间为 [3k π+ 8 , 3k π+21π8 ] ( k ∈ Z ) .(2)作出函数 y =- sin x + π的简图 (如下图 ),由图象得函数的单一递加区间为4π 3π π πk π+4, k π+ 4 (k ∈ Z) ,单一递减区间为k π-4, k π+4 (k ∈ Z) .考点 3 求三角函数的最小正周期、最值 (值域 )【例 3】 (1)求以下函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学辅导三角函数(四)
【三角函数的图像与性质】
考点1求与三角函数有关的函数的定义域
【例1】(1)求下列函数的定义域:
①y=错误!+错误!;②y=错误!;③y=lgsin(cos x).
(2)已知f(x)的定义域为[0,1),求f(cos x)的定义域.
解析:(1)①错误!未定义书签。
错误!0<x<错误!或错误!未定义书签。
≤4,所以函数的定义域是错误!未定义书签。
∪[π,4].
②sin(cos x)≥00≤cos x≤12kπ-错误!未定义书签。
≤x≤2kπ+错误!未定义书签。
,k∈Z,所以函数的定义域是错误!未定义书签。
.
③由sin(cosx)>02kπ<cosx<2kπ+π(k∈Z),
又∵-1≤cos x≤1,∴0<cos x≤1,∴所求定义域为错误!未定义书签。
,k∈Z.
(2)0≤co s x <1
2k π-\f (π,2)≤x ≤2k π+错误!未定义书签。
,且x≠2k π
(k ∈Z ),
∴所求函数的定义域为错误!未定义书签。
∪(2kπ,2k π+错误!],k∈Z.
考点2 求三角函数的单调区间
【例2】 求下列函数的单调区间:
(1)y=\f(1,2)sin错误!; (2)y=-错误!未定义书签。
.
解析:(1)∵y=错误!sin 错误!未定义书签。
=-错误!未定义书签。
si n错误!,且函数y=sin x 的单调递增区间是错误!未定义书签。
,单调递减区间是错误!未定义书签。
(k ∈Z).
∴由2k π-\f(π,2)≤错误!未定义书签。
-π4
≤2k π+错误!未定义书签。
3k π-错误!未定义书签。
≤x ≤3kπ+9π8
(k ∈Z), 由2k π+错误!≤错误!-错误!≤2k π+错误!未定义书签。
3k π+错误!未定义书签。
≤x≤3k π+\f (21π,8)(错误!Z),
即函数的单调递减区间为[3k π-3π8,3k π+9π8](k ∈Z),单调递增区间为[3k π+9π8
,3k π+错误!]错误!
(2)作出函数y =-错误!未定义书签。
的简图(如图所示),由图象得函数的单调递增区间为错误!(k ∈Z),单调递减区间为错误!未定义书签。
(k ∈Z ).
考点3 求三角函数的最小正周期、最值(值域)
【例3】(1)求下列函数的值域。
①y =co s(x+错误!未定义书签。
),x ∈[0,π2 ];②y=-sin 2x -3cosx+3. ③y=2+cosx 2−cosx
(2)已知f(x)=A sin (ωx+φ)+1错误!未定义书签。
的周期为π,且图象上一个最低点为M 错误!未定义书签。
.
(1)求f (x )的解析式;
(2)当x ∈错误!时,求f(x)的值域.
(3)y =-1+42−cosx ,
(2)、(1)因为函数的周期为π,所以有T=错误!=π,所以ω=2,因为函数图象上一个最低点为M 错误!,所以-A +1=-1,所以A =2,并且-1=2s in 错误!+1,可得s in 错误!未定义书签。
=-1,错误!+φ=2k π-错误!,k∈Z ,φ=2k π-错误!,k ∈Z ,因为0<φ<错误!,所以k =1,解得φ=错误!未定义书签。
.
函数的解析式为:f (x )=2sin 错误!+1.
(2)因为x ∈错误!,
所以2x ∈错误!,2x +错误!∈错误!,
sin 错误!∈错误!未定义书签。
,∴2sin 错误!∈[1,错误!],
2s in 错误!+1∈[2,1+错误!未定义书签。
],
所以f(x )的值域为[2,1+错误!].
考点4 三角函数的奇偶性、对称性的应用
【例4】(1)求函数y=3sin(2x+π6
)的对称轴和对称中心。
(2)若函数ƒ(x )=s in x+φ3
(φ∈[0,2π])是偶函数,则φ= 。
(3)已知函数f 错误!未定义书签。
=si n错误!未定义书签。
(ω>0),若函数f 错误!未定义书签。
图象上的一个对称中心到对称轴的距离的最小值为错误!,则ω的值为________.
(2)因为ƒ(x)是偶函数,所以x+φ3=π2+k π(k ∈Z),φ=32
π+3π(k ∈Z), 又φ∈[0,2π],所以φ=32
π; (3)依题意T 4
=错误!,∴T =错误!未定义书签。
.∴错误!=错误!.∴ω=错误!. 考点5正切函数的图像与性质
【例5】(1)判断函数ƒ(x )=lg tanx+1tanx−1
的奇偶性。
(2)设函数ƒ(x)=tan(x 2-π3
).①求函数ƒ(x)的定义域、周期、单调区间及对称中心; ②求不等式-1≤ƒ(x)≤√3的解集。
解析:(1)由tanx+1tanx−1
>0得tanx <-1或t anx>1
(2)。