几何光学(PPT课件)

合集下载

PPT_第一章—几何光学基本定律与成像概念

PPT_第一章—几何光学基本定律与成像概念
1. 基本概念
光波——光是一种电磁波 波长范围:1mm~10nm 可见光:380~760nm 红外光:波长>760nm 紫外光:波长<400nm 光速: . m/s (真空) 介质中都小于
一、几何光学的基本定律和原理
1. 基本概念
准单色光的获取 可以通过棱镜、光栅、激光器、滤光片由复色光得 到单色光。
7 2013~2014学年《几何光学》课件 yanglp@
一、几何光学的基本定律和原理
2. 几何光学的基本定律
——入射光线; ——入射角 ——反射光线; ——反射角 ——折射光线; ——折射角 ——法线
光的反射定律: ① 入射光线、法线、反射光线在同一平面内; ② 入射光线和反射光线位于法线两侧,且

数学表达——一阶微分为零,即:

理解:实际光路取极值是指与邻近光路相比较取极小(经 平面反射或经平面折射的两点间)、极大(凹球面镜)或 稳定值(完善成象光学系统的物象点之间)
2013~2014学年《几何光学》课件 yanglp@ 20
, ,0
, 0,0
19
2013~2014学年《几何光学》课件

光的折射定律: 入射光线、法线、折射光线在同一平面内; 折射角的正弦与入射角的正弦之比与入射角的大小 无关,只与两种介质的折射率有关。即 sin 或 sin sin sin
9 2013~2014学年《几何光学》课件 yanglp@ 10
由于 ,所以 空气的折射率为 . ,介质相对于空气的折射 率称为相对折射率,简称折射率 光密介质——分界面两边 折射率高的介质 光疏介质——分界面两边 折射率低的介质
全反射棱镜
用以代替平面反射镜,减少反射时的光能损失

第二章几何光学

第二章几何光学

三、傍轴物点成像与横向放大率

二 章

n
n’
Q

i
C
A
i’
Q’
-y’ P’

s
Σ
s’
Π’


傍轴条件:y 2 , y2 s 2 ,s2 ,r 2


对于折射球面: V y ns y ns
讨论放大率的正负 与像的虚实
对于反射球面: V y s ys
四、逐次成像
第 二
n1
n3 n2


折射面的曲 5.7mm 网膜的曲率 9.8mm
率半径R
半径R’

物方焦距f -17.1mm 像方焦距f ’ 22.8mm


人眼的调节功能

1、改变眼睛的焦距使距离不同的物体都能在视网

膜上形成清晰的像,这个过程称为眼睛的调节。


眼睛能看清的最远点称为远点(无穷远);
眼睛能看清的最近点称为近点(25cm)。
之,高度y(y’)<0。
(5)图示中的各个量均为正值。

第二节 共轴球面组傍轴成像

一、光在单个球面上的折射
章 几 何
nl A
P

s
r
B
l’ C s’
P’ n’
光 学
1
l r 2 r s2 2rr scos 2

1
l r 2 s r 2 2rs r cos 2

由费马原理可得:

和像方主点重合的。
四、惠更斯目镜与冉斯登目镜
第 二
1、惠更斯目镜

几何光学-ppt医用物理学PPT课件

几何光学-ppt医用物理学PPT课件
本单元测验题
第十四章 几何光学
1 利用旋转矢量法确定下述各种t=0情况下的初相。
(1) x0 A 2,v0 0
(2) x0A 2,v00
(3) x0 22A,v00 (4) x023A,v00
2.已知波源在原点x=0的平面简谐波方程为
y=acos(10πt-πx+π/3),其中a、b、c均为常量,试确

