无锡市梁溪区2017年苏科版七年级下册期中数学试题含答案解析
七年级下册数学期中考试卷及答案2017(苏科版)
七年级下册数学期中考试卷及答案2017(苏科版)一、选择题(本大题共10小题,每小题2分,共20分)1.如图所示,∠1和∠2是对顶角的是()2.计算的结果是( )A.2B.±2C.-2D.43.实数-2,0.3,,,-π中,无理数的个数有( )A.1个B.2个C.3个D.4个4.我们常用如图所示的方法过直线外一点画已知直线的平行线,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等5.估计的值( )A.在3到4之间B.在4到5之间C.在5到6之间D.在6到7之间6.方程组的解为,则被遮盖的两个数分别为( )A.5,2B.1,3C.2,3D.4,27.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是( )A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)8.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.如果用(7,1)表示七年级一班,那么八年级五班可表示成.12.计算:=.13.把命题“等角的补角相等”写成“如果……,那么……”形式为:.14.已知是方程的解,则的值为.15.一个正数的两个平方根分别为a+3和2a+3,则a= .16.已知2a+3b+4=0,则.17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为.18.三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是.三、解答题(本大题共8小题,共56分)19.(本题满分8分)(1)解方程:(2)解方程组:20.(本题满分6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.21.(本题满分6分)在y=中,当时,y=;时,y=;时,y=,求的值.22.(本题满分6分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.(1)在图中标出点P、M、N的位置,保留画图痕迹;(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1L2(填“>”、“<”或“=”).23.(本题满分6分)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.解:∵AB⊥BC,BC⊥CD(已知)∴==90°()∵∠1=∠2(已知)∴=(等式性质)∴BE∥CF()24.(本题满分8分)与在平面直角坐标系中的位置如图.⑴分别写出下列各点的坐标:;;;⑵说明由经过怎样的平移得到.⑶若点(,)是内部一点,则平移后内的对应点的坐标为;⑷求的面积.25.(本题满分7分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,试判断∠AGF与∠ABC的大小关系,并说明理由.26.(本题满分9分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B 商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于72000元,则B种商品是打几折销售的【参考答案】一、选择题题号12345678910答案CABACDCCBD二、填空题11、(8,5)12、13、如果两个角相等,那么这两个角的补角相等.或(如果两个角是相等的两个角的补角,那么这两个角相等.)14、3 15、-216、1317、(4,6)或(4,0)18、三、解答题19、(1)解:x-1=±2…………………………………………………………(2分) ∴x=3或-1…………………………………………………………(4分)。
江苏省苏科版2017-2018学年七年级下期中考试数学试题含答案
2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cm C .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是 A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b aC .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形. 10.若2,3m n a a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE ∥AB ,∠1+∠2=180°. (1)试说明:DF ∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩ 20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k<-……(3分)(3)34k=或……(4分)(4)12m=或……(4分)。
江苏省无锡市梁溪区2017-2018学年七年级数学下学期期中试题(pdf) 苏科版
分别是 AG、BD、CE 的中点,且 S△ABC=1,则 S△DEF 的
D
值为„„„„„„„„„„„„„„„„„„„( )
A.14
B.16
C.18
D.110
E
F
B
G
C
第 1 页(共 4 页)
(第 10 题)
二、填空题:(每小题 2 分,共 16 分)
11.计算:(-a)5÷(-a)=
.
12.肥皂泡的泡壁厚度大约是 0.0007mm,用科学记数法可以把它写成
(1)(22018-1)0-(12)-2+(-0.125)×23;
(2)(-2a2b) 2+a3•2ab 2.
20.(本题满分 16 分)因式分解: (1)a2b+ab2;
(2)-2m3+8m2-12m;
(3)4x2-36 ;
(4)(x-1)(x-3)+1.
第 2 页(共 4 页)
21.(本题满分 5 分)求 (x-1)(x+2)+3x(x-3)-4(x+1)2 的值,其中 x=-34.
A.①②
B.③④
C.①③④
D.①②③
5.把多项式-x2-2x-1 分解因式所得的结果是„„„„„„„„„„„„„„„„„„( )
A.(-x-1)2
B.-(x-1) 2
C.(x-1)2
D.-(x+1)2
6.如图,给出了用三角尺和直尺画已知直线的平行线的方法,其依据是„„„„„„„( )
A.同位角相等,两直线平行
mm.
13.已知 x-y=m,那么(2x-2y)3=
.
14.若 ax=3,ay=2,则 ax+2y=
.
D A
15.已知直角三角形的一个锐角是 36°,则另一个锐角的度数是
苏教版数学七年级下学期《期中测试卷》附答案解析
苏 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题(每题3分,共30分)1. 如图,a ∥b ,∠1=130°,则∠2=( )A. 50°B. 130°C. 70°D. 120°2. 已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( )A. 1B. 2C. 3D. 4 3. 下列运算中,正确的是( )A. 236m m m ⨯=B. 325()m m =C. 232m m m +=D. 32m m m -÷=-4. H7N9型禽流感是一种新型禽流感,于2013年3月底在上海和安徽两地率先发现.H7N9型禽流感是全球首次发现的新亚型流感病毒,其细胞的直径约为0.000000106m ,用科学记数法表示这个数是( )A. 60.10610-⨯mB. 60.10610⨯mC. 71.0610-⨯mD. 71.0610⨯m 5. 下列计算正确的是( )A. 222()x y x y +=+B. 223(421)1261xy y x xy x y ---=-++ C . 2(1)(1)1x x x +-=-D. 2(9)(1)1010a a a a ++=++ 6. 分解因式:3244y y y -+=( )A. 2(44)y y y -+B. 2(2)y y -C. 2(2)y y +D. (2)(2)y y y +- 7. 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A. 22()(2)32a b a b a ab b ++=++B. 22(3)()34a b a b a ab b ++=++C. 22(2)()23a b a b a ab b ++=++D. 22(32)()352a b a b a ab b ++=++ 8. 关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A. 34k =- B. 34k = C. 43k = D. 43k =- 9. 不论x 、y 为何有理数,多项式22428x y x y +--+的值总是( )A. 正数B. 零C. 负数D. 非负数10. 如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,则△ABC 的面积等于△BEF 的面积的( )A. 2倍B. 3倍C. 4倍D. 5倍二、填空(每空2分,共18分)11. 一个n 边形的内角和为1080°,则n=________.12. 如图,AB∥CD,∠C=20°,∠E=25°.则∠A=__°.13. 若8x =4x+2,则x=______.14. 计算:(﹣2x )³=_______,1011021()33-⨯=_______.15. 已知a+b=3,ab=-2. 则a 2+b 2的值是________.16. 当a =_______时,关于x ,y 的方程组2122x y a x y a -=+⎧⎨+=⎩的解中x 与y 相等. 17.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________18. 如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB=12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.三、解答题19. 计算:(1)244222()()m m m +(2)2(4)(31)(3)x x x x --+-+(3)2(1)(2)(2)x x x +---(4)2(2)(2(4))x x x ++-20. 分解因式:(1)22416m n -(2)222(2)2(2)1x x x x ++++21. 解方程组:(1)244523x y x y -=-⎧⎨-=-⎩(2)643434x yx y ⎧+=⎪⎨⎪-=-⎩22. 已知22(1)0x y -++=,求2(2)(2)(2)x y x y x y +---的值.23. 如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,Q点有____个.24. 如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.25. 已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26. 提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=1 2AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD.∵PD=AD﹣AP=12AD,△CDP和△CDA的高相等,∴S△CDP=12S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣12S△ABD﹣12S△CDA=S四边形ABCD﹣12(S四边形ABCD﹣S△DBC)﹣12(S四边形ABCD﹣S△ABC)=12S△DBC+12S△ABC.(2)当AP=13AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=16AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=1nAD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=mnAD(0≤mn≤1)时,S△PBC与S△ABC和S△DBC之间关系式为:.参考答案一、选择题(每题3分,共30分)1. 如图,a∥b,∠1=130°,则∠2=()A. 50°B. 130°C. 70°D. 120°【答案】B【解析】试题分析:如图:∵∠1=130°∴∠3=130°∵a∥b,∴∠2=∠3=130°.故选B.考点:1. 对顶角;2.平行线的性质.2. 已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】根据三角形三边关系得出,任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【详解】∵此三角形且两边为3和4,∴第三边的取值范围是:1<x<7,在这个范围内的都符合要求.故选A.【点睛】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.3. 下列运算中,正确的是( )A .236m m m ⨯=B. 325()m m = C. 232m m m += D. 32m m m -÷=- 【答案】D【解析】 A.235m m m ⨯=,原计算错误;B.()236m m =,原计算错误;C.m 与m 2不是同类项,不能合并;D.32m m m -÷=-,正确,故选D.4. H7N9型禽流感是一种新型禽流感,于2013年3月底在上海和安徽两地率先发现.H7N9型禽流感是全球首次发现的新亚型流感病毒,其细胞的直径约为0.000000106m ,用科学记数法表示这个数是( )A. 60.10610-⨯mB. 60.10610⨯mC. 71.0610-⨯mD. 71.0610⨯m 【答案】C【解析】科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.则0.000000106=1.06×10-7,故选C. 5. 下列计算正确的是( )A. 222()x y x y +=+B. 223(421)1261xy y x xy x y ---=-++C. 2(1)(1)1x x x +-=-D. 2(9)(1)1010a a a a ++=++ 【答案】C【解析】A.()2222x y x xy y +=++,则原计算错误;B.()2234211263xy y x xy x y xy ---=-++,则原计算错误;C.()()2111x x x +-=-,正确;D.()()291109a a a a ++=++,则原计算错误,故选C . 6. 分解因式:3244y y y -+=( ) A. 2(44)y y y -+B. 2(2)y y -C. 2(2)y y +D. (2)(2)y y y +-【答案】B【解析】先提取公因式y ,再用完全平方差公式分解因式,所以y 3-4y 2+4y=y(y 2-4y+4)=y(y-2)2,故答案为B. 7. 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A. 22()(2)32a b a b a ab b ++=++B. 22(3)()34a b a b a ab b ++=++C. 22(2)()23a b a b a ab b ++=++D. 22(32)()352a b a b a ab b ++=++【答案】D【解析】因为大长方形的长是3a+2b ,宽是a+b ,所以大长方形的面积是(3a+2b)(a+b)=3a 2+5ab+2b 2,故选D. 8. 关于x 、y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A. 34k =- B. 34k = C. 43k = D. 43k =-【答案】B【解析】【分析】将k 看出已知数去解方程组,然后代入二元一次方程236x y +=中解出k 的值即可.【详解】解:59①②+=⎧⎨-=⎩x y k x y k ,①+②得:2=14x k ,即=7x k ,把=7x k 代入①得:75k y k +=,解得:2y k =-,则方程组的解为:=72⎧⎨=-⎩x ky k , 把=72⎧⎨=-⎩x k y k 代入二元一次方程236x y +=中得:()27326⨯+⨯-=k k , 解得:34k =,故选B.【点睛】此题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法是解决本题的关键. 9. 不论x 、y 为何有理数,多项式22428x y x y +--+的值总是( )A. 正数B. 零C. 负数D. 非负数 【答案】A【解析】因x 2+y 2-4x-2y+8=x 2-4x+4+y 2-2y+1+3=(x-2)2+(y-1)2+3,且(x-2)2≥0,(y-1)2≥0,所以(x-2)2+(y-1)2+3>0,故选A.10. 如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,则△ABC 的面积等于△BEF 的面积的( )A. 2倍B. 3倍C. 4倍D. 5倍【答案】C【解析】【分析】 根据三角形的中线把三角形分成两个面积相等的三角形解答【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC , ∴S △BCE =12S △ABC , ∵点F 是CE 的中点,∴S △BEF =12S △BCE . ∴△ABC 面积等于△BEF 的面积的4倍.故选C .考点:三角形的面积二、填空(每空2分,共18分)11. 一个n 边形的内角和为1080°,则n=________.【答案】8【解析】【分析】直接根据内角和公式()2180n -⋅︒计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n -⋅︒. 12. 如图,AB∥CD,∠C=20°,∠E=25°.则∠A=__°.【答案】45°【解析】AB CDA EFD ∴∠=∠在CFE ∆ 中,2025C E ∠=︒∠=︒,20254545DFE A ∴∠=︒+︒=︒∴∠=︒13. 若8x =4x+2,则x=______.【答案】4.【解析】试题解析:∵8x =(2×4)x =2x 4x ,4x+2=16×4x , ∴2x =16,∴x=4.考点:幂的乘方与积的乘方.14. 计算:(﹣2x )³=_______,1011021()33-⨯=_______.【答案】 (1). -8x 3 (2). -3【解析】(﹣2x )³=(﹣2)³x ³=﹣8x ³;101102133⎛⎫-⨯ ⎪⎝⎭=1011011333⎛⎫-⨯⨯ ⎪⎝⎭=1011(3)33-⨯⨯=(-1)101×3=-3,故答案为(1)-8x 3;(2)-3.15. 已知a+b=3,ab=-2. 则a 2+b 2的值是________.【答案】13【解析】∵a+b=3,ab=-2,∴a 2+b 2=(a+b )2-2ab=32-2×(-2)=9+4=13,故答案为13.16. 当a =_______时,关于x ,y 的方程组2122x y a x y a -=+⎧⎨+=⎩的解中x 与y 相等. 【答案】-3【解析】因为x=y ,所以原方程组变形为132x a x a=+⎧⎨=⎩,消去x 得,3(a+1)=2a ,解得a=-3,故答案为-3. 17.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________【答案】292【解析】试题解析:设连续搭建正三角形的个数为x 个,连续搭建正六边形的个数为y 个,由题意得 21512016{6x y x y +++=-= 解得:292{286x y ==因此,能连续搭建正三角形292个.【点睛】设连续搭建正三角形的个数为x 个,连续搭建正六边形的根数为y 个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1”联立正三角形的个数比正六边形的个数多6个得出关于x 、y 的二元一次方程组,解方程组即可得出结论.本题考查了二元一次方程组的应用,解题的关键是列出关于x 、y 的二元一次方程.本题属于基础题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程(或方程组)是关键.18. 如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.【答案】①②③【解析】①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,则①正确; ②∵∠EBC+∠ACB=∠AEB ,∠DCB+∠ABC=∠ADC ,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB )=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE ,则②正确; ③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;④无法证明CA 平分∠BCG ,则④错误.故答案为①②③.三、解答题19. 计算:(1)244222()()m m m +(2)2(4)(31)(3)x x x x --+-+(3)2(1)(2)(2)x x x +---(4)2(2)(2(4))x x x ++-【答案】(1) 3m 8;(2) x 2+16x-3;(3) 3x-6;(4) x 4-16【解析】整体分析:(1)先用幂的乘方分式计算,再合并同类项;(2)用单项式乘多项式和多项式乘多项式的法则展开后,合并同类项;(3)用多项式乘多项式的法则和完全平方公式展开后,合并同类项;(4)用平方差公式逐渐往后计算.解:(1)()()422422m m m +=8442?m m m +=882m m +=3m 8.(2)()()()24313x x x x --+-+ 2228393x x x x x =-+++--=x 2+16x-3(3)()()()2122x x x +---=222244x x x x x -+--+-=3x-6.(4)()()()2224x x x +-+ =()()2244x x -+ =x 4-16 20. 分解因式:(1)22416m n -(2)222(2)2(2)1x x x x ++++【答案】(1) 4(m-2n )(m+2n );(2) (x+1)4【解析】整体分析:(1)用平方差公式分解,要分解到不能分解为止;(2)把看成是一个整体,用完全平方和公式分解,相同的因式要写成幂的形式.