论 体
量子光学
以光和物质相互作用时所显示出的粒 子性为基础,研究光的一系列规律

激光原理及应用
现代光学
傅立叶光学 全息光学 光谱学
非线性光学
P.6/33
几何光学
一、 几何光学的基本定律
1. 光的直线传播定律 : 2. 在均匀介质中,光沿直线传播
第十四章 几何光学
2. 光的反射定律 i i
入射光线 反射光线
P.10/33
第十四章 几何光学
色散:白光通过三棱镜,折射时 将各波长的光分散形成光谱
光的独立传播定律 光在传播过 程中与其它光线相遇时,不改 变传播方向,各光线之间互不 受影响,各自独立传播,会聚 处,光能量简单相加
光路可逆性原理 如果反射光或折射光的方向反转, 光线将按原路返回
P.11/33
二、全反射
P.4/33
光是什么?
光的波粒之争
第十四章 几何光学





微粒说
波动说
牛 顿:物体发出的粒子流(微粒说) 惠更斯:光是一种波(波动说)
光的波粒二象性
P.5/33
第十四章 几何光学
几何光学
以光的直线传播为 基础,研究光在透明 介质中的传播问题
经典光学

光学第三章几何光学

光学第三章几何光学
2、c —— 光速
联系光与电磁波
3、λ ——光波长
是否趋近于零 区分几何光学与波动光
学 4、χ ——介质的电极化率
其对光场响应是线性与非线性区分线性 与非线性光学
费马原理
一、费马原理:光在指定的两点间传播时,
实际的光程总是一个极值。其数学表达式为:
B nds 极值(极大值、极小值或恒定值) A
射光束都是单心光束的成像。这也是我们
着重研究的情况。
3、物、像与人眼
问题:

这里的像就是人眼视网膜上所成的
像吗?人眼能否区分物与像?
结论:
对人眼来所,物与像都是进入瞳孔的发
射光束的顶点。物、像、虚像人眼不能分辨。
但对于像,其光束有一定的限制,必须在特定
的范围才能观察到。
光在平面界面上的反射和折射 光学纤维 棱镜
第 三 章 几 何 光 学
三角形孔夫琅禾费衍射图像
本章内容
光线的概念 几何光学的基本定律 费马原理 光束 实象和虚像 平面反射和折射,棱镜的最小偏向角,光
学纤维 光在球面界面上的反射和折射、符号法则 近轴物点近轴光线成像的条件 薄透镜 理想光具组的基点和基面
光线的概念、几何光学的基本定律
B
或: nds 0 A
或:t 1
B
nds 0
ccA
二、几何光学的基本实验定律与费马原理
1、几何光学的基本实验定律或费马原理都可以 作为几何光学出发点,从而建立几何光学内容 体系。 2、由费马原理可以推导几何光学的基本实验 定律。 (1)、光在均匀介质中的直线传播
S
1
l = ([ - r)2 +(r - s)2 + (2 - r)( r - s)cos ] 2

几何光学完整PPT课件

几何光学完整PPT课件
3. 物空间(不论是实物还是虚物)介质的折射率是指实际入射光 线所在空间介质折射率,像空间(不论是实像还是虚像)介质的 折射率是指实际出射光线所在空间介质的折射率。
4. 物和像都是相对某一系统而言的,前一系统的像则是后一系统 的物。物空间和像空间不仅一一对应,而且根据光的可逆性,若 将物点移到像点位置,使光沿反方向入射光学系统,则像在原来 物点上。这样一对相应的点称为“共轭点”。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
精选
31
2. 转面公式
原则:前一折射面的象为后一面的物 ,前一面的象空间为后一面的物空间
4. C-球心 r-球面曲率半径 I 、I′-入、折射角
5. A 、A′-物点、象点 L、L′-物距、象距
精选
20
2. 符号法则(便于统一计算) 规定光线从左向右传播
a)沿轴线段 L、L′、r 以O为原点, 与光线传播方向相同,为“+” 与光线传播方向相反,为“-”
b)垂轴线段 h 在光轴之上,为“+” 在光轴之下,为“-”
例:某物体通过一透镜成像后在透镜内部,透镜材 料为玻璃,透镜两侧均为空气。问该像所处的空间 介质是玻璃还是空气?
4 5
6
3 2 1
位标器动平衡调试系统光源
第二章 球面与共轴球面系统
§ 2-1 光线光路计算与共轴光学系统
共轴球面系统— 光学系统一般由球面和平面组成, 各球面球心在一条直线(光轴)上。
精选
28
2. 轴向放大率:光轴上一对共轭点沿轴移动量之间的比值