解:(1)22416m n -=()2244m n -=4(m-2n )(m+2n ) (2)()()2222221x x x x ++++ =()2221x x ++=()221x ⎡⎤+⎣⎦=(x+1)4…21. 解方程组:(1)244523x y x y -=-⎧⎨-=-⎩ (2)643434x y x y ⎧+=⎪⎨⎪-=-⎩【答案】(1) 125x y ⎧=⎪⎨⎪=⎩ ;(2)【解析】整体分析:用代入消元法或加减消元法,化二元一次方程组为一元一次方程,在一元一次方程中求出一个未知数后,再代入方程组中的某一个方程求出另一个未知数.解:(1)244523x y x y -=⎧⎨-=-⎩①② 由(1)得:y=2x+4.代入(2)得:4x ﹣5(2x+4)=﹣23,所以x=12. 代入(1)得:2×12﹣y=﹣4,解得y=5.故方程组的解为125x y ⎧=⎪⎨⎪=⎩.(2)()()61434342x y x y ⎧+=⎪⎨⎪-=-⎩(1)×12得()()347234342x y x y ⎧+=⎪⎨-=-⎪⎩, (3)×3,(2)×4得()()91221641612165x y x y ⎧+=⎪⎨-=-⎪⎩, (4)+(5)得,25x=200,解得x=8.代入(1)得,y=12,812x y =⎧⎨=⎩. 22. 已知22(1)0x y -++=,求2(2)(2)(2)x y x y x y +---的值.【答案】-16【解析】整体分析:把原整式用平方差公式和完全平方差公式展开化简,用非负数的性质求出x ,y 的值后代入求原整式的值. 解:()()()2222x y x y x y +---=x 2-4y 2-x 2+4xy-4y 2=4xy-8y 2. 因为()2210x y -++=,所以x-2=0,y+1=0,解得x=2,y=-1.所以原式=4xy-8y 2=4×2×(-1)-8×(-1)2=-16. 23. 如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,Q点有____个.【答案】(1)(2)(3)见解析;(4)7【解析】整体分析:(1)由点B到点B′的平移规律,作出点A,C平移后的点A′,C′即可;(2)利用格点找出AB的中点;(3)利用格点过点A用BC延长线的垂线段;(4)利用两平行线间的距离相等确定点Q.解:(1)分别把点A和点C向下平移1个单位,再向左平移7个单位得到点A′,C′,顺次连接A′,B′,C′,即得如下的图形;(2)如图,取AB的中点D,连接CD,线段CD即为AB边上的中线;(3)如图,过点A作BC延长线的垂线,垂足为点E;(4)如图,过点B作AC的平行线,这条平行线上有6个符合条件的点Q,因为Q7C=BC,所以Q7也符合条件,所以共有7个点.24. 如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.25. 已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【答案】(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.26. 提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=12AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD.∵PD=AD﹣AP=12AD,△CDP和△CDA的高相等,∴S △CDP =12S △CDA . ∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣12S △ABD ﹣12S △CDA =S 四边形ABCD ﹣12(S 四边形ABCD ﹣S △DBC )﹣12(S 四边形ABCD ﹣S △ABC ) =12S △DBC +12S △ABC . (2)当AP=13AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程; (3)当AP=16AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: ; (4)一般地,当AP=1nAD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程; 问题解决:当AP=m n AD (0≤m n ≤1)时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: . 【答案】答案见解析【解析】试题分析:(2)仿照(1)的方法,只需把12换为13即可; (3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系; (5)利用(4),得到更普遍的规律.试题解析:(2)∵13AP AD =,△ABP 和△ABD 的高相等, 1.3ABP ABD S S ∴= 又23PD AD AP AD =-=, △CDP 和△CDA 的高相等, 2.3CDP CDA S S ∴= ∴S △PBC =S 四边形ABCD −S △ABP −S △CDP =S 四边形ABCD −13S △ABD −23S △CDA , =S 四边形ABCD −13(S 四边形ABCD −S △DBC )− 23 (S 四边形ABCD −S △ABC ), 12.33DBC ABC S S =+ 12.33PBC DBC ABC S S S ∴=+ (3)1566PBC DBC ABC S S S =+; (4)11PBC DBC ABC n S S S n n -=+;1AP AD n,= △ABP 和△ABD 的高相等, 1.ABP ABD S S n∴= 又1n PD AD AP AD n-=-=,△CDP 和△CDA 的高相等, 1.CDP CDA n S S n-∴= ∴S △PBC =S 四边形ABCD −S △ABP −S △CDP =S 四边形ABCD −1n S △ABD −1n n -S △CDA , =S 四边形ABCD −1n (S 四边形ABCD −S △DBC )− 1n n-(S 四边形ABCD −S △ABC ), 11.DBC ABC n S S n n-=+ 11.PBC DBC ABC n S S S n n-∴=+ 问题解决: .PBC DBC ABC m n m S S S n n -∴=+。
【苏教版】七年级下学期数学《期中考试试卷》含答案解析
苏教版七年级下学期数学期中测试卷一、选择题: 本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程组中,属于二元一次方程组的是( )A. 51156x y x y +=⎧⎪⎨+=⎪⎩B. 2102x y x y ⎧+=⎨+=-⎩C. 85x y xy +=⎧⎨=-⎩D. 13x x y =⎧⎨+=-⎩2. 下列各式中计算正确的是( ) A. 235x x xB. 842x x x ÷=C. 336x x x +=D. ()325x x -=-3. 2.5PM 指大气中直径小于或等于2.5微米的颗粒物2.5微米()0.0000025m 用科学记数法表示为( ) A. 62510m -⨯B. 62.510m -⨯C. 62.510m ⨯D. 72.510m -⨯4. 下列等式由左边向右边的变形中,属于因式分解的是 ( ) A. x 2+5x -1=x(x+5)-1 B. x 2-4+3x=(x+2)(x -2)+3x C. (x+2)(x -2)=x 2-4D. x 2-9=(x+3)(x -3)5. 下列多项式的乘法中,不能用平方差公式计算的是( ) A. (43)(34)x y y x ---B. 2222(2)(2)x y x y -+ C . ()()a b c c b a +---+D. ()()x y x y -+-6. 已知关于x 的不等式45x a ->-的解集如图所示,则a 的值是( )A. 3-B. 2-C. 1-D. 07. 某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( ) A. 241x x -+B. 21x x -+C. 4321233x x x -+-D. 无法确定8. 若关于x ,y 的二元一次方程()()12520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A. 31x y =⎧⎨=-⎩B. 20x y =⎧⎨=⎩C. 31x y =-⎧⎨=-⎩D. 12x y =⎧⎨=⎩9. 已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( ) A. 23x ≤<B. 23x <≤C. 21x -≤<-D. 21x -<≤-10. 已知1a ,2a ,…,2020a 都是正数,如果 M =(1a +2a +…+2019a )(2a +3a +…+2020a ),N =(1a +2a +…+2020a )(2a + 3a +…+2019a ),那么 M ,N 的大小关系是( ) A. M >NB. M =NC. M <ND. 不确定二、填空题(每题3分,满分24分,将答案填在答题纸上)11. 已知方程1342x y -=,用x 表示y ,则y =______. 12. 若3,2n m a a ==,则2n m a -的值为______.13. 已知2249a kab b -+是一个完全平方式,则常数k =_______.14. 已知实数a ,b 满足ab =1,a +b =3,则代数式a 3b +ab 3的值为______. 15. 已知212448m m ++=,则m =_______.16. 关于x 的不等式组0521x a x -≤⎧⎨-<⎩有且只有4个整数解,则a 的取值范围是______.17. 如图,大正方形的边长为,m 小正方形的边长为,n 若用,x y 表示四个小长方形两边长(x>y), 观察图案以下关系式正确的是______. (填序号)①224m n xy -=;②;x y m +=③22x y m n -=⋅;④22222m n x y ++=18. 对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如: [1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是__________. 三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.)19. 计算: (1)()()2019201 3.14913π-⎛⎫⎪⎝-⎭-+-(2)()()()3222225x xy xy -⋅-20. 分解因式: (1)221218a b ab b -+(2)()2214a a +-21. 先化简,再求值: ()()()()2211141,a a a a a -++---其中1a =-.22. (1)解方程组24231x y x y +=⎧⎨+=⎩(2)解不等式组() 533215126x x x x ⎧-+>-⎪⎨+-≤-⎪⎩23. 已知多项式()()2232x px qxx ++-+的结果中不含3 x 项和2x 项,求p 和q 的值.24. 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为”奇巧数”,如221242=-,22222064,2886=-=-···,因此12,2028,都是奇巧数. (1)36,50是奇巧数吗?为什么? (2)奇巧数是4的倍数吗?为什么? 25. 已知有两个有理数x y 、满足: 1y x -=. (1)求()()22123y y x +-++的值;(2)若()()221x y +-=-,求22x xy y ++的值.26. 某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题: (1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案? (3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多? 27. 已知方程组5214x y ax y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相同.(1)求a 的取值范围; (2)化简232a a ++.28. 阅读理解题: 定义: 如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算: (2+i )+(3-4i )=5-3i . (1)填空: i 3=_____,i 4="_______"; (2)计算: ①(2)(2)+-i i ;②2(2)+i ;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题: 已知: (x+y )+3i=(1-x )-yi ,(x ,y 为实数),求x ,y 的值. (4)试一试: 请利用以前学习的有关知识将11ii+-化简成a+bi 的形式参考答案一、选择题: 本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程组中,属于二元一次方程组的是( )A. 51156x y x y +=⎧⎪⎨+=⎪⎩B. 2102x y x y ⎧+=⎨+=-⎩C. 85x y xy +=⎧⎨=-⎩D. 13x x y =⎧⎨+=-⎩【答案】D 【解析】 【分析】二元一次方程,必须同时满足以下几点: ①含有2个未知数,且次数为1; ②含有2个或多于2个方程; ③方程都是整式根据以上三点分别判断各选项可得. 【详解】A 中,1156x y +=不是整式方程,错误; B 中,210x y +=,含有2次项,错误; C 中,5xy =-,次数为2,错误; D 正确 故选: D .【点睛】本题考查二元一次方程组的判定,注意,若方程组由3个或者更多个方程组成,只要满足①、③,则依旧是二元一次方程组. 2. 下列各式中计算正确的是( ) A. 235xxxB. 842x x x ÷=C. 336x x x +=D. ()325xx -=-【答案】A 【解析】【分析】根据同底幂的加减法、乘除法和乘方的运算法则,依次判断各选项. 【详解】A 中,235x x x ,正确;B 中,844x x x ÷=,错误;C 中,3332x x x +=,错误;D 中,()326xx -=-,错误故选: A .【点睛】本题考查同底幂的运算,其中2a -与()2a -是不同的,此处容易出错,需要多注意.3. 2.5PM 指大气中直径小于或等于2.5微米的颗粒物2.5微米()0.0000025m 用科学记数法表示为( ) A. 62510m -⨯ B. 62.510m -⨯C. 62.510m ⨯D. 72.510m -⨯【答案】B 【解析】 【分析】用科学记数法表示较小的数,表示形式为: 10n a -⨯,确定a 与n 的值即可. 【详解】根据科学记数法的表示形式可知, 2.5a =要想使得0.0000025变为2.5,则小数点需要向右移动6位,故n=6 故选: B .【点睛】本题考查用科学记数法表示较小的数,注意,科学记数法还可以表示较大的数,表示形式为:10n a ⨯.4. 下列等式由左边向右边的变形中,属于因式分解的是 ( ) A. x 2+5x -1=x(x+5)-1 B. x 2-4+3x=(x+2)(x -2)+3x C. (x+2)(x -2)=x 2-4 D. x 2-9=(x+3)(x -3)【答案】D 【解析】 【分析】根据因式分解的定义: 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【详解】解: A 、右边不是积的形式,故A 错误;B 、右边不是积的形式,故B 错误;C 、是整式的乘法,故C 错误;D 、x 2-9=(x+3)(x -3),属于因式分解. 故选D .【点睛】此题主要考查因式分解的定义: 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.5. 下列多项式的乘法中,不能用平方差公式计算的是( ) A. (43)(34)x y y x --- B. 2222(2)(2)x y x y -+ C. ()()a b c c b a +---+ D. ()()x y x y -+-【答案】D 【解析】A. 原式=(−3y+4x)(−3y −4x),可以运用平方差公式,故本选项错误;B. 符合两个数的和与这两个数差的积的形式,可以运用平方差公式,故本选项错误;C. 可以把−c+a 看做一个整体,故原式=(−c+a+b)(−c+a −b),可以运用平方差公式,故本选项错误;D. 不能整理为两个数的和与这两个数差的积的形式,所以不可以运用平方差公式,故本选项正确.故选D. 6. 已知关于x 的不等式45x a ->-的解集如图所示,则a 的值是( )A. 3-B. 2-C. 1-D. 0【答案】A 【解析】 【分析】先求得用a 表示的关于x 的解集,然后根据图形所示的解集,确定a 的值. 【详解】45x a ->- 解得: x >54a - 由图形可知,x >-2 ∴524a -=- 解得: a=-3 故选: A .【点睛】本题考查解含有字母的不等式,解题过程中,我们直接将字母视为常数进行计算,算得结果后在分析字母.7. 某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( ) A. 241x x -+ B. 21x x -+ C. 4321233x x x -+- D. 无法确定【答案】C 【解析】 【分析】根据整式的减法法则求出多项式,根据单项式与多项式相乘的运算法则计算,得到答案.【详解】解: ∵()2221341-+--=+-x x x x x∴()()2243234=12313-•--+-+x x x x x x故选: C【点睛】本题考查的是单项式乘多项式、整式的加减混合运算,单项式与多项式相乘的运算法则: 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.8. 若关于x ,y 的二元一次方程()()12520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A. 31x y =⎧⎨=-⎩B. 20x y =⎧⎨=⎩C. 31x y =-⎧⎨=-⎩D. 12x y =⎧⎨=⎩ 【答案】A 【解析】 【分析】如果当a 取一个确定的值时就得到一个方程,这些方程有一个公共解,说明无论a 取何值,都不影响方程,即含a 的项的系数相加为0.【详解】解: 方程整理为ax-x+ay+2y+5-2a=0, a (x+y-2)-x+2y+5=0. 根据题意,即可得20250x y x y +-=⎧⎨-++=⎩,用加减消元法解得31x y =⎧⎨=-⎩. 故选: A.【点睛】此题应注意思考: 由于a 可取任何数,要想让当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,就需让含a 的项的系数相加为0,此时即可得到关于x 和y 的方程组. 9. 已知13ax b ≤+<的解集为23x ≤<,则()113a x b ≤-+<的解集为( ) A. 23x ≤< B. 23x <≤C. 21x -≤<-D. 21x -<≤-【答案】D 【解析】 【分析】令1-x=y ,则13ay b ≤+<,根据题干可知: 23y ≤<,从而得出x 的取值范围. 【详解】令1-x=y ,则13ay b ≤+< ∵13ax b ≤+<的解集为23x ≤< ∴13ay b ≤+<的解集为: 23y ≤< ∴213x ≤-< 解得: 21x -<≤- 故选: D .【点睛】本题考查解不等式,解题关键是通过换元法,将1-x 表示为y 的形式.10. 已知1a ,2a ,…,2020a 都是正数,如果 M =(1a +2a +…+2019a )(2a +3a +…+2020a ),N =(1a +2a +…+2020a )(2a + 3a +…+2019a ),那么 M ,N 的大小关系是( ) A. M >N B. M =NC. M <ND. 不确定【答案】A 【解析】 【分析】 设232019S a a a =++,可得12020M N a a -=,再根据1a ,2a ,…,2020a 都是正数即可判断M N >.【详解】设232019S a a a =++M N -()()()()122019232020122020232019a a a a a a a a a a a a =++++++-+++++()()()1202012020a S S a a a S S =++-++22112020202012020a S a a a S S a S a S S =+++---12020a a =∵1a ,2a ,…,2020a 都是正数 ∴120200a a > ∴M N > 故答案为: A .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则是解题的关键.二、填空题(每题3分,满分24分,将答案填在答题纸上)11. 已知方程1342x y -=,用x 表示y ,则y =______. 【答案】1463x -【解析】 【分析】把x 看成已知数,求出y 即可解决问题. 【详解】解: ∵1342x y -=, ∴x-6y=8, ∴6y=x-8,∴y=1463x -, 故答案为: 1463x -.【点睛】本题考查了二元一次方程、代数式等知识,解题的关键是灵活应用解方程的思想处理问题,属于基础题,中考常考题型.12. 若3,2n m a a ==,则2n m a -的值为______.【答案】92【解析】 【分析】将2n m a -转化为2()n m a a的形式,然后代值可得. 【详解】2n m a -=22()(3)922n m a a == 故答案为: 92. 【点睛】本题考查指数运算的逆运算,解题关键是将要求解的量转化为题干中已告知量的表示形式. 13. 已知2249a kab b -+是一个完全平方式,则常数k =_______.【答案】12±【解析】【分析】由两数的平方和加上或减去这两个数积的2倍,等于两数和或差的平方,即可求出k 的值.【详解】解: 因为222249(2)(3)a kab b a kab b -+=-+是一个完全平方式,所以22312kab a b ab -=±⋅⋅=±,所以12k =±.故答案为: 12±.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的特点是解本题的关键.14. 已知实数a ,b 满足ab =1,a +b =3,则代数式a 3b +ab 3的值为______.