第十一章 几何光学

第十一章  几何光学
(2)如果从折射点到像点的方向,与折射光线的方向相同, 该像称为实像,像距p′为正。反之像为虚像,像距为负。
(3)如果从折射点到曲率中心的方向,与折射光线的方向相 同曲率半径r为正,反之r为负。
25
2 、2 、薄透薄镜透镜的的焦焦距距(fo和cus焦)和度焦度(degree focus)
如透镜前后媒质相同则焦距
解:
n1=1.3
n2=1.5
O
I
P
p′
p 11
n1=1.3, n2=1.5, p= + 40cm, p′= -32cm, 代入球面成像公式,有
1.3 1.5 1.5 1.3 40 32 r
解得曲率半径为
r = -13.9 cm.
由于 r 是负的,说明凹面对着入射光线,即玻璃处于折射面 的凸侧。
20
按结构分类
凸透镜 (convex lens)

中间厚 边缘薄


凹透镜 (concave lens)
中间薄 边缘厚
21
透镜种类(按光学性质分): 会聚透镜 发散透镜
如果组成透镜材料的 折射率大于镜外介质 的折射率
凸透镜 凹透镜
22
一、薄透镜成像公式
1、薄透镜成像公式
n
<< r
n0
n0
O
之,若是入射光线对着凹球面,则r取负值。
规定:
(1)如果从物点到折射点的方向,与入射光线的方向相同,该物
称为实物,物距p为正。反之物为虚物,物距为负。
(2)如果从折射点到像点的方向,与折射光线的方向相同,
该像称为实像,像距p′为正。反之像为虚像,像距为负。
(3)如果从折射点到曲率中心的方向,与折射光线的方向相同,

第三章-几何光学的基本原理课件

第三章-几何光学的基本原理课件
由上式,在实验中只要测出最小偏向角,就可以计算 出棱镜材料的折射率。 应用: 棱镜光谱、改变光路
作业: P159---第3、4题
第三章 几何光学的基本原理 §3.3光在球面上的反射和折射
§3.3 光在球面上的反射和折射
3.3.1 几个概念和符号法则 1.物空间和像空间 物空间: 入射光束所在的几何空间 像空间: 经光学系统变换后的光束所在的几何空间 2.球面的顶点、主轴、主截面
为高斯最先建立起光线理想成像的定律。
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射 当s=- 时,
焦距可写为
则有:
——球面反射的成像 公式
适用条件: ① 近轴光线 ② 凹、凸球面均可,式中各量满足符号法则
P129 例3.3
第三章 几何光学的基本原理 §3.3 光在球面上的反射和折射
3.2.4 棱镜 1.棱镜的主截面: 与棱镜 的棱边垂直的平面。
2.偏向角: 出射光线的方 向和入射光线的方向之间
的夹角9。
因为
当i1 = i1 时,偏向角达到最小值90 , 90 称为最小
偏 向角。 因此,最小偏向角为:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
又当i1 = i1 时,折射角为i2 = i2=A/2 ,由折射定律:
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
2.光导纤维 利用全反射原理制成的光能量的传输线
光导纤维:内层折射率 大,表层折射率小的透 明细玻璃丝。
光进入光导纤维后, 在内壁上发生全反射, 光从纤维的一端传向另 一端。
第三章 几何光学的基本原理 §3.2光在平面界面上的反射和折射
物方焦点, 用F 表示
f 与f 之比为:

几何光学的发展资料课件

几何光学的发展资料课件
光线、光束、光线路径、折射、 反射等。
几何光学的发展历程
ቤተ መጻሕፍቲ ባይዱ
古代光学
文艺复兴时期
17世纪
18世纪
19世纪
人类对光的认识可以追 溯到古代,如中国的墨 子发现了小孔成像现象 ,古希腊的欧几里德研 究了折射定律。
文艺复兴时期,许多科 学家开始深入研究光学 ,如达芬奇、开普勒等 。
17世纪,几何光学得到 了快速发展,如笛卡尔 、费马等人研究了光的 折射和反射,牛顿发现 了白光是由不同颜色的 光组成的。
在通讯、测量、加工、医疗等领域广 泛应用,是现代科技发展的重要支撑 。
激光技术的原理
利用特定物质在受激发状态下释放相 干光,具有亮度高、方向性好、单色 性好等特点。
03
光学理论的发展
光的波动理论
总结词
光的波动理论认为光是一种波动现象,具有干涉、衍射等波 动特性。
详细描述
光的波动理论最初由荷兰科学家克里斯蒂安·惠更斯提出,他 认为光是一种波,具有反射、折射、干涉和衍射等性质。光 的波动理论能够解释许多光学现象,例如光的干涉和衍射, 为后来的光学研究奠定了基础。
06
未来几何光学的发展趋势 与展望
超分辨率成像技术
总结词
超分辨率成像技术是当前光学领域研究的热点之一,它旨在突破传统成像技术的 限制,实现高分辨率、高清晰度的成像效果。
详细描述
超分辨率成像技术通过采用信号处理、算法优化等方法,从低分辨率图像中提取 更多的细节和信息,从而生成高分辨率图像。这一技术在医学、生物、安全等领 域具有广泛的应用前景,例如在医学诊断中提高影像的清晰度和准确性。
量子光学技术
总结词
量子光学是研究光的量子性质和光与物 质相互作用的一门学科,它涉及到量子 计算、量子通信和量子信息等领域。

《光学教程》第五版姚启钧第一章几何光学PPT课件

《光学教程》第五版姚启钧第一章几何光学PPT课件

新 笛 卡 儿 符 号 法 则
以主轴转向考虑的光线 顺时针为正 逆时针为负
{Leabharlann (4) 全正图形 图中标记的是线段或角度的绝对值(如上)
二、傍轴条件下单球面折射的物象公式
二. 费马原理
A
B
dl=nds
L n ds
A
B
光在指定的两点间传播,实际的光程总是一个极值。 也就是说,光沿光程为最小值、最大值或恒定值的路程传播。 这就称为费马原理。
公式:
L n ds =极值(最大、最小或稳定值)
A
B
三. 应用举例
由费马原理可以直接推出直线传播定律以及反射和折射定律。 • 最小光程 • 恒定值 • 最大光程 反射定律
P’
·
同心光束
2. 折射
例1:处于液体中深度为y处有一点光源P,作PO垂直于液面,试 求射出液面折射线的延长线与PO交点P′的深度y′与入射角的 关系
n2 n1
y
o
i2 y' i1
y y
P
· P’ ·
y
tgi1 sin i1 cosi2 y tgi2 sin i2 cosi1
yn2 1 (
*共轭关系 由光路可逆原理,光线方向逆转,物像互换。 物像一一对应 物像共轭 物像互换(光线逆转) 入射光线、出射光线一一对应 光线共轭 入射光线、出射光线互换 (光线逆转)
*物像间所有光线光程相等
1.5 单球面上的傍轴成像
一、符号法则
y
P
1. 几个基本物理量

n1
n2
╭ u'