【答案】7【解析】【分析】所求式子提取公因式ab 后,利用完全平方公式变形,将a+b 与ab 的值代入计算,即可求出值.【详解】解: ∵ab=1,a+b=3,∴a 3b+ab 3=ab (a 2+b 2)=ab[(a+b )2-2ab]=9-2=7.故答案为7【点睛】此题考查因式分解的应用,熟练掌握完全平方公式是解本题的关键.15. 已知212448m m ++=,则m =_______.【答案】2【解析】【分析】将4m 、48变形为底数为2的表示形式,然后根据指数特点,可得2m=4,从而求得m 的值.【详解】212448m m ++=21242232m m ++=⨯242(12)32m ⨯+=⨯2422m =2m=4m=2故答案为: 2.【点睛】本题考查求解指数方程,解题关键是将方程中的数据变为底数相同的形式,从而得出指数相同,进而求得方程的值.16. 关于x 的不等式组0521x a x -≤⎧⎨-<⎩有且只有4个整数解,则a 的取值范围是______. 【答案】67a ≤<【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围. 【详解】解: 0521x a x -≤⎧⎨-<⎩①②, 解①的得: x≤a ,解②得: x >2.则不等式组的解集是: 2<x≤a ,∵不等式组有且只有4个整数解,则一定是3,4,5,6.∴67a ≤<.故答案为: 67a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则: 同大取较大,同小取较小,小大大小中间找,大大小小解不了.17. 如图,大正方形的边长为,m 小正方形的边长为,n 若用,x y 表示四个小长方形两边长(x>y), 观察图案以下关系式正确的是______. (填序号)①224m n xy -=;②;x y m +=③22x y m n -=⋅;④22222m n x y ++= 【答案】①②③④【解析】【分析】由图得: x +y =m ,x -y =n .根据题意对各式进行变形即可得出结论.【详解】解: 由图得: x +y =m ,x -y =n .∵m 2-n 2=4xy ,∴224m n xy -=,故①正确; 由图得x +y =m ,故②正确;∵()()22x y x y x y m n -=+-=⋅,故③正确;∵()()222222222222==222x y x y m n x xy y x xy y x y ++-++++-+=+, 故④正确.故答案为: ①②③④【点睛】本题考查了图形的面积计算,平方差公式,完全平方公式等知识,考查了学生的识图能力.能得到x +y =m ,x -y =n 并熟练掌握乘法公式是解题关键.18. 对于有理数m ,我们规定[]m 表示不大于m 的最大整数,例如: [1,2]1=,[3]3=,[ 2.5]3-=-,若2[]53x +=-,则整数x 的取值是__________.【答案】-17,-16,-15.【解析】【分析】根据[x]表示不大于x 的最大整数,列出不等式组,再求出不等式组的解集即可.【详解】∵[x]表示不大于x 的最大整数,∴-5≤23x +<-5+1, 解得-17≤x <-14.∵x 是整数,∴x 取-17,-16,-15.故答案为: -17,-16,-15.【点睛】本题考查的是有理数的大小比较,关键是根据[x]表示不大于x 的最大整数,列出不等式组,求出不等式组的解集.三、解答题 (本大题共10小题,共76分.解答应写出文字说明、证明过程或演算步骤.) 19. 计算:(1)()()2019201 3.14913π-⎛⎫ ⎪⎝-⎭-+- (2)()()()3222225x xy xy -⋅-【答案】(1)9-;(2)363x y【解析】【分析】(1)根据乘方的定义、零指数幂和负整数指数幂的计算法则进行化简计算即可.(2)根据积的乘方对原式进行化简,再单项式乘单项式的计算法则进行计算,最后合并同类项即可.【详解】解: (1)()()2019201 3.14913π-⎛⎫ ⎪⎝-⎭-+- =119=9(2)()()()3222225xy xy xy -⋅- 36224=8(5)()x y xy x y363685x y x y363x y故答案为: (1)9-;(2)363x y【点睛】本题考查整式混合运算、零指数幂和负整数指数幂的计算,熟练掌握运算法则是解题的关键. 20. 分解因式:(1)221218a b ab b -+(2)()2214a a +-【答案】(1)()223b a -;(2)()()2211+-a a【解析】【分析】(1)先提取公因式2b ,再利用完全平方公式进行分解即可;(2)先利用平方差公式进行分解,再利用完全平方公式进行因式分解即可.【详解】解: (1)221218a b ab b -+ 22(69)b a a223b a (2)()22214a a +- 2221(2)a a()()221212a a a a =+++-()()2211a a =+- 故答案为: (1)()223b a -;(2)()()2211+-a a .【点睛】本题考查公式法和提公因式法进行因式分解,灵活运用公式是解题的关键.21. 先化简,再求值: ()()()()2211141,a a a a a -++---其中1a =-.【答案】2a ,1.【解析】【分析】 先利用乘法公式、单项式乘以多项式乘法进行计算,然后再进行合并同类项,化为最简后,再代入求值即可.【详解】()()()()2211141a a a a a -++---=222441144a a a a a -++--+=2a ,当1a=-时,原式=()21-=1.【点睛】本题考查了整式的混合运算,灵活运用两个乘法公式(完全平方公式和平方差公式)是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.22. (1)解方程组24 231 x yx y+=⎧⎨+=⎩(2)解不等式组() 533215126x xx x⎧-+>-⎪⎨+-≤-⎪⎩【答案】(1)107xy=-⎧⎨=⎩;(2)1x≤-【解析】【分析】(1)利用加减消元法解方程组即可;(2)分别求得两个一元一次不等式的解集,再确定不等式组的解集即可.【详解】(1)24 231 x yx y+=⎧⎨+=⎩①②解: ①×2-②得,y=7,把y=7代入①得,x+14=4,x=-10∴方程组的解为107xy=-⎧⎨=⎩;(2)()533215126x xx x⎧-+>-⎪⎨+-≤-⎪⎩①②解: 解不等式①得,-5x+3>3x-6-8x>-9x<9 8解不等式②得,3(x+1)≤6-(5-x )3x+3≤6-5+x2x ≤-2x ≤-1∴不等式组的解集为: x ≤-1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,熟练运用方程组及不等式组的解法是解决问题的关键.23. 已知多项式()()2232x px q x x ++-+的结果中不含3 x 项和2x 项,求p 和q 的值.【答案】3p =,7q = 【解析】【分析】首先利用多项式乘法去括号,进而利用多项式(x 2+px +q )(x 2﹣3x +2)的结果中不含x 3项和x 2项,进而得出两项的系数为0,进而得出答案.【详解】解: ∵()()2232x px q x x ++-+432322323232x x x px px px qx qx q =-++-+++﹣()()432323232x p x p q x px qx q =--+-++-+由多项式()()2232x px q x x ++-+的结果中不含3x 项和2x 项,∴30p -=,230p q -+=,解得:3p =,7q =. 故答案为:3p =,7q =. 点睛】此题主要考查了多项式乘法,正确利用多项式乘法去括号得出是解题关键.24. 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为”奇巧数”,如221242=-,22222064,2886=-=-···,因此12,2028,都是奇巧数. (1)36,50是奇巧数吗?为什么?(2)奇巧数是4的倍数吗?为什么?【答案】(1)36是,50不是;理由见解析;(2)是,理由见解析.【解析】【分析】(1)根据定义是两个现需偶数的平方差判断即可.(2)将()222n n +-进行运算、化简,便可发现是4的倍数.【详解】(1)36是奇巧数,理由: 2236108=-;50不是奇巧数,理由: 找不到连续的两个偶数平方差为50;(2)设两个连续的偶数为n+2、n ,则()()2244412n n n n +=+=+-,奇巧数是4的倍数.【点睛】本题考查对定义的理解,正确理解题意是解题的关键 .25. 已知有两个有理数x y 、满足: 1y x -=.(1)求()()22123y y x +-++的值; (2)若()()221x y +-=-,求22x xy y ++的值. 【答案】(1)0;(2)4.【解析】【分析】(1)先化简代数式,再整体代入求值,(2)先把()()221x y +-=-变形,利用整体代入,求解xy 的值,再利用完全平方式可得答案.【详解】解: (1)()()22123y y x +-++ 222123y y y x =++---222,y x =--当1y x -=时,原式=2()2220,y x --=-=(2) ()()221x y +-=-,1y x -=,2241,xy x y ∴-+-=-2()31,xy y x ∴=--+=2222()3()3x xy y x y xy y x xy∴++=-+=-+213 4.=+=【点睛】本题考查的是代数式的值,考查了整式的乘法及乘法公式,利用整体代入的思想,求整体的值是解题的关键.26. 某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【答案】(1)60,80;(2)答案见解析;(3)方案一商家获利最多.【解析】【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系: 不超过3240元,且不少于3200元,等量关系: 两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【详解】(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得: x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50-y)个.根据题意,得6080(50)3200 6080(50)3240 y yy y+-≥⎧⎨+-≤⎩,解得:4038yy≤⎧⎨≥⎩,∵y为整数,∴y=38,39,40.当y=38,50-y=12;当y=39,50-y=11;当y=40,50-y=10.故有三种方案:方案一: 购进足球38个,则购进篮球12个;方案二: 购进足球39个,则购进篮球11个;方案三: 购进足球40个,则购进篮球10个;(3)商家售方案一的利润: 38(60-50)+12(80-65)=560(元);商家售方案二的利润: 39(60-50)+11(80-65)=555(元);商家售方案三的利润: 40(60-50)+10(80-65)=550(元).故第二次购买方案中,方案一商家获利最多.【点睛】此题考查了一元一次方程及一元一次不等式组的应用,解答本题的关键是仔细审题,根据题意所述的等量关系及不等关系,列出不等式,难度一般.27. 已知方程组5214x y ax y a +=+⎧⎨-=-⎩的解x 、y 的值的符号相同.(1)求a 的取值范围;(2)化简232a a ++.【答案】(1)322a -<<;(2)43a +,3. 【解析】 分析: (1)把a 看做已知数表示出方程组的解,根据x 与y 同号求出a 的范围即可;(2)由a 的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果. 详解: (1)已知方程组5214x y a x y a +=+⎧⎨-=-⎩的解x 、y 的值的符号相同, 3x=6-3a ;x=2-a ;y=5+a-2+a=3+2a ;∴(2-a)(3+2a)≥0; ∴322a -<<; (2)当302a -<≤时,|2a+3|+2|a|=2a+3-2a=3; 当02a <<时,|2a+3|+2|a|=2a+3+2a=4a+3. 点睛: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.注意分类思想的运用.28. 阅读理解题: 定义: 如果一个数的平方等于-1,记为i 2=-1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算: (2+i )+(3-4i )=5-3i .(1)填空: i 3=_____,i 4="_______";(2)计算: ①(2)(2)+-i i ;②2(2)+i ;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知: (x+y )+3i=(1-x )-yi ,(x ,y 为实数),求x ,y 的值.(4)试一试: 请利用以前学习的有关知识将11i i+-化简成a+bi 的形式 【答案】(1)-i ,1;(2)①5,②3+4i ;(3)x=2,y=-3;(4)i【解析】【分析】【详解】解: (1)∵i 2=-1,∴i 3=i 2•i=-1•i=-i ,i 4=i 2•i 2=-1•(-1)=1;(2)①(2+i )(2-i )=4-i 2=5;②(2+i )2=i 2+4i+4=-1+4i+4=3+4i ;(3)∵(x+y )+3i=(1-x )-yi ,∴x+y=1-x ,3=-y ,∴x=2,y=-3;(4)原式=i .【点睛】该题属于信息给予题,做题时挖掘题中的有用信息,由i 2=-1可得i 3=i 2•i=-1•i=-i ,i 4=i 2•i 2=-1•(-1)=1;复数的加,减,乘法运算与整式的加,减,乘法运算类似,根据已学过的整式的运算可求解.。
苏教版数学七年级下学期《期中测试卷》带答案解析
苏 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠52. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A.B. C. D. 4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°6. 下列分解因式正确是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 7. 若433339x x x x +++=,则x =( ) A. -2 B. -1 C. 0 D. 148. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.10. 已知25x =,23y =,则22x y +=________.11. 如图,直线//a b ,160∠=︒,则2∠=______.12. 因式分解:x 2﹣49=________.13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____. 14. 若5a b +=,2a b -=,则()()2211+--a b 值为______.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ). 21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.参考答案一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】 分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 详解:由同位角的定义可知,∠1的同位角是∠4.故选C .点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.2. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm【答案】D【解析】【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A .145+=,4cm ∴,5cm ,1cm 不能组成三角形,故A 错误; B .5511+<,5cm ∴,5cm ,11cm 不能组成三角形,故B 错误;C .6713+=,6cm ∴,7cm ,13cm 不能组成三角形,故C 错误;D .8815+>,8cm ∴,8cm ,15cm 能组成三角形,故D 正确;故选:D .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A 、∵AB ∥CD ,∴∠1+∠2=180°.故本选项错误.B 、如图,∵AB ∥CD ,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C 、∵AB ∥CD ,∴∠BAD=∠CDA ,不能得到∠1=∠2.故本选项错误.D 、当梯形ABDC 是等腰梯形时才有,∠1=∠2.故本选项错误.故选B .4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④ 【答案】A【解析】【分析】根据同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,逐项判定即可.【详解】解:532a a a ÷=,∴选项①符合题意; 224(2)4a a -=,∴选项②不符合题意;222(2)a b a ab b --=+,∴选项③不符合题意;347a a a =,∴选项④不符合题意.故选:A .【点睛】此题主要考查了同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,解答此题的关键是要熟练掌握相关运算法则.5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.6. 下列分解因式正确的是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+ C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7. 若433339x x x x +++=,则x =( ) A. -2B. -1C. 0D. 14【答案】A【解析】【分析】 43333439x x x x x +++=⨯=,由此可知x 的值. 【详解】解:43333439x x x x x +++=⨯=,21339x -==,所以2x =-. 故选A【点睛】本题考查了负指数幂,熟练掌握负指数幂的性质是解题的关键.8. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3【答案】C【解析】【分析】 首先根据三角形的面积=底×高÷2,求出△BOC 的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD 、△ACE 的面积均是△ABC 的面积的一半,据此判断出四边形ADOE 的面积等于△BOC 的面积,据此解答即可.【详解】∵BD 、CE 均是△ABC 的中线,∴S △BCD =S △ACE =12S △ABC , ∴S 四边形ADOE +S △COD =S △BOC +S △COD ,∴S 四边形ADOE =S △BOC =5×2÷2=5. 故选C .【点睛】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2. 二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.【答案】81.610-⨯【解析】【分析】由1纳米=10-9米,可得出16纳米=1.6×10-8米,此题得解. 【详解】∵1纳米=10-9米,∴16纳米=1.6×10-8米. 故答案为1.6×10-8. 【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.10. 已知25x =,23y =,则22x y +=________.【答案】75【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】∵25x =,23y =,∴22x y +=22x ×2y =(2x )2×2y =52×3=75,故答案为75.【点睛】本题考查了同底数幂乘法、幂的乘方,熟练掌握相关运算法则并能逆用进行变形是解题的关键. 11. 如图,直线//a b ,160∠=︒,则2∠=______.【答案】60°【解析】【分析】根据两直线平行,同位角相等即可求解.【详解】解://a b ,21∴∠=∠,160∠=︒,260∴∠=︒.故答案为:60°.【点睛】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.12. 因式分解:x 2﹣49=________.【答案】(x ﹣7)(x+7)【解析】【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解) 【详解】解:可以直接用平方差分解为:2x ﹣49=(x ﹣7)(x+7).故答案为:(x ﹣7)(x+7)13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°, ∴∠ADC=120°, ∵AD ⊥AB ,∴∠DAB=90°, ∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°, 故答案为40°. 【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14. 若5a b +=,2a b -=,则()()2211+--a b 的值为______.【答案】20【解析】【分析】将+a b 、-a b 的值代入原式(11)(11)()(2)a b a b a b a b =++-+-+=+-+计算可得.【详解】解:当5a b +=,2a b -=时,原式(11)(11)a b a b =++-+-+()(2)a b a b =+-+5(22)=⨯+20=, 故答案为:20.【点睛】本题主要考查代数式的求值,解题的关键是灵活运用平方差公式分解因式.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.【答案】39°.【解析】【分析】利用三角形的内角和定理以及角平分线的定义求出DCB ∠即可解决问题.【详解】解:54A ∠=︒,48B ∠=︒,180544878ACB ∴∠=︒-︒-︒=︒, CD 平分ACB ∠, 1392DCB ACB ∴∠=∠=︒, //DE BC ,39CDE DCB ∴∠=∠=︒,故答案为:39°.