-u ╮
-p
O
P’ •
二. 几何光学的基本定律

《几何光学成像》课件

《几何光学成像》课件
工作原理
通过反射镜和透镜的组合,将远处的物体放大并形成清晰的图像。
应用领域
天文学、军事侦察等。
CHAPTER 04
几何光学成像的应用
摄影与摄像
摄影
通过几何光学成像原理,摄影师能够理 解和Байду номын сангаас握如何使用镜头、光圈和快门速 度等参数来控制图像的清晰度和景深, 从而拍摄出高质量的照片。
VS
摄像
在视频拍摄中,几何光学成像原理同样重 要。专业摄像师需要掌握如何使用镜头和 灯光来保持画面清晰、色彩鲜艳,并控制 景深和焦点。
光线在均匀介质中沿直线传播,当光线遇到不同介质的界面时,将发生反射和折 射现象。
光的直线传播的应用
在摄影、投影、光学仪器等领域有广泛应用,如照相机的镜头、电影放映机的聚 光镜等。
光的反射定律
光的反射定律
入射光线、反射光线和法线在同一平面内,入射角等于反射 角。
镜面反射和漫反射
镜面反射是指光线在平滑表面上的反射,漫反射则是光线在 粗糙表面上的散射。
医学影像技术
医学影像技术
在医学领域,几何光学成像技术广泛应用于 各种医学影像设备的制造和设计,如X光机 、CT扫描仪和核磁共振成像仪等。这些设 备利用几何光学原理来生成高质量的医学图 像,帮助医生准确诊断病情。
显微镜
显微镜是另一种重要的医学影像设备,它利 用几何光学成像原理来放大微小物体,以便 观察和研究。在生物学、医学和科学研究领 域,显微镜是不可或缺的工具。
原理
光线在同一种介质中沿直线传播,当 光线通过透镜等光学元件时,会发生 折射或反射,改变光路,最终在像平 面汇聚形成倒立的实像或虚像。
几何光学成像的重要性
科学基础
几何光学成像作为光学和视觉科 学的基础,是理解光线传播规律 、光学仪器设计和视觉感知机制 的关键。

高中物理奥林匹克竞赛专题:几何光学(共87张PPT)

高中物理奥林匹克竞赛专题:几何光学(共87张PPT)

4、光的全反射 光学纤维 5、棱镜的折射 棱镜的色散
第二部分的要求
1、明确理想成象的几个概念,如光学系统、实物、实象、
虚物、虚象等。
2、重点掌握平面反射成象和折射成象的规律。
3、掌握象似深度的概念和计算方法。
4、掌握全反射的临解角公式。了解光学纤维的结构和应用。
5、掌握棱镜的折射和色散,明确棱镜的最小偏向角。
§1 几何光学的基本定律
一、几何光学的含义和范畴
几何光学是以光的直线传播为基础,研究光在透
明介质中传播的问题。
几何光学不涉及光的本性问题 二、几何光学常用的物理量
注意对波面和光线 概念的理解
光线:在几何光学中用一条表示光的传播方向的几
何直线代表光,这样的几何直线称为光线。
波面:光在传播的过程中位相相同的点所连成的面。
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/62021/9/62021/9/62021/9/69/6/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月6日星期一2021/9/62021/9/62021/9/6 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/62021/9/62021/9/69/6/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/62021/9/6September 6, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/62021/9/62021/9/62021/9/6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cos( kr t ) K ( ) r c dE cos(kr t )ds Q r: 菲涅耳积分 K ( ) Ec cos(kr t ) ds K ( A( ) Er dE c cos(kr t )ds r A(Q) K ( ) A ( ) dE c cos(kr t ) ds r
0 k 0 k 1 k 0
中央最大:sin 0 奇+,偶-: b sin 单缝:I I sin cu, u 最小值:sin k b 29 注 :k=1时P点光强比没有光阑时P点光强还大.
2 P 0 k
a a a ( -a ) 1 1 圆屏 2 k 2 ( ) 2 圆孔: r R a a ( -a k ) 射 r 2 2 挡住了前 k 个半波带, 置 : a 能到达 P 点是第 K+1个 a圆屏:A ,圆屏几何影子的中心永 远有光 2 p 果: 点永亮 2 以外半波带。 1 1 2 ( ) 析:A r0 a R - a a - a a 中央最大:sin 0 1 1 a a k (r a )a a ( a k ) 1 k 0 k 1 b sin 怎样,圆屏几 常数 不论圆屏的大小和位置 2 2 2 2 2 单缝: I I sin cu, u 最小值:sin k b ak 1 a a ,圆屏几何影子的中心永 ( - a 远有光 ) 子的中心永远有光; 2 2 2 次最大: sin ( k 圆屏越小,挡住半 k a I ; 改变 r orr k I 衍射 a 波带越少,P点越亮 30 2 0屏中有亮点,其余皆无

2
P
i1 i1
f L a2
i1 n1 n2> n1 n1

a1
i1 D · · · A C i2 · B
具有相同倾角 i1 的光线 ,在膜面上入射点的轨 迹是一个圆,在屏上形 成一个圆环——等倾条 纹。 垂直入射时,i1=0, r=0, 对应条纹中心。
d0
16
2n2d 0 cos i2
相长 如果是双缝干涉, 则光屏上出现直条 纹。 相长
8
获得相干光的原则和方法(干涉的分类)
原则 : 从同一波列分出, 经过不同光程的两列光波才 能实现干涉。
( 1)分波面干涉 1.4、1.5 a.等厚干涉 1.8、1.9 方法: ( 2)分振幅干涉 b.等倾干涉 1.7、1.1 (干涉的分类) 3)分振动面干涉 5.9 (
答案: Nλ; 1+ Nλ/ t
13
• 分振幅干涉:一列波按振幅的不同被分成 两部分(次波),两次波各自走过不同的光 程后,重新叠加并发生干涉。 • 常见的分振幅干涉:等倾干涉、等厚干涉。
n1 n1 n2 n3 等厚膜产生等 倾干涉圆条纹
n2
n3 劈形膜产生等厚 干涉直条纹
n2
n1
n3 球面膜产生等 厚干涉圆条纹
y 亮纹: r2 r1 d sin d 2 j y ? r0 2
12
r0 亮纹: y j d
j 0 ,1 ,2,
r0 暗纹: y 2 j 1 j 0 ,1 ,2, d 2 问:由于一个光路中插 r0 条纹间距:y 激光器 a、b、 c ,观 入厚度为 t介质层 y d 察到某点有N=3条亮
2 2 2
1)相长(亮): 2 1 2 j , j 0, 1, 2, 3 ,
2 2 2
cos 2 1 1
I A1 A2 2 A1 A2 A1 A2 — —干涉相长
2) 相消(暗):
2
2 2 1 11 2
(干涉区域,各亮纹的亮度相同)
总复习
一、几何光学(第三、四章)
二、波动光学(第一、二、五章)
1
二、波动光学(第一、二、五章)
第一章 第二章 第五章 光的干涉 光的衍射 光的偏振
2
第一章
光的干涉
一.干涉的基本概念 1干涉的条件和特征,相长相消条件 2获得相干光的原则和方法(分类 二、多光束干涉 1多光束干涉与双光束干涉的比较(法布里珀罗干涉仪与迈克耳孙干涉仪的条纹比较) 2等振幅的多光束干涉规律 (光束数为N)

2
2d 0 n n sin i1
2 2 2 1 2

2
17
等厚干涉
2 2 2 2n2d 0 cosi2 2d 0 n2 n1 sin i1 2 2
等厚处光程差相同,形成同级等厚条纹, 不同厚度和条纹级别不同. 等厚干涉条纹反映薄膜的等厚线的走向.
18
2 2 2 2n2d 0 cosi2 2d 0 n2 n1 sin i1 2 2 牛顿环——分振幅薄膜干涉 (等厚圆环)
27
dE
cos(kr t )
二、衍射的分类及相关规律
分类: 菲涅尔衍射和夫琅禾费衍射
菲涅尔衍射 夫琅禾费 衍射
S