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.【答案】4【解析】【分析】根据多项式与多项式相乘的法则计算,根据题意列出方程,解方程得到答案.【详解】解:2(2)(35)6(103)5x a x x a x a ++=+++,由题意得,510a =-,103a b +=,解得,2a =-,1031064b a =+=-=,故答案为:4.【点睛】本题考查的是多项式乘多项式,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.【答案】150︒【解析】【分析】先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=120°,求得答案.【详解】如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o .【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.【答案】3【解析】【分析】把已知式子化成2221[()()()]2a b a c b c -+-+-的形式,然后代入求解. 【详解】解:120182019a =+,120192019b =+,120202019c =+, 1a b ∴-=-,2a c -=-,1b c -=-,则原式2221(222222)2a b c ab ac bc =++--- 2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+2221[()()()]2a b a c b c =-+-+- 1[141]2=⨯++ 3=,故答案为:3.【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭【答案】(1)9;(2)322312a b a b ab --+ 【解析】【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1)235021482()3π-÷⨯-+- 495021222()3π-=÷⨯-+- 119=-+9=;(2)221(22)()2a ab b ab +-- 322312a b a b ab =--+. 【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ).【答案】(1)见解析;(2)见解析;(3)4【解析】【分析】(1)分别将点A 、B 、C 向左平移1格,再向上平移3格,得到点A '、B '、C ',然后顺次连接; (2)过点C 作CD AB ⊥的延长线于点D ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【详解】解:(1)如图所示:△A B C '''即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使PBC ABC S S ∆∆=的格点P 的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P 点位置是解题关键.21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.【答案】(1)从第二步开始出错,错误原因是去括号时没有变号;(2)2ab +b 2.【解析】【分析】去括号时,括号外面是正号,则去掉括号后,括号里的各项不改变符号,去括号时,括号外面是负号,则去掉括号后,括号里的各项要改变符号;根据上述法则判断哪一步错误,再正确的去掉括号,合并同类项即可.【详解】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)原式=a 2+2ab-(a 2-b 2)=a 2+2ab-a 2+b 2=2ab +b 2.故答案为(1)第二步,去括号时没有变号;(2)2ab +b 2.【点睛】本题主要考查整式的运算,解题关键要掌握去括号法则; 22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.【答案】AD BC ⊥,理由见解析【解析】【分析】根据角平分线的定义可得BAD DAC ∠=∠,从而可得BFG BAD ∠=∠,再根据同位角相等,两直线平行可得//EG AD ,然后根据EG BC ⊥即可证明AD BC ⊥.【详解】解:AD BC ⊥.理由如下:AD 平分BAC ∠,BAD DAC ∴∠=∠,BFG DAC ∠=∠,BFG BAD ∴∠=∠,//EG AD ∴,EGC ADC ∴∠=∠,又EG BC ⊥,90EGC ∴∠=︒,90ADC ∴∠=︒,AD BC ∴⊥.【点睛】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.【答案】1082a +,92【解析】【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【详解】解:原式2224(44)7(9)3(21)a a a a a =++--+-+ 22241616763363a a a a a =++-++-+1082a =+,∵a 是最小的正整数,∴1a =,∴原式108292=+=.【点睛】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.【答案】(1)62°;(2)28°【解析】【分析】(1)根据三角形的外角的性质求出CBD ∠,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【详解】解:(1)90ACB ∠=︒,34A ∠=︒,124CBD ∴∠=︒, BE 是CBD ∠的平分线,1622CBE CBD ∴∠=∠=︒; (2)90ECB ∠=︒,62CBE ∠=︒,28CEB ∴∠=︒,//DF BE ,28F CEB ∴∠=∠=︒.【点睛】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+【答案】(1)313;(2)156【解析】【分析】(1)将+a b 、ab 的值代入原式2()2a b ab =+-计算可得;(2)将+a b 、ab 的值代入原式22(2)ab a ab b =-+计算可得.【详解】解:(1)当25a b +=,156ab =时,原式2()2a b ab =+-2252156=-⨯625312=-313=; (2)当25a b +=,156ab =时,原式22(2)ab a ab b =-+2156(254156)=⨯-⨯156=.【点睛】本题主要考查代数式的求值,解题的关键是熟练掌握完全平方公式及其灵活变形.26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.【答案】(1)FCE ∠与CFE ∠度数之和是定值,为45︒;(2)能,15CFE ∠=︒【解析】【分析】(1)FED ∠是EFC ∆的外角,且45FED ∠=︒可得;(2)根据//FC AB ,且90B ∠=︒且60ACB ∠=︒知30FCE ∠=︒,再根据(1)中的结论可得答案.【详解】解:(1)FCE ∠与CFE ∠度数之和是定值,为45︒;FED ∠是EFC ∆的外角,且45FED ∠=︒,45FCE CFE ∴∠+∠=︒;(2)//FC AB ,且90B ∠=︒,90FCB ∠∴=︒,60ACB ∠=︒,30FCE ∴∠=︒,又45FCE CFE ∠+∠=︒,15CFE ∴∠=︒.【点睛】本题主要考查平行线的判定和性质,解题的关键是掌握平行线的判定及三角形外角的性质. 27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.【答案】(1)见解析;(2)见解析;(3)代数式2222a c a b +与44c b -的大小关系是相等.【解析】【分析】[尝试探究](1)根据图形面积的不同求法即可得到结论;(2)根据图形面积的不同求法即可得到结论;[实践应用](3)分解因式,根据勾股定理即可得到结论.【详解】解:[尝试探究](1)图中大正方形的面积可表示为2()a b +,也可表示为214()2c ab +⨯, 即221()4()2a b c ab +=+⨯,222a b c ∴+=;(2)图中大正方形的面积可表示为2c ,也可表示为21()4()2b a ab -+⨯, 即221()4()2b a abc -+⨯=, 222a b c ∴+=;[实践应用](3)2222222()a c a b a c b +=+,442222222()()()c b c b c b c b a -=+-=+,∴代数式2222a c a b +与44c b -的大小关系是相等.【点睛】本题考查了勾股定理的证明,此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC 与∠A 、∠B 、∠C 之间的关系,并说明理由:(2)如图②,若△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,且它们相交于点O ,试探究∠BOC 与∠A 的关系;(3)如图③,若△ABC 中,∠ABO =13∠ABC ,∠ACO =13∠ACB ,且BO 、CO 相交于点O ,请直接写出∠BOC 与∠A 的关系式为 _.【答案】(1)∠BOC=∠BAC+∠B+∠C .理由见解析;(2)∠BOC=90°+12∠A .理由见解析; (3)∠BOC=60°+23∠A .理由见解析. 【解析】【分析】(1)如图1,连接AO ,延长AO 到H .由三角形外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C ;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.。
苏科版七年级下学期期中考试数学试题含答案解析
年级数学期中试卷(考试时间120分钟 ) 年4月一、选择题。
(每小题3分,共24分)1 用下列各组数据作为长度的三条线段能组成三角形的是( )A .4,5,6B .5,6,11C .3,3,8D .2,7,4 2 下列运算正确的是( ).A .623a a a ÷=B .33333a a a a =⋅⋅C .()4312aa = D .()22224a b a b +=+3 如图,下列说法正确的是( ).A .若AB ∥DC ,则∠1=∠2 B .若AD ∥BC ,则∠3=∠4C .若∠1=∠2,则AB ∥DCD .若∠2+∠3+∠A =180°,则AB ∥DC4 下列等式由左边到右边的变形中,属于因式分解的是 ( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a aC .1)2(122++=++x x x xD .y x y x y x 222343618•-=-5二元一次方程组的是( )A .B .C .D . 6如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a 、b 、c 三数的大小为( ) A .a >b >c B .c >a >b C .a >c >b D .c >b >a 下列方程组中,是 7 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A .(a+b )(a+2b )=a 2+3ab+2b 2B .(3a+b )(a+b )=3a 2+4ab+b 2C .(2a+b )(a+b )=2a 2+3ab+b 2D .(3a+2b )(a+b )=3a 2+5ab+2b 28 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过次操作( ) A.3 B.4 C.5 D.6二、填空题(每小题3分,共30分).9世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是__________克10 已知2,3==nm aa,则nma+=___________.11 已知方程5212423=--+nm yx是二元一次方程, 则m =______;n =______.12一个多边形的内角和与外角和的和是1260°,那么这个多边形的边数n=______13已知x+y=4,x﹣y=﹣2,则x2﹣y2= .14如果x2+mx-n=(x+3)(x-2),则m+n的值为______.15若x2+kx+16是完全平方式,则k的值为.16如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=________17一个正方形和两个等边三角形的位置如图所示,若∠3=50。
【苏教版】七年级下学期数学《期中测试卷》含答案解析
苏教版七年级下学期数学期中测试卷一、选择题(本大题共有8小题,每小题3分,共24分)1. 下列运算正确的是( )A. 235a b ab +=B. 523a a a -=C. 236a a a ⋅=D. ()222a b a b +=+ 2. 在人体血液中,红细胞直径约为0.00077cm ,数据0.00077用科学记数法表示为( )A. 0.77×10-5B. 7.7×10-5C. 7.7×10-4D. 77×10-7 3. 现有两根木棒,它们的长分别为30cm 和40cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A. 10cm 的木棒B. 60cm 的木棒C. 70cm 的木棒D. 100cm 的木棒 4. 在等式a 2·a 4·( )=a 12,括号里面的代数式应当是( )A. a 5B. a 6C. a 7D. a 3 5. 多项式2ax 3+10ax 2−4ax 各项的公因式是( )A. 2ax 2B. 2ax 3C. axD. 2ax 6. 下列各式不能用平方差公式计算的是( )A . (x +y )(x −y ) B. (x +y )(−x −y )C. (−x +y )(−x −y )D. (a +m )(m −a ) 7. 定义: 若有一条公共边的两个三角形称为一对”共边三角形”,则图中以BC 为公共边的”共边三角形”有( )A. 1对B. 2对C. 3对D. 4对8. 有一条直的等宽纸带,按如图折叠时,纸带重叠部分中的∠α=( )行的,转动刀片时会形成∠1、∠2,则12∠+∠=__________.13. 若代数式x2+ax+16是一个完全平方式,则a=_____.14. 若12xy=⎧⎨=⎩是方程2x-ay=−2的一个解,则a的值是________.15. 如图,已知AB∥CD,BC∥DE.若∠A=30︒,∠C=110°,则∠AED的度数是________.16. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为”杨辉三角”,这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):1 1 (a+b)1=a+b1 2 1 (a+b)2=a2+2ab+b21 3 3 1 (a+b)3=a3+3a2b+3ab2+b31 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4…… ……请依据上述规律,写出(x−1)2019展开式中含x2018项的系数是________.三、解答题(本大题共10小题,共102分。
苏科版七年级下期中数学试卷含答案解析
七年级(下)期中数学试卷(解析版)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个 B.2个 C.3个 D.4个2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C. D.3.下列说法中,不正确的是()A.10的立方根是B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.14.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或29.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣610.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.14.如果=1.732,=5.477,那么0.0003的平方根是.15.把方程x+y=2改写成用x表示y的式子是.17.已知(x﹣1)2=3,则x=.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=,b=.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A的坐标为.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.(6分)计算:(﹣)2﹣﹣+﹣|﹣6|.22.(8分)解方程组:(1)(2).23.(8分)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.24.(8分)在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.25.(10分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN∴∠GMN=∠BMN同理∠GNM=∠DNM.∵AB∥CD,∴∠BMN+∠DNM=∴∠GMN+∠GNM=∵∠GMN+∠GNM+∠G=∴∠G=∴MG与NG的位置关系是26.(10分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.27.(10分)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.-学年江苏省南京市XX中学七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个 B.2个 C.3个 D.4个【考点】对顶角、邻补角.【分析】根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,即可解答.【解答】解:根据对顶角的定义可知:只有第3个图中的是对顶角,其它都不是.故选:A.【点评】本题考查对顶角的定义,解决本题的关键是熟记对顶角的定义.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C. D.【考点】生活中的平移现象.【分析】找到平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【解答】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、形状不同,不能通过平移得到,不符合题意;C、对应点的连线相交,不能通过平移得到,不符合题意;D、能通过平移得到,符合题意;故选D.【点评】用到的知识点为:平移前后对应点的连线平行且相等,并且不改变物体的形状与大小.3.下列说法中,不正确的是()A.10的立方根是B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.1【考点】立方根;平方根;算术平方根.【分析】根据立方根,平方根的定义,即可解答.【解答】解:A.10的立方根是,正确;B.﹣2是4的一个平方根,正确;C.的平方根是±,故错误;D.0.01的算术平方根是0.1,正确;故选C.【点评】本题考查了平方根,立方根,解决本题的关键是熟记立方根,平方根的定义.4.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB ∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.5.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】分a﹣1>0和a﹣1<0两种情况讨论,即可得到a的取值范围,进而求出M所在的象限.【解答】解:当a﹣1>0时,a>1,点M可能在第一象限;当a﹣1<0时,a<1,点M在第三象限或第四象限;所以点M不可能在第二象限.故选B.【点评】本题考查象限点的坐标的符号特征,根据第三象限为(﹣,﹣)第二象限为(﹣,+),判断点M的符号不可能为(﹣,+).记住横坐标相同的点在一四象限或二三象限是关键.6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)【考点】坐标确定位置.【分析】根据平移规律,由A的坐标变化情况确定B的坐标.【解答】解:当飞机A从A(﹣1,2),飞到指定位置的坐标是(2,﹣1)时,飞机在平面直角坐标系中是向x轴正方向,及y轴的负方向飞行的,飞机的横坐标移动的距离=|2﹣(﹣1)|=3,纵坐标移动的距离=|﹣1﹣2|=3;由于是平行飞行,同理飞机B的坐标也是这样移动的,横坐标向x轴正方向加3,变为﹣2+3=1,纵坐标向y轴负方向减3变为3﹣3=0;∴飞机B的坐标变为(1,0).故选C.【点评】本题考查了一个点在平面直角坐标系中的平移,解题关键要明白是向那个方向移动,及移动多少单位.7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)【考点】坐标确定位置.【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或2【考点】二元一次方程的定义.【分析】根据二元一次方程的定义列式进行计算即可得解.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.故选A.【点评】本题考查了二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程,要注意未知项的系数不等于0.9.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣6【考点】解三元一次方程组.【分析】根据三元一次方程组解的概念,列出三元一次方程组,解出x,y的值代入含有a的式子即求出a的值.【解答】解:由题意可得方程组,把③代入①得,代入②得a=﹣6.故选D.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.10.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的相等关系是“周长为34cm”和“小长方形的5个宽等于2个长”,列方程组求解即可.【解答】解:设小长方形的长为ycm,宽为xcm,则,解得,所以长方形ABCD的面积为7×10=70cm2.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为80°.【考点】对顶角、邻补角.【分析】利用对顶角相等和邻补角计算即可.【解答】解:若直线AB,CD相交于O,则∠AOC=∠BOD,∠AOD=BOC,∵∠AOC与∠BOD的和为200°,∴∠AOC=100°,∴∠AOD=180°﹣100°=80°;故答案为:80°.【点评】本题考查了对顶角、邻补角;熟练掌握对顶角相等是解决问题的关键.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= 40°.【考点】平行线的性质.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.14.如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根.【解答】解:∵0.0003=,∴±=±=±=±0.01732.【点评】此题考查了算术平方根的概念,解决本题的关键利用小数点的移动规律解答.15.把方程x+y=2改写成用x表示y的式子是y=.【考点】解二元一次方程.【分析】由已知方程通过移项,系数化为1,把方程改写成用含x的式子表示y 的形式.【解答】解:由方程x+y=2移项得两边乘以∴.【点评】本题考查的是方程的定义和方程移项,合并同类项,系数化为1等基本运算技能.【分析】根据所学基础知识对各小题分析判断后利用排除法求解.【解答】解:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还有考虑位置;②互补的角就是平角,错误,因为互补的角既要考虑大小,还有考虑位置;③互补的两个角一定是一个为锐角,另一个为钝角,错误,两个直角也可以;④在同一平面内,同平行于一条直线的两条直线平行,是平行公理,正确;⑤邻补角的平分线互相垂直,正确.故答案为:④⑤.17.已知(x﹣1)2=3,则x=+1.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:(x﹣1)2=3,x﹣1=x=+1,故答案为: +1.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=3,b=4.【考点】二元一次方程的解.【分析】知道了方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值.【解答】解:把和代入关于x,y的二元一次方程,得,解得.【点评】主要考查了方程的解的意义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.【考点】平行线的性质.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为(1008,0).【考点】坐标与图形变化-平移.【分析】观察不难发现,每四个点为一个循环组依次循环,前两个点的纵坐标都是1,第二、三个点的横坐标相同,第三、四个点都在x轴上,每一个循环组向右2个单位,用2016除以4,然后根据商和余数的情况确定即可.【解答】解:由图可知,4个点为一个循环组依次循环,∵2016÷4=504,∴点A2016是第504循环组的最后一个点,504×2=1008,∴点A2016的坐标为(1008,0).故答案为:(1008,0).【点评】本题考查了坐标与图形变化﹣平移,仔细观察图形,发现每四个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.计算:(﹣)2﹣﹣+﹣|﹣6|.【考点】实数的运算.【分析】原式利用算术平方根、立方根定义,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=3﹣﹣(﹣0.5)+4﹣6=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】利用消元法即可求出答案.【解答】解:(1)将y=1﹣x代入5x+2y=8,∴5x+2(1﹣x)=8,∴5x+2﹣2x=8,∴x=2,将x=2代入y=1﹣x,得:y=﹣1,∴该二元一次方程组的解为:(2)由m﹣=2可得:n=2m﹣4,把n=2m﹣4代入2m+3n=12,∴2m+3(2m﹣4)=12∴m=3,将m=3代入n=2m﹣4,得n=2,∴该二元一次方程组的解为:【点评】本题考查二元一次方程组的解法,涉及代入消元法,属于基础题型.23.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【考点】点的坐标.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.24.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.【考点】坐标与图形性质.【分析】本题应分别过C、D向x轴作垂线,四边形ABCD的面积分割为过D、C 两点的直角三角形和直角梯形.【解答】解:作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF +S△BCE+S梯形CDFE=×(2﹣1)×4+×(5﹣3)×3+×(3+4)×(3﹣2)=8.5.【点评】当告诉一些具体点时,应把所求四边形的面积分为容易算面积的直角梯形和直角三角形.25.(10分)(2015春•宿州期末)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN已知∴∠GMN=∠BMN角平分线的定义同理∠GNM=∠DNM.∵AB∥CD已知,∴∠BMN+∠DNM=180°∴∠GMN+∠GNM=90°∵∠GMN+∠GNM+∠G=180°∴∠G=90°∴MG与NG的位置关系是MG⊥NG【分析】(1)根据平行线的性质进行填空即可;(2)根据MG、NG的特点作出结论.【解答】解:∵MG平分∠BMN(已知)∴∠GMN=∠BMN(角平分线的定义),同理∠GNM=∠DNM.∵AB∥CD(已知),∴∠BMN+∠DNM=180°,∴∠GMN+∠GNM=90°,∵∠GMN+∠GNM+∠G=180°,∴∠G=90°,∴MG与NG的位置关系是MG⊥NG;故答案为:已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG;(2)两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.【点评】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,熟记性质并准确识图是解题的关键.26.(10分)(2015秋•太康县期末)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.【考点】垂线;余角和补角.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数【解答】解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.27.(10分)(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】二元一次方程组的应用.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
苏科版七年级下册期中试卷含答案解析
七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x52.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 4.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.75.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∠DC的条件为()A.①④B.②③C.①③D.①③④6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定∠ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个9.计算10﹣(0.5)×(﹣2)的结果是()A.﹣2B.﹣1C.2D.310.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.等腰三角形的两边长为4,9.则它的周长为.14.计算:2一×=.15.如图,在∠ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为.18.如图,在∠ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且=cm2.S∠ABC=4cm2,则S阴影三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.20.如图,∠ABC的顶点都在方格纸的格点上.将∠ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的∠A′B′C′;(2)在∠ABC中画出中线BD;(3)在∠ABC中画出AB边上高(图中标上字母).21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.23.如图,在∠ABC中,BD∠AC,EF∠AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.25.如图,已知∠ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=.(用α、β的代数式表示)26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求∠BDF的面积.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.29.Rt∠ABC中,∠C=90°,点D、E分别是∠ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到∠ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.-学年江苏省苏州市昆山市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x5【考点】单项式乘单项式.【分析】据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:2x2•x3=2x2+3=2x5.故选A.2.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 【考点】三角形三边关系.【分析】根据已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和,分别判断即可.【解答】解:根据三角形的三边关系,知A、2+2=4,不能组成三角形,故此选项错误;B、3+6>8,能够组成三角形,故此选项正确;C、2+3<6,不能组成三角形,故此选项错误;D、4+6<11,不能组成三角形,故此选项错误.故选B.4.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∠多边形的内角和公式为(n﹣2)•180°,∠(n﹣2)×180°=720°,解得n=6,∠这个多边形的边数是6.故选C.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∠DC的条件为()A.①④B.②③C.①③D.①③④【考点】平行线的判定.【分析】直接根据平行线的判定定理对各小题进行逐一分析即可.【解答】解:①∠∠1=∠2,∠AB∠CD,故本选项正确;②∠∠3=∠4,∠BC∠AD,故本选项错误;③∠∠A=∠CDE,∠AB∠CD,故本选项正确;④∠∠A+∠ADC=180°,∠AB∠CD,故本选项正确.故选D.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据三角形外角性质求出∠4,根据平行线性质得出∠2=∠4,代入求出即可.【解答】解:如图所示,∠∠4=∠1+∠3,∠∠4=30°+20°=50°,∠AB∠CD,∠∠2=∠4=50°,故选C.7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【考点】平方差公式的几何背景.【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选A.8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定∠ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∠∠A+∠B=∠C=90°,∠∠ABC是直角三角形,故小题正确;②、∠∠A:∠B:∠C=1:2:3,∠∠A=30°,∠B=60°,∠C=90°,∠ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,∠ABC是直角三角形,故本小题正确;④∠设∠C=x,则∠A=∠B=2x,∠2x+2x+x=180°,解得x=36°,∠2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∠∠A+∠B+∠C=∠A+∠A+A=180°,∠∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2B.﹣1C.2D.3【考点】幂的乘方与积的乘方;零指数幂.【分析】直接利用零指数幂的性质结合积的乘方运算法则将原式变形求出答案.【解答】解:10﹣(0.5)2015×(﹣2)2016=1﹣[0.5×(﹣2)]2015×(﹣2)=1﹣2=﹣1.故选:B.10.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1B.2C.3D.4【考点】零指数幂;有理数的乘方.【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解答】解:当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∠x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选C二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=15.【考点】同底数幂的乘法.【分析】由x m=3,x n=5,又由x m+n=x m•x n,即可求得答案.【解答】解:∠x m=3,x n=5,∠x m+n=x m•x n=3×5=15.故答案为:1512.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为0.【考点】整式的混合运算—化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=1﹣2+1=0,故答案为:013.等腰三角形的两边长为4,9.则它的周长为22.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题目没有说明4和9,哪个是底哪个是腰,所以要分类讨论.【解答】解:当腰长为4,底长为9时;4+4<9,不能构成三角形;当腰长为9,底长为4时;9﹣4<9<9+4,能构成三角形;故等腰三角形的周长为:9+9+4=22.故填22.14.计算:20152一2014×2016=1.【考点】平方差公式.【分析】把2014×2016写成×,然后利用平方差公式计算即可得解.【解答】解:20152﹣2014×2016=20152﹣×=20152﹣=20152﹣20152+1=1.故答案是:1.15.如图,在∠ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为115°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∠∠A=50°,∠∠ABC+∠ACB=180°﹣50°=130°,∠∠ABC与∠ACB的角平分线相交于P,∠∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,在∠PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣65°=115°.故答案为:115°.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1.【考点】多项式乘多项式.【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∠结果不含x的一次项,∠1+m=0,解得:m=﹣1.故答案为:﹣1.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为50°.【考点】翻折变换(折叠问题).【分析】根据翻折的性质可得∠BEF=∠BEC,∠EBF=∠EBC,然后求出∠BEC,再根据直角三角形两锐角互余求出∠EBC,然后根据∠ABF=90°﹣∠EBF﹣∠EBC代入数据进行计算即可得解.【解答】解:补全正方形如图,由翻折的性质得,∠BEF=∠BEC,∠EBF=∠EBC,∠∠DEF=30°,∠∠BEC===70°,∠∠EBC=90°﹣∠BEC=90°﹣70°=20°,∠∠ABF=90°﹣∠EBF﹣∠EBC=90°﹣20°﹣20°=50°.故答案为:50°.18.如图,在∠ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S∠ABC=4cm2,则S=1cm2.阴影【考点】三角形的面积.【分析】根据三角形的面积公式,知∠BCE的面积是∠ABC的面积的一半,进一步求得阴影部分的面积是∠BEC的面积的一半.【解答】解:∠点E是AD的中点,∠∠BDE的面积是∠ABD的面积的一半,∠CDE的面积是∠ACD的面积的一半.则∠BCE的面积是∠ABC的面积的一半,即为2cm2.∠点F是CE的中点,∠阴影部分的面积是∠BCE的面积的一半,即为1cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据绝对值、零指数幂、负指数幂计算即可;(2)根据同底数幂的乘法、单项式乘以多项式进行计算即可;(3)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=2﹣1﹣3=﹣2;(2)原式=﹣6x3y2+3x3y2﹣x3y3=﹣3x3y2﹣x3y3;(3)原式=b2﹣4a2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.20.如图,∠ABC的顶点都在方格纸的格点上.将∠ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的∠A′B′C′;(2)在∠ABC中画出中线BD;(3)在∠ABC中画出AB边上高(图中标上字母).【考点】作图-平移变换.【分析】(1)分别作出点A、B、C向左平移2格,再向上平移3格的点,然后顺次连接;(2)作出AC的中点D,然后连接BD;(3)过点C作CD∠AB延长线于点E,然后连接CE.【解答】解:(1)所作图形如图所示:(2)如图所示,BD即为所作中线;(3)如图所示,CE即为AB的高.21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【考点】整式的混合运算—化简求值.【分析】原式利用幂的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∠n为正整数,且x2n=4,∠原式=(x2n)3﹣2(x2n)2=43﹣2×42=64﹣32=32.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,最后一项利用多项式乘多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣4ab+4b2+a2﹣b2﹣2a2+8ab﹣6b2=4ab﹣3b2,当a=,b=﹣3时,原式=﹣6﹣27=﹣33.23.如图,在∠ABC中,BD∠AC,EF∠AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.【考点】平行线的判定与性质.【分析】根据平行线的判定求出EF∠BD,根据平行线的性质得出∠1=∠BDE,求出∠2=∠BDE,根据平行线的判定得出即可.【解答】解:DE∠BC,理由是:∠BD∠AC,EF∠AC,∠∠EAF=∠BDF=90°,∠EF∠BD,∠∠1=∠BDE,又∠∠1=∠2,∠∠2=∠BDE,∠DE∠BC.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)根据完全平方公式可得x2+y2=(x+y)2﹣2xy,然后把x+y=6,xy=4整体代入进行计算即可;(2)根据完全平方公式可得(x﹣y)2=(x+y)2﹣4xy,然后把x+y=6,xy=4整体代入进行计算即可.【解答】解:(1)∠x2+y2=(x+y)2﹣2xy,∠当x+y=6,xy=4,x2+y2=(x+y)2﹣2xy=62﹣2×4=28;(2)∠(x﹣y)2=(x+y)2﹣4xy,∠当x+y=6,xy=4,(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.25.如图,已知∠ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=(β﹣α).(用α、β的代数式表示)【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】(1))根据∠B=20°,∠C=60°,得出∠BAC的度数,再根据AE是角平分线,AD是高,分别得出∠EAC和∠DAC的度数,从而求出答案;(2)证明过程同(1),只不过把∠B和∠C的度数用字母代替,从而用字母表示出各个角的度数.【解答】解:(1)∠∠B=20°,∠C=60°,∠∠BAC=180°﹣20°﹣60°=100°,∠AE是角平分线,∠∠EAC=50°,∠AD是高,∠∠ADC=90°,∠∠DAC=30°,∠∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°;(2))∠∠B=α,∠C=β,∠∠BAC=180°﹣α﹣β,∠AE是角平分线,∠∠EAC=90°﹣α﹣β,∠AD是高,∠∠ADC=90°,∠∠DAC=90°﹣β,∠∠EAD=∠EAC﹣∠DAC=(90°﹣α﹣β)﹣(90°﹣β)=(β﹣α).26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为(m+n)2﹣4mn=(m﹣n)2.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.【考点】完全平方公式的几何背景.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系;(2)根据(1)所得出的关系式,可求出(m﹣2n)2,继而可得出m﹣2n的值.【解答】解:(1)(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2(2)(m﹣2n)2=(m+2n)2﹣8mn=25,则m﹣2n=±5.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求∠BDF的面积.【考点】整式的混合运算.【分析】由图形得三角形BDF的面积=正方形ABCD的面积+梯形DCEF﹣三角形ABD的面积﹣三角形BEF,再计算即可.【解答】解:S∠BDF=S正方形ABCD+S梯形DCEF﹣S∠ABD﹣S∠BEF=a2+(a+b)•a﹣a2﹣•2a•b=a2﹣ab;由题意得:a2=6,ab=2,则S∠BDF=6﹣×2=5.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∠(2n+1)2﹣4n2=4n+1.29.Rt∠ABC中,∠C=90°,点D、E分别是∠ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到∠ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∠∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∠∠1+∠2=∠C+∠α,∠∠C=90°,∠α=50°,∠∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∠∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∠∠2+∠α=∠DME,∠DME+∠C=∠1,∠∠1=∠C+∠2+α=90°+∠2+α.(4)∠∠PFD=∠EFC,∠180°﹣∠PFD=180°﹣∠EFC,∠∠α+180°﹣∠1=∠C+180°﹣∠2,∠∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.2016年4月30日。
2017-2018学年苏科版七年级数学下册期中试卷含答案解析
2017-2018学年七年级(下)期中数学试卷一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为______.2.计算:﹣3x2•2x=______;(﹣0.25)12×411=______.3.多项式2ax2﹣12axy中,应提取的公因式是______.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=______.5.一个多边形的内角和等于它的外角和的3倍,它是______边形.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是______.7.若2x=3,4y=5,则2x﹣2y的值为______.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=______.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是______.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过______S,平移后的长方形与原来长方形重叠部分的面积为24.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为______.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=______.(用含n的代数式表示)二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.1315.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为______.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=______方法二:S=______(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=______;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案______.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)七年级(下)期中数学试卷参考答案与试题解析一、填空题:(每题2分,共24分)1.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.2.计算:﹣3x2•2x=﹣6x3;(﹣0.25)12×411=.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据单项式乘单项式的法则计算可得,由原式变形可得=×()11×411,再逆用积的乘方运算法则即可得.【解答】解:﹣3x2•2x=﹣6x3,(﹣0.25)12×411=(﹣)12×411=×()11×411=×(×4)11=;故答案为:﹣6x3,.3.多项式2ax2﹣12axy中,应提取的公因式是2ax.【考点】公因式.【分析】找出系数的最大公约数,相同字母的最低指数次幂,即可确定出公因式.【解答】解:∵2ax2﹣12axy=2ax(x﹣6y),∴应提取的公因式是2ax.4.若a+b=2,a﹣b=﹣3,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将已知等式代入计算即可求出值.【解答】解:∵a+b=2,a﹣b=﹣3,∴a2﹣b2=(a+b)(a﹣b)=﹣6.故答案为:﹣6.5.一个多边形的内角和等于它的外角和的3倍,它是八边形.【考点】多边形内角与外角.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.6.若(x+m)与(x+2)的乘积中,不含x的一次项,则常数m的值是﹣2.【考点】多项式乘多项式.【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【解答】解:∵x+m与x+2的乘积中不含x的一次项,∴(x+m)(x+2)=x2+(2+m)x+2m,中2+m=0,∴m=﹣2.故答案为:﹣2.7.若2x=3,4y=5,则2x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】所求式子中有22y,根据所给条件可得22y的值,所求式子中的指数是相减的关系,那么可整理为同底数幂相除的形式.【解答】解:∵4y=5,∴22y=5,∴2x﹣2y=2x÷22y=.故答案为.8.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED=68°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等求出∠ABC,再根据角平分线的定义求出∠ABE,然后利用两直线平行,内错角相等求解即可.【解答】解:∵AB∥CD,∠C=34°,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠ABE=2∠ABC=2×34°=68°,∵AB∥CD,∴∠BED=∠ABE=68°.故答案为:68°.9.如图,将一副三角板的两个直角重合,使点B在EC上,点D在AC上,已知∠A=45°,∠E=30°,则∠BFD的度数是165°.【考点】三角形的外角性质.【分析】根据直角三角形的性质可得∠ABC=45°,根据邻补角互补可得∠EBF=135°,然后再利用三角形的外角的性质可得∠BFD=135°+30°=165°.【解答】解:∵∠A=45°,∴∠ABC=45°,∴∠EBF=135°,∴∠BFD=135°+30°=165°,故答案为:165°.10.如图,在长方形ABCD中,AB=10cm,BC=6cm,若此长方形以2cm/S的速度沿着A→B 方向移动,则经过3S,平移后的长方形与原来长方形重叠部分的面积为24.【考点】平移的性质;矩形的性质.【分析】先用时间表示已知面积的矩形的长和宽,并以面积作为相等关系解关于时间x的方程即可.【解答】解:设x秒后,平移后的长方形与原来长方形重叠部分的面积为24cm2,则6(10﹣2x)=24,解得x=3,即3秒时平移后的长方形与原来长方形重叠部分的面积为24cm2.故答案为:3.11.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”.如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为18°或36°.【考点】三角形内角和定理.【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可.【解答】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.12.已知:(n=1,2,3,…),记b1=2(1﹣a1),b2=2(1﹣a1)(1﹣a2),…,b n=2(1﹣a1)(1﹣a2)…(1﹣a n),则通过计算推测出b n的表达式b n=.(用含n的代数式表示)【考点】规律型:数字的变化类.【分析】根据题意按规律求解:b1=2(1﹣a1)=2×(1﹣)==,b2=2(1﹣a1)(1﹣a2)=×(1﹣)==,….所以可得:b n的表达式b n=.【解答】解:根据以上分析b n=2(1﹣a1)(1﹣a2)…(1﹣a n)=.二、选择题:(每题3分,共15分)13.下列各组图形可以通过平移互相得到的是()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C.【解答】解:观察图形可知图案C通过平移后可以得到.故选:C.14.已知三角形两边的长分别是4和9,则此三角形第三边的长可能是()A.4 B.5 C.12 D.13【考点】三角形三边关系.【分析】已知三角形的两边长分别为3和9,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.【解答】解:设第三边长为x,则由三角形三边关系定理得9﹣4<x<9+4,即5<x<13.因此,本题的第三边应满足5<x<13,把各项代入不等式符合的即为答案.只有12符合不等式,故答案为12.故选C.15.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(﹣x+1)(﹣x﹣1)C.(a+b)(a﹣2b)D.(2x﹣1)(﹣2x+1)【考点】平方差公式.【分析】原式利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式计算的是(﹣x+1)(﹣x﹣1).故选B.16.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B的度数是()A.80°B.100°C.90°D.95°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN 和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°;故选D.17.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】三角形的外角性质;平行线的判定与性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EAC=∠ABC+∠ACB=2∠ABC,根据角平分线的定义可得∠EAC=2∠EAD,然后求出∠EAD=∠ABC,再根据同位角相等,两直线平行可得AD∥BC,判断出①正确;根据两直线平行,内错角相等可得∠ADB=∠CBD,再根据角平分线的定义可得∠ABC=2∠CBD,从而得到∠ACB=2∠ADB,判断出②正确;根据两直线平行,内错角相等可得∠ADC=∠DCF,再根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义整理可得∠ADC=90°﹣∠ABD,判断出③正确;根据三角形的外角性质与角平分线的定义表示出∠DCF,然后整理得到∠BDC=∠BAC,判断出⑤正确,再根据两直线平行,内错角相等可得∠CBD=∠ADB,∠ABC与∠BAC不一定相等,所以∠ADB与∠BDC不一定相等,判断出④错误.【解答】解:由三角形的外角性质得,∠EAC=∠ABC+∠ACB=2∠ABC,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD,∴∠EAD=∠ABC,∴AD∥BC,故①正确,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABC=2∠CBD,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确;∵AD∥BC,∴∠ADC=∠DCF,∵CD是∠ACF的平分线,∴∠ADC=∠ACF=(∠ABC+∠BAC)===90°﹣∠ABD,故③正确;由三角形的外角性质得,∠ACF=∠ABC+∠BAC,∠DCF=∠BDC+∠DBC,∵BD平分∠ABC,CD平分∠ACF,∴∠DBC=∠ABC,∠DCF=∠ACF,∴∠BDC+∠DBC=(∠ABC+∠BAC)=∠ABC+∠BAC=∠DBC+∠BAC,∴∠BDC=∠BAC,故⑤正确;∵AD∥BC,∴∠CBD=∠ADB,∵∠ABC与∠BAC不一定相等,∴∠ADB与∠BDC不一定相等,∴BD平分∠ADC不一定成立,故④错误;综上所述,结论正确的是①②③⑤共4个.故选C.三、解答题(本大题共8题,共计61分)18.计算:(1)(2)(a+2)(a﹣2)﹣a(a﹣1)(3)(﹣2a2b3)4+(﹣a8)•(2b4)3(4)(2x+y﹣3)(2x﹣y﹣3)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(2)根据平方差公式、单项式乘以多项式可以解答本题;(3)根据积的乘方,然后合并同类项即可解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:原式===﹣2+=﹣1;(2)原式=a2﹣4﹣a2+a=a﹣4;(3)原式=16a8b12+(﹣a8)•(8b12)=16a8b12﹣8a8b12=8a8b12;(4)原式=[(2x﹣3)+y][(2x﹣3)﹣y]=(2x﹣3)2﹣y2=4x2﹣12x+9﹣y2.19.因式分解:(1)ax2﹣4axy+4ay2(2)(3)(a2+b2)2﹣4a2b2(4)4x2﹣4x+1﹣y2.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式a,再利用完全平方公式分解因式得出答案;(2)直接提取公因式,再利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,再结合完全平方公式分解因式即可;(4)将前三项利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)原式=a(x2﹣4xy+4y2)=a(x﹣2y)2;(2)原式=(m2﹣6mn+9n2)=(m﹣3n)2;(3)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(4)原式=(2x﹣1)2﹣y2=(2x﹣1+y)(2x﹣1﹣y).20.已知ab=3,求b(2a3b2﹣3a2b+4a)的值.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式法则计算,将ab=3代入即可求出值.【解答】解:b(2a3b2﹣3a2b+4a)=2a3b3﹣3a2b2+4ab,当ab=3时,原式=2×(ab)3﹣3(ab)2+4ab=2﹣3×32+4×3=39.21.已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)原式提取5,利用完全平方公式变形,将x+y与xy的值代入计算即可求出值;(2)原式利用完全平方公式变形,将x+y与xy的值代入计算即可求出值.【解答】解:(1)∵x+y=2,xy=﹣1,∴5x2+5y2=5(x2+y2)=5[(x+y)2﹣2xy]=5×[22﹣2×(﹣1)]=30;(2)∵x+y=2,xy=﹣1,∴(x﹣y)2=(x+y)2﹣4xy=22﹣4×(﹣1)=4+4=8.22.如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为8.【考点】作图—复杂作图.【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB的垂直平分线找到中点D,连接CD,CD就是所求的中线.(3)从A点向BC的延长线作垂线,垂足为点E,AE即为BC边上的高;(4)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:CD就是所求的中线;(3)如图所示:AE即为BC边上的高;(4)4×4÷2=16÷2=8.故△A′B′C′的面积为8.故答案为:8.23.如图,已知∠1+∠2=180°,∠DAE=∠BCF.(1)试判断直线AE与CF有怎样的位置关系?并说明理由;(2)若∠BCF=70°,求∠ADF的度数.【考点】平行线的判定与性质.【分析】(1)求出∠1=∠BDC,根据平行线的判定推出即可;(2)根据平行线的性质得出∠BCF=∠CBE,求出∠DAE=∠CBE,根据平行线的判定推出AD∥BC,根据平行线的性质得出即可.【解答】解:(1)AE∥CF,理由是:∵∠1+∠2=180°,∠BDC+∠2=180°,∴∠1=∠BDC,∴AE∥CF;(2)∵AE∥CF,∴∠BCF=∠CBE,又∵∠DAE=∠BCF,∴∠DAE=∠CBE,∴AD∥BC,∴∠ADF=∠BCF=70°.24.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S方法一:S=ab+b2方法二:S=ab+b2﹣a2+c2.(2)求a,b,c之间的等量关系(需要化简)(3)请直接运用(2)中的结论,求当c=5,a=3,S的值.【考点】整式的混合运算;整式的混合运算—化简求值.【分析】(1)方法一,根据矩形的面积公式就可以直接表示出S;方法二,根据矩形的面积等于四个三角形的面积之和求出结论即可;(2)根据方法一与方法二的S相等建立等式就可以表示出a,b,c之间的等量关系;(3)先由(2)的结论求出b的值,然后代入S的解析式就可以求出结论.【解答】解:(1)由题意,得方法一:S1=b(a+b)=ab+b2方法二:S2=ab+ab+(b﹣a)(b+a)+c2,=ab+b2﹣a2+c2.(2)∵S1=S2,∴ab+b2=ab+b2﹣a2+c2,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2.(3)∵a2+b2=c2.且c=5,a=3,∴b=4,∴S=3×4+16=28.答:S的值为28.故答案为:ab+b2,ab+b2﹣a2+c2.25.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC +∠ECB ,再根据角平分线的定义求出∠PBC +∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC +∠ECB=180°﹣∠ABC +180°﹣∠ACB=360°﹣(∠ABC +∠ACB )=360°﹣=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC +∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC +∠PCB=(∠DBC +∠ECB )=,在△PBC 中,∠P=180°﹣=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA 、CD 于Q ,则∠P=90°﹣∠Q ,∴∠Q=180°﹣2∠P ,∴∠BAD +∠CDA=180°+∠Q ,=180°+180°﹣2∠P ,=360°﹣2∠P .2016年9月24日。
苏科版数学七年级下学期期中考试数学试题含答案解析
七年级数学(总分150分 时间120分钟)一、选择题:(每题3分,共24分)1.在下列实例中,属于平移过程的个数有 ( )①时针运行过程;①电梯上升过程;①火车直线行驶过程;①地球自转过程;①生产过程中传送带上的电视机的移动过程. A .1个 B .2个 C .3个 D .4个 2.下列计算:(1)2n n n a a a ⋅=,(2)6612a a a +=,(3)55c c c ⋅=,(4)778222+=,(5)3339(3)9xy x y = 中正确的个数为( )A .4个B .3个C .2个D .1个3.下列各式能用平方差公式计算的( ) A .(3)(3)a b a b ---+ B .(3)()a b a b +- C .(3)(3)a b a b +--D .(3)(3)a b a b -+-4.若一个多边形每一个内角都是144º,则这个多边形的边( ) A .6 B .8 C .10 D .125.已知方程组2122x y x y k +=⎧⎨+=-⎩的解满足2x y -=,则k 的值是( )A .3k =B .5k =C . 1k =-D . 1k = 6.已知,,a b c 是三角形的三边,那么代数式2222a ab b c -+-的值( )A .大于零B .等于零C .小于零D .不能确定7.如图:将一张长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,ED′的延长线与BC 交与点G. 若①BFC′=70°,则①1= ( )A .100°B .110°C .120°D .125°8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A . 6B .7C .8D .9二、填空题:(每题3分,共30分)9.钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.0008平方公里,请用科学记数法表示飞濑岛的面积约为 平方公里.10.若2212x y -=,4x y +=,则x y -= .11. 若等腰三角形的两边的长分别是5cm 、10cm ,则它的周长为 cm . 12.若2,3==nma a , 则=-n m a 2_________.13.如果(2)()x x p ++的乘积不含一次项,那么p = .14.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 .(按从小到大的顺序排列)15.某人要买一件25元的商品,身上只带2元和5元两种人民币(数量足够),而商店没有零钱,那么他付款的方式有 种.16.如右图,一块六边形绿化园地,六角都做有半径为R 的圆形喷水池,则这六个喷水池占去的绿化园地的面积为 .(结果保留π)17.如下图,在①ABC 中,①B=600,①C=400,AD①BC 于D ,AE 平分①BAC ;则①DAE=________.18.如图,在①ABC 中,①A=60°,BD 、CD 分别平分①ABC 、①ACB ,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分①MBC 、①BCN ,BF 、CF 分别平分①EBC 、①ECQ ,则①F= .三、解答题:(共96分)19.(本题满分8分)计算(或化简): (1)5243)()()2(a a a -÷+- (2)20.(本题满分8分)将下列各式分解因式:(1)26126a a -+- (2)222(2)4(2)x x x +-+ 21.(本题满分8分)解下列方程组:2)1()4)(4(---+a a a 第17题图绿化第18题图 题图(1)8312x y x y -=⎧⎨+=⎩ (2)⎪⎩⎪⎨⎧=-+=+1323241y x x y22.(本题满分8分)先化简,再求值:2(2)(2)3(2)a b a b a b +-+-,其中1a =,2b =-.23.(本题满分10分)列方程组解决问题:为了净化空气,美化环境,某县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵,已知某苗圃负责种玉兰树和松柏树的价格分别为:300元/棵,200元/棵,问可种玉兰树和松柏树各多少棵?24.(本题满分10分)基本事实:“若0ab =,则00a b ==或”.一元二次方程220x x --=可通过因式分解化为(2)(1)0x x -+=,由基本事实得2010x x -=+=或,即方程的解为12x =;21x =-.(1)试利用上述基本事实,解方程:220x x -=: (2)若2222()(1)20x y x y ++--=,求22x y +的值.25.(本题满分10分)如图,∠1=52°,∠2=128°,∠C=∠D .探索∠A 与∠F 的数量关系,并说明理由.26.(本题满分10分)如图,在方格纸内将△ABC 水平向右平移3个单位得到△A′B′C′. (1)利用网格点和直尺画出△A′B′C′; (2)画出AB 边上的高线CD ;(3)图中△ABC 的面积是 ; (4)△ABC 与△EBC 面积相等,在图中描出所有 满足条件且异于A 点的格点E ,并记为E 1、E 2……A BC27.(本题满分12分)将若干个同样大小的小长方形纸片拼成如图形状的大长方形(小长方形纸片长为a,宽为b),请你仔细观察图形,解答下列问题:(1)a与b有怎样的关系?并简要说明理由.(2)图中阴影部分的面积是大长方形面积的几分之几?并简要说明理由.(3)请你仔细观察图中的一个阴影部分,根据它面积的不同表示方法写出含字母a、b的一个等式.(等式不需要化简)28. (本题满分12分)在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线AC 上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图①,当点P在线段CD上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.(第26题)b a—学年度第二学期期中考试七年级数学 参考答案和评分标准三、解答题:(共96分)19. (本题满分8分)计算:(每题4分) 解:(1)原式=39a -; (2)原式=217a -;20. (本题满分8分)将下列各式分解因式:(每题4分)(1)原式=26(1)a -- (2)原式=3(2)(2)x x +- 21. (本题满分8分)解下列方程组:(每题4分)(1)53x y =⎧⎨=-⎩ (2)373x y =-⎧⎪⎨=-⎪⎩22. (本题满分8分) 先化简,再求值:化简得2216122a ab b -+(6分)代入结果为:48(2分)23. (本题满分10分)解:设可种玉兰树x 棵,松柏树y 棵,由题意得:(1分)8030020018000x y x y +=⎧⎨+=⎩ (4分) 解之得:2060x y =⎧⎨=⎩(4分) 答:可种玉兰树20棵,松柏树60棵.(1分)24. (本题满分10分)解:(1)220x x -=可得:(21)0x x -=(2分),所以1210;2x x ==(3分) (2)2222()(1)20x y x y ++--=可得:22222()()20x y x y +-+-=,所以2222(2)(1)0x y x y +-++=(2分),所以22222=1(x y x y +=+-或舍去)(3分,不舍扣1分)25. (本题满分10分)答案略26. (本题满分10分)(2分+2分+3分+3分)(3)图中①ABC 的面积是 8 ;其余作图略,但必须按格点给分。
江苏省无锡市2017_2018学年七年级数学下学期期中试题苏科版附答案
第一节变速器一、填空1.变速器由变速传动机构和操纵机构组成。
2.变速器按传动比变化方式可分为有级式、无级式和综合式三种。
3.惯性式同步器与常压式同步器一样,都是依靠摩擦作用实现同步的。
4.为减少变速器内摩擦引起零件磨损和功率损失,需在变速器的壳体内注入齿轮油,采用飞溅方式润滑各齿轮副、轴与轴承等零件的工作表面。
5.普通齿轮式变速器换档方式有直齿移动,结合套,同步器三种。
6.普通齿轮式变速器按照变速器传动齿轮轴的数目不同可以分为两轴式变速器和三轴式变速器。
7.按操纵方式不同,可将变速器分为强制操纵式、自动操纵式、半自动操纵式。
8.换档时换档杆通过叉型拨杆球头的横向移动,将球头送入相应拨块的凹槽内,完成的动作叫做选档。
借助叉型拨杆球头的纵向移动,通过拨叉轴上的拨块和拨叉可拨动同步器上的接合套,完成的动作是换档。
9.传动比既是变速比也是变扭比,且降速则增扭,增速则降扭。
10.齿轮变速器的锁止装置有自锁装置、互锁装置、倒档锁止装置。
11.齿轮式变速器由变速传动机构和变速操纵机构两部分组成。
12.三轴式变速器一般广泛应用于客车或中重型载货汽车。
为的是输出更大的扭矩和实现较大的速度变动范围。
13.变速器的输入轴也是离合器的从动轴。
14.变速器的磨合分为有负荷和无负荷两个阶段来进行。
15.运转齿轮啮合间隙一般应为0.15~0.26mm,使用限度为0.80mm16.现代汽车变速器广泛采用同步器换档。
应用广泛的类型是惯性式同步器。
17.齿轮式变速器的操纵机构一般采用机械式操纵,按操纵机构与变速器的位置关系可分为直接拨动式和远距离操纵式两类。
18.直接挡的传动比为1。
19.变速器的操纵机构主要分为操纵装置和锁止装置两部分。
操纵装置分为外操纵机构和内操纵机构。
20.一般超速档的传动比范围是0.7~0.85。
21.变速器操纵机构的锁止装置中,自锁装置用以防止工作中自动挂挡/脱档,并保证全齿啮合。
互锁装置用以防止同时挂入两个档。
江苏省无锡 七年级(下)期中数学试卷(含答案)
七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.若A是五次多项式,B是三次多项式,则A+B一定是()A. 五次整式B. 八次多项式C. 三次多项式D. 次数不能确定3.下列计算正确的是()A. B. C. D.4.9x2-mxy+16y2是一个完全平方式,那么m的值是()A. 12B.C.D.5.下列各式从左到右的变形,是因式分解的是()A. B.C. D.6.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组()A. B. C. D.7.已知三角形的周长小于13,各边长均为整数且三边各不相等,那么这样的三角形个数共有()A. 2B. 3C. 4D. 58.关于x、y的方程组的解是方程3x+2y=17的一个解,那么m的值是()A. 2B.C. 1D.9.如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于()A.B.C.D.10.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为()A.B.C.D.二、填空题(本大题共8小题,共16.0分)11.计算:= ______ .12.遗传物质脱氧核糖核酸(DNA)的分子直径为0.000 0002cm,用科学记数法表示为______cm.13.已知一个五边形的4个内角都是100°,则第5个内角的度数是______ 度.14.已知2n=a,3n=b,则6n= ______ .15.已知s+t=4,则s2-t2+8t=______.16.如图,小明从点A向北偏东75°方向走到B点,又从B点向南偏西30°方向走到点C,则∠ABC的度数为______ .17.若关于x、y的二元一次方程组的解是,则关于x、y的二元一次方程组的解是______ .18.将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是______.三、计算题(本大题共1小题,共6.0分)19.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3),其中x=-1.四、解答题(本大题共8小题,共58.0分)20.计算:(1)(-3)2-2-3+30;(2).21.把下列各式分解因式:(1)2x2-8xy+8y2(2)4x3-4x2y-(x-y)22.解方程组:(1);(2).23.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):(1)画出△ABC中BC边上的高(需写出结论);(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.24.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?如图,一个边长为1的正方形,依次取正方形的,,,,根据图示我们可以知道:第一次取走后还剩,即=1-;前两次取走+后还剩,即+=1-;前三次取走++后还剩,即++=1-;…前n次取走后,还剩______ ,即______ = ______ .利用上述计算:(1)= ______ .(2)= ______ .(3)2-22-23-24-25-26-…-22011+22012(本题写出解题过程)25.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?26.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=______;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.27.某次初中数学竞赛试题中,有16道5分题和10道7分题,满分为150分.批改时每道题若答对得满分,答错得0分,没有其它分值.(1)如果晓敏同学答对了m道7分题和n道5分题,恰好得分为70分,列出关于m、n的方程,并写出这个方程符合实际意义的所有的解.(2)假设某同学这份竞赛试卷的得分为k(0≤k≤150),那么k的值有多少种不同大小?请直接写出答案.答案和解析1.【答案】D【解析】解:A、能通过其中一个四边形平移得到,错误;B、能通过其中一个四边形平移得到,错误;C、能通过其中一个四边形平移得到,错误;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,正确.故选:D.根据平移与旋转的性质得出.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,导致误选.2.【答案】A【解析】解:若A是五次多项式,B是三次多项式,则A+B一定是五次整式;故选:A.利用合并同类项法则判断即可得到结果.本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3.【答案】C【解析】解:A、a2•a3=a5,错误;B、a6÷a3=a3,错误;C、(a2)3=a6,正确;D、(2a)3=8a3,错误;故选:C.根据同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方计算判断即可.此题考查同底数幂的乘法、同底数幂的除法、幂的乘方和积的乘方,关键是根据法则进行计算.4.【答案】D【解析】解:∵(3x±4y)2=9x2±24xy+16y2,∴在9x2-mxy+16y2中,m=±24.故答案为D.根据(3x±4y)2=9x2±24xy+16y2可以求出m的值.本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.5.【答案】B【解析】解:A、右边不是积的形式,故本选项错误;B、是运用完全平方公式,x2-8x+16=(x-4)2,故本选项正确;C、是多项式乘法,不是因式分解,故本选项错误;D、6ab不是多项式,故本选项错误.故选:B.根据因式分解就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.本题考查了因式分解的定义,牢记定义是解题的关键.6.【答案】C【解析】解:设赢了x场输了y场,可得:,故选:C.根据此题的等量关系:①共12场;②赢了x场输了y场,得20分列出方程组解答即可.此题考查方程组的应用问题,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.【答案】B【解析】解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过6.5;再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选B.首先根据三角形的两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于6.5;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查三角形的三边关系,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.8.【答案】C【解析】解:解方程组,得:,∵方程组的解是方程3x+2y=17的一个解,∴21m-4m=17,解得:m=1,故选:C.将m看做已知数求出方程组的解得到x与y,代入已知方程计算即可求出m 的值.此题考查二元方程组的解及其解法,其最基本的方法是先消元,然后再代入求解,能得出关于m的方程是解此题的关键.9.【答案】B【解析】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180-72=108°;∵EG平分∠BEF,∴∠BEG=54°;∵AB∥CD,∴∠EGF=∠BEG=54°.根据平行线及角平分线的性质解答.平行线有三个性质,其基本图形都是两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用其性质和已知条件计算.10.【答案】C【解析】解:∵∠ABC、∠ACB的三等分线交于点E、D,∴∠CBG=∠EBG=∠ABE=∠ABC,∠BCF=∠ECF=∠ACE=∠ACB,在△BCG中,∠BGC=118°,∴∠CBG+∠BCE=180°-∠BGC,∴∠CBG+∠2∠BCF=62°①在△BCF中,∠BFC=132°,∴∠BCF+∠CBF=180°-∠BFC,∴∠BCF+2∠CBG=48°②,①+②得,3∠BCF+3∠CBG=110°,∴∠A=180°-(∠BCF+∠CBG)=70°,故选C.先根据三等份角得出结论,再利用三角形的内角和列出方程,两方程相加即可求出∠ABC+∠ACB即可.本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.用方程的思想解几何问题.11.【答案】【解析】解:=(-)2004×32003×3=(-)2003×32003×(-)=(-×3)2003×(-)=(-1)2003×(-)=.故答案为:.先算幂的乘方,再根据积的乘方逆运算求解即可.考查了幂的乘方与积的乘方,关键是根据幂的乘方,积的乘方逆运算得到原式=(-×3)2003×(-).12.【答案】2×10-7【解析】解:0.0000002=2×10-7.故答案为:2×10-7.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,小数点移动的位数的相反数即是n的值.此题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】140【解析】解:因为五边形的内角和是(5-2)×180°=540°,4个内角都是100°,所以第5个内角的度数是540°-100°×4=140°,故答案为:140.利用多边形的内角和定理即可求出答案.本题主要考查了多边形的内角和公式,是一个比较简单的问题.14.【答案】ab【解析】解:∵2n=a,3n=b,∴6n=2n•3n=ab.故答案为:ab.利用幂的乘方与积的乘方的法则求解即可.本题主要考查了幂的乘方与积的乘方,解题的关键是熟记幂的乘方与积的乘方法则.15.【答案】16【解析】解:∵s+t=4,∴s2-t2+8t=(s+t)(s-t)+8t=4(s-t)+8t=4(s+t)=16.故答案为:16.根据平方差公式可得s2-t2+8t=(s+t)(s-t)+8t,把s+t=4代入可得原式=4(s-t)+8t=4(s+t),再代入即可求解.考查了平方差公式,以及整体思想的运用.16.【答案】45°【解析】解:如图,∠1=75°,∵N1A∥N2B,∴∠1=∠2+∠3=75°,∵∠3=30°,∴∠2=75°-∠3=75°-30°=45°,即∠ABC=45°.根据题意画出方位角,利用平行线的性质解答.解答此类题需要从运动的角度,正确画出方位角,根据平行线的性质解答即可.17.【答案】【解析】解:把代入二元一次方程组,解得:,把代入二元一次方程组,解得:,故答案为:.本题先代入解求出得,再将其代入二元一次方程组,解出即可.本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.18.【答案】3775【解析】解:①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b 无关)既然是求和,那就要把这五十个数加起来还要最大,我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100,如果我们取两组数字100和1一组,99和2一组,则这两组数字代入再求和是199,如果我们这样取100和99 2和1,则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,这样最终求得五十个数之和最大值就是五十个数字从51到100的和,51+52+53+…+100=3775.故答案为:3775.先分别讨论a和b的大小关系,分别得出代数式的值,进而举例得出规律,然后以此规律可得出符合题意的组合,求解即可.本题考查了整数问题的综合运用,有一定的难度,解答本题的关键是利用举例法得出组合规律,这在一些竞赛题的解答中经常用到,要注意掌握.19.【答案】解:原式=x2-4x+4+2x2-4x-16-x2+9=2x2-8x-3,当x=-1时,原式=2+8-3=7.【解析】原式利用完全平方公式,平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)(-3)2-2-3+30=9-+1=(2)=.【解析】(1)根据零指数幂和负整数指数幂计算即可;(2)根据单项式与多项式的乘方计算即可.此题考查整式的混合计算,关键是根据整式的混合计算顺序解答.21.【答案】解:(1)2x2-8xy+8y2=2(x2-4xy+4y2)=2(x-2y)2;(2)4x3-4x2y-(x-y)=4x2(x-y)-(x-y)=(x-y)(4x2-1)=(x-y)(2x+1)(2x-1).【解析】(1)首先提取公因式2,再利用完全平方公式进行二次分解即可.(2)首先把前两项组合提取公因式4x2,然后再提取公因式(x-y)进行二次分解,最后利用平方差公式进行三次分解即可.此题主要考查了公因式法与公式法的综合运用,解题关键是注意分解因式的步骤:①首先考虑提取公因式,②再考虑公式法,③观察是否分解彻底.22.【答案】解:(1),①×2-②得,x=-5,把x=-5代入①得,-10-y=0,解得y=-10,故方程组的解为;(2)原方程组可化为,①+②得,6x=18,解得x=3,把x=3代入①得,9-2y=8,解得y=,故方程组的解为.【解析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)先把方程组中的方程化为不含分母及括号的方程,再用加减消元法或代入消元法求解即可.本题考查的是解二元一次方程组,熟知解二元一次方程的加减消元法和代入消元法是解答此题的关键.23.【答案】解:如图所示,AG就是所求的△ABC中BC边上的高.【解析】(1)过点A作AG⊥BC,交CB的延长线于点G,AG就是所求的△ABC中BC 边上的高;(2)把△ABC的三个顶点向右平移6格,再向上平移3格即可得到所求的△DEF;(3)画一个面积为3的锐角三角形即可.用到的知识点为:一边上的高为这边所对的顶点向这边所引的垂线段;图形的平移要归结为各顶点的平移;各个角都是锐角的三角形叫做锐角三角形.24.【答案】;+++…;1-;1-;1-【解析】解:∵第一次取走后还剩,即=1-;前两次取走+后还剩,即+=1-;前三次取走++后还剩,即++=1-;∴前n次取走后,还剩,即+++…=1-;故答案为:,+++…=1-;(1)如图所示:由图可知,+++…+=1-.故答案为:1-;(2)如图是一个边长为1的正方形,根据图示由图可知,+++…+=1-,故答案为:1-;(3)2-22-23-24-25-26-…-22011+22012=2-22012(2-2010+2-2009+2-2008+…+2-1)+22012=2-22012(1-2-2010)+22012=2-22012+4+22012=6.