P

光源、屏与缝相距有限远
在夫 实琅 验禾 中费 实衍 现射
光源、屏与缝相距无限远
S
L1
R
L2
P
28
1. 菲涅耳衍射
(用半波带法处理)
2
1 1 圆孔: k ( ) r R (k是可划分成的半波带数) 射 k r 相邻两带所发出的次 a 圆屏: ,圆屏几何影子的中心永远有光 波到达A P点时相位相 2 反且振幅依次减小。
2 即:光程差等于半波长偶数倍. 2 2)相消: r2 r1 2 j 1 if : 2 j 1 则
then : r2 r1 2 j 1 2 即:光程差等于半波长奇数倍 , j 0, 1, 2
7
then : r2 r1 2 j
2
(1 40)
22
(N束透射光的振幅均为A0, 相邻两束光的相位差均为φ)
1 sin N 2 2 A2 A0 2 1 sin 2
2
(1 40)
2 j ( j 0,1,2)
2 2 主最大: A max N 2 A0 2 j ( j N ,2 N ,3 N ) 2( j n ) ( j 0,1,2,) N 2 N 最小:Amin 0 (n=1, 2, 3, …, N-1)
26
E
r 4、衍射的处理方法 K ( ) : dE c cos(kr t )ds 1) 积分法(所有衍射 ) r A(Q) K ( ) A ( ) E dE c cos(kr t )ds r
2)半波带法(是积分法的简化处理,把圆孔或 单缝分成若干个半波带,根据相邻半波带所 发出的次波到达P点时的相位相反,由半 波带的个数定性确定某点是亮还是暗,但不 能定量给出光强大小)
相邻两个主最大之间有(N-1)个最小,相邻两个最小之间有 1个次最大,故相邻两个主最大之间有(N-2)个次最大. 显 然, N越大,亮纹越窄、越亮。 23
第二章
光的射
一、光的衍射基本概念及原理
衍射特点及条件,普适原理,处理方法
二、衍射的分类及相关规律
菲涅耳衍射(圆孔、圆屏); 夫琅禾费衍射(单缝、圆孔、光栅);
2 0 if : j 2 则 r2 r0r1 j 2 then : r2 r1 2 j , j 0, 1, 2 2
d s 2
S
s1
r1
r2
y
纹移过,则在该点相遇 的两束光的光程差改 变Δ′- Δ= .可 求介质的折射率 n= .
9
p
分波面法(杨氏)
S*
分振幅法(等倾、等厚)
S *
分振动面法(偏振光干涉)
·
p
薄膜
10
杨氏双缝干涉
11
y
S
s1
d
r1
r2
2
r0
2
y
0
r1 j 2
s2
if : j 2 则
亮纹 then:: r2 r1 2 j

2

r
, j 0, 1, 2


, j 0, 1, 2
旋转 曲面 rr 常量 常量, , 干涉花样为双叶螺旋双 曲面 rr 干涉花样为双叶螺旋双 22 11
(双孔干涉) 相长:
2 相长 2 j 2 则 r2 r1 相长 j 2 r2 r1 j 2 f : j 2 则 2 相长 r r j 2 , 2 1 : r r 2 j j 0 , 1 , 2 2 1 hen : r2 r1 2 j , j 0, 1, 2 2 相长 , j 0, 1, 2
显 微 镜 分束镜 M
S
平凸透镜 玻璃平板
0
19
二、多光束干涉 1多光束干涉与双光束干涉的比较
I=N2A0
双光束(N=2)
I=N2A0
多光束(N>2)
20
法布里-珀罗干涉仪与迈克耳孙干涉仪条纹比较
M1 M 2′ b1 a1 G1 G2 d0 a2 b2 M2
p L1 a S b p
L2 F A F
A1 —干涉相消 A 2 A A A A AI2I 2A A A22A A — —干涉相消 A 2 A— — —干涉相消 1 1A 2 1 A2 2 2 12 2
2
2
2
2 1 1 ,0 , 1 ,0 2,,,1 3 2 j ,2 j j1 ,1 2,0 cos 11 , j, j3 , 2,,3 , cos cos 2 2 1 1 2 1 2 1 2
相关文档
最新文档