(1)根据题意画出图形,依次取正方形面积的,,…找出规律即可;(2)根据题意画出图形,依次取正方形面积的,,…找出规律即可;(3)根据同底数幂的乘法进行计算即可.本题考查的是整式的加减,根据题意画出图形,利用数形结合求解是解答此题的关键.25.【答案】解:(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,由题意,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该城镇居民年平均用水量为z立方米才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50-34=16(立方米).答:该城镇居民人均每年需要节约16立方米的水才能实现目标.【解析】(1)设年降水量为x万立方米,每人每年平均用水量为y立方米,根据储水量+降水量=总用水量建立方程求出其解就可以了;(2)设该城镇居民年平均用水量为z立方米才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.26.【答案】180°【解析】(1)解:∵OM⊥ON,∴∠MON=90°,在四边形OBCD中,∠C=∠BOD=90°,∴∠OBC+∠ODC=360°-90°-90°=180°;故答案为180°;(2)证明:延长DE交BF于H,如图1,∵∠OBC+∠ODC=180°,而∠OBC+∠CBM=180°,∴∠ODC=∠CBM,∵DE平分∠ODC,BF平分∠CBM,∴∠CDE=∠FBE,而∠DEC=∠BEH,∴∠BHE=∠C=90°,∴DE⊥BF;(3)解:DG∥BF.理由如下:作CQ∥BF,如图2,∵∠OBC+∠ODC=180°,∴∠CBM+∠NDC=180°,∵BF、DG分别平分∠OBC、∠ODC的外角,∴∠GDC+∠FBC=90°,∵CQ∥BF,∴∠FBC=∠BCQ,而∠BCQ+∠DCQ=90°,∴∠DCQ=∠GDC,∴CQ∥GD,∴BF∥DG.(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE交BF于H,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM,由于DE平分∠ODC,BF平分∠CBM,则∠CDE=∠FBE,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE⊥BF;(3)作CQ∥BF,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF、DG分别平分∠OBC、∠ODC的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ∥BF得∠FBC=∠BCQ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC,于是可判断CQ∥GD,所以BF∥DG.本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.也考查了平行线的判定与性质.27.【答案】解:(1)根据题意得:7m+5n=70,∴m=10-n.∵m、n均为非负整数,∴n=0时,m=10;n=7时,m=5;n=14时,m=0,∴这个方程符合实际意义的所有的解为:,,;(2)设答对x道5分题和答对y道7分题时分数相等,则5x=7y,当x=7时,y=5;当x=14时,y=10.∴当y=5时,重复的分数有16-7+1=10(种);当x=7时,重复的分数有10-5=5(种);当y=10时,重复的分数有16-7+1+16-14+1=13(种);当x=14时,重复的分数有10-5+10-10=5(种);∴16×10-10-5-13-5=127(种).∴k的值有127种不同大小.【解析】(1)根据总分=分值×答对题目数即可得出7m+5n=70,即m=10-n,再根据m、n均为非负整数,即可得出二元一次方程的解;(2)设答对x道5分题和答对y道7分题时分数相等,即5x=7y,解之即可得出x、y的值,利用k=16×10-重复种数即可求出结论.本题考查了二元一次方程的应用以及排列与组合问题,解题的关键是:(1)根据m、n的取值范围结合7m+5n=70找出所以可能解;(2)利用排列和组合的知识找出分值相等的重复次数.。
2017-2018年苏科版七年级数学下册期中试卷含答案解析
2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a52.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.304.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为.8.若3m=5,3n=6,则3m﹣n的值是.9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为.12.已知等腰三角形一边等于5,另一边等于9,它的周长是.13.一个n边形的所有内角与所有外角的和是900°,那么n=.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成个面积是1的三角形.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2 C.(ab)2=a2b2D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.2.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6 B.2m﹣8 C.2m D.﹣2m【考点】整式的混合运算—化简求值.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19 B.20 C.25 D.30【考点】三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.则三角形的周长:20<L<28,C选项25符合题意,故选C.4.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、没把一个多项式转化成几个整式积,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个【考点】平移的性质;同位角、内错角、同旁内角;平行线之间的距离.【分析】利用平移的性质、三线八角及平行线之间的距离的定义等知识逐一判断后即可确定正确的选项.【解答】解:①任何非0实数的零次方都等于1,故错误;②如果两条平行直线被第三条直线所截,那么同位角相等,故错误;③一个图形和它经过平移所得的图形中,两组对应点的连线平行或共线,故本小题错误;④平行线间的距离处处相等,正确,错误的有3个,故选C.6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据角平分线的定义求得∠1=∠2.然后利用三角形内角和定理得到∠2=∠5,进而证得∠5=∠1.【解答】解:①根据角平分线的性质易求∠1=∠2;②∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠3+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.∴180°﹣(∠4+∠5)=180°﹣(∠2+∠3).又∵∠3=∠4,∴∠2=∠5,∴∠5=∠1,综上所述,图中与∠ICE一定相等的角(不包括它本身)有2个.故选:B.二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为a8.【考点】幂的乘方与积的乘方.【分析】先根据积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘;再根据幂的乘方,底数不变指数相乘,从而得出结果.【解答】解:原式=(﹣a4)2的=(﹣1)2(a4)2=a8,故答案为a8.8.若3m=5,3n=6,则3m﹣n的值是.【考点】同底数幂的除法.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为 4.32×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10﹣6.故答案为:4.32×10﹣6.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是8.【考点】多项式乘多项式.【分析】先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是﹣6,列出关于a的等式求解即可.【解答】解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为7.【考点】因式分解的应用.【分析】根据已知条件,运用完全平方公式求得xy的值,再进一步运用因式分解的方法整体代入求得代数式的值.【解答】解:∵x+y=3,∴(x+y)2=9,即x2+y2+2xy=9①,又x2+y2﹣3xy=4②,①﹣②,得5xy=5,xy=1.∴x2+y2=4+3xy=7.∴x3y+xy3=xy(x2+y2)=7.故答案为7.12.已知等腰三角形一边等于5,另一边等于9,它的周长是19或23.【考点】等腰三角形的性质;三角形三边关系.【分析】因为题中没有确定底和腰,故要分两种情况进行做题,即把边长为5的作为腰和把边长为9的作为腰,然后分别求出周长.【解答】解:分两种情况:①当边的长为5的为腰时,周长=5+5+9=19;②当边的长为9的为腰时,周长=9+9+5=23.经验证这两种情况都可组成三角形,都成立.故答案为:19或23.13.一个n边形的所有内角与所有外角的和是900°,那么n=5.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角和的度数,依据多边形的内角和公式即可求解.【解答】解:多边形的内角和是:900﹣360=540°,设多边形的边数是n,则(n﹣2)•180=540,解得:n=5.故答案为5.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=22.5°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,推出∠A+∠ABC=2∠D+∠ABC,得出∠A=2∠D,即可求出答案.【解答】解:∵BD平分∠ABC,CD平分∠ACE,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,∴∠A+∠ABC=2∠D+∠ABC,∴∠A=2∠D,∵∠A=45°,∴∠D=22.5°,故答案为:22.5.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成10个面积是1的三角形.【考点】三角形的面积.【分析】根据三角形的面积公式,结合图形,则面积是1的三角形,即构造底1高2的三角形或底2高1的三角形或两条直角边是的等腰直角三角形.【解答】解:根据题意,得面积是1的三角形有:△ABD、△ABE、△ABF、△ACD、△FCD、△AEF、△BEF、△ADE、△BDE、△BCE 共10个.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的意义计算;(2)先进行乘方运算,然后合并即可;(3)先利用完全平方公式和平方差公式展开,然后合并即可;(4)先变形得到原式=[3+(2x﹣y)][3﹣(2x﹣y)],然后利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣4﹣1×(﹣4)﹣4=﹣4+4﹣4=﹣4;(2)原式=﹣a6﹣a6﹣2a6=﹣4a6;(3)原式=x2﹣xy+y2﹣(x2﹣4y2)=x2﹣xy+y2﹣x2+y2=2y2﹣xy;(4)原式=[3+(2x﹣y)][3﹣(2x﹣y)]=32﹣(2x﹣y)2=9﹣(4x2﹣4xy+y2)=9﹣4x2+4xy﹣y2.18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式4,进而利用平方差公式分解因式得出答案;(2)首先提取公因式﹣b,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(4)直接利用平方差公式分解因式得出答案.【解答】解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)49(m﹣n)2﹣9(m+n)2.=[7(m﹣n)+3(m+n)][7(m﹣n)﹣3(m+n)]=(10m﹣4n)(4m﹣10n)=4(5m﹣2n)(2m﹣5n).19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式前两项利用完全平方公式展开,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=,b=时,原式=5××=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.【考点】完全平方公式.【分析】(1)根据幂的乘方运算法则将原式变形,进而求出x,y的值,进而代入求出答案;(2)直接利用完全平方公式展开原式,进而计算得出答案.【解答】解:(1)∵2x=8y+2,9y=3x﹣9,∴2x=23y+6,32y=3x﹣9,∴,解得:∴x+2y=×15+2×3=11;(2)∵(a+b)2=6,(a﹣b)2=2,∴a2+2ab+b2=6,a2﹣2ab+b2=2,解得:a2+b2=4,ab=1,∴a2+b2>ab.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1及△A2B2C2即可;(2)根据线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2即可得出结论.【解答】解:(1)如图所示;(2)线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2=5×4+2×4=20+8=28.答:平移过程中,线段AC扫过的面积是28.22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.【考点】规律型:数字的变化类.【分析】(1)根据幂的运算方法,可得21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22,据此解答即可.(2)根据(1)中式子的规律,可得2n﹣2n﹣1=2n﹣1;然后根据幂的运算方法,证明第n个等式成立即可.(3)根据2n﹣2n﹣1=2n﹣1,求出算式20﹣21﹣22﹣…﹣22014+22015的值是多少即可.【解答】解:(1)21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22.(2)∵21﹣20=20,22﹣21=21,23﹣22=22,∴2n﹣2n﹣1=2n﹣1;证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=2n﹣1×(2﹣1)=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立.(3)20﹣21﹣22﹣…﹣22014+22015=22015﹣22014﹣22013﹣…﹣21+20=22014﹣22013﹣…﹣21+20=22013﹣22012﹣…﹣21+20=…=22﹣21+20=21+20=2+1=3故答案为:0、1、2.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【考点】完全平方公式;非负数的性质:偶次方;三角形三边关系.【分析】(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?【考点】平行线的性质;垂线.【分析】(1)如图,利用直角三角形的性质求得∠AOD=60°,然后利用对顶角相等、平行线的性质求得∠DEF=120°;(2)EF与BF垂直.理由如下:根据角平分线的性质得到∠BEF=∠BED=DEF=60°.则根据直角三角形的性质易求∠DBE=30°.然后由三角形内角和定理求得∠F=90°,即EF与BF垂直.【解答】解:(1)如图,∵DE⊥AB,∠A=30°,∴∠AOD=60°.∵∠COE=∠AOD=60°,EF∥AC,∴∠DEF+∠COE=180°,∴∠DEF=120°;(2)EF与BF垂直.理由如下:由(1)知,∠DEF=120°.∵BE平分∠DEF,∴∠BEF=∠BED=DEF=60°.又∵DE⊥AB,∴∠DBE=30°.∵AE平分∠ABC,∴∠EBF=30°,∴∠F=180°﹣∠EBF﹣BEF=90°,即EF与BF垂直.25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.【考点】平行线的判定与性质.【分析】(1)过点E作EN∥AB,根据平行线的性质得到∠BEN=∠B,等量代换得到∠BEN=∠1,推出∠D=∠DEN,根据平行线的判定即可得到结论;(2)如答图2,过点E作EN∥AB,根据平行线的性质得到∠B=∠1,量代换得到∠BEN=∠1,推出EN∥CD,于是得到结论.【解答】解:(1)过点E作EN∥AB,则∠BEN=∠B,∵∠1=∠B,∴∠BEN=∠1,∵∠BEN+∠DEN=∠BED=90°,∴∠1+∠2=90°,∴∠2=∠DEN,∵∠2=∠D,∴∠D=∠DEN,∴AB∥CD;(2)如答图2,过点E作EN∥AB,∴∠BEN=∠B,∵∠B=∠1,∴∠BEN=∠1,∵∠BED=90°=∠BEN+∠DEN,∠1+∠2=90°,∴∠DEN=∠2,∵∠2=∠D,∴EN∥CD,∴AB∥CD.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【考点】坐标与图形性质;垂线;三角形的面积.=CD•OC,【分析】(1)因为△BCD的高为OC,所以S△BCD(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.=CD•OC=×3×2=3.【解答】解:(1)S△BCD(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.2016年11月29日。
2017-2018学年苏科版七年级下册期中数学试卷含答案
(第7题)2017-2018学年度第二学期七年级数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在相应的位置上)1. 下列计算正确的是 ( ▲ )A .a +2a 2=3a 2B .a 8÷a 2=a 4C .a 3·a 2=a 6D .(a 3)2=a 62. 下列各式从左到右的变形,是因式分解的是: ( ▲ )A.x x x x x 6)3)(3(692+-+=+-B.()()103252-+=-+x x x x C.()224168-=+-x x x D.623ab a b =⋅ 3. 已知a=344,b=433,c=522,则有 ( ▲ )A .a <b <cB .c <b <aC .c <a <bD .a <c <b4. 已知三角形三边长分别为3,x ,14,若x 为正整数,则这样的三角形个数为()A .2B .3C .5D .7 5. 若2294b kab a ++是完全平方式,则常数k 的值为 ( ▲ ) A. 6 B. 12 C. 6± D. 12±6. 如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的式子是………………………………………………( ▲ ) A .(a +b )2-(a -b )2=4ab B .(a +b )2-(a 2+b 2)=2ab C .(a +b )(a -b )=a 2-b 2 D .(a -b )2+2ab =a 2+b 27. 如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有 ( ▲ )A .4个B .3个C . 2个D .1个8. 已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c 2﹣ab ﹣bc ﹣ac 的值 为(▲ ) A .1 B .2 C .3 D .4(第6题图)二、填空题 (本大题共12小题,每小题2分,共24分.)9. 十边形的内角和为 ▲ ,外角和为 ▲10. (-3xy)2= ▲ (a 2b)2÷a 4= ▲ . 11. 2(4)(7)x x x mx n -+=++,则m = ▲ ,n = ▲12. 把多项式y x x 234016+-提出一个公因式28x -后,另一个因式是 ▲ . 13. 生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为 ▲ .14. 在△ABC 中,三个内角∠A 、∠B 、∠C 满足2∠B=∠C+∠A ,则∠B= ▲ . 15.如图,在宽为20m ,长为30m 的矩形地块上修建两条同样宽为1m 的道路,余下部分作16.如图,将含有30°角的三角尺的直角顶点放在相互平行的两条直线的其中一条上,若∠ACF=40°,则∠DEA=___ ▲ __°.17. 如果a -2=-3b, 则3a×27b的值为 ▲ 。
苏教版数学七年级下学期《期中检测试题》附答案解析
苏教版七年级下学期期中测试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 计算(﹣2)5÷(﹣2)3的结果是()A. ﹣4B. 4C. ﹣2D. 22. 下列计算正确的是()A. x+x=x2B. x2•x3=x6C. x3÷x=x2D. (x2)3=x53. 如图,∠1的内错角是( )A.∠2B. ∠3C. ∠4D. ∠54. 如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. ∠3=∠4 B. ∠1=∠2 C. ∠D=∠DCE D. ∠D+∠DCA=180°5. 下列各式从左到右的变形中,是因式分解的为()A. ab+ac+d=a(b+c)+d B. (x+2)(x﹣2)=x2﹣4 C6ab=2a⋅3b D. x2﹣8x+16=(x﹣4)26. 下列各式中不能用平方差公式计算的是()A. ()()x y x y--+ B. ()()x y x y-+--C. ()()x y x y--- D. ()()x y x y+-+7. 下列说法正确的是()A. 同位角相等B. 同一平面内,如果a⊥b,b⊥c,则a⊥cC. 相等的角是对顶角D. 在同一平面内,如果a∥b,b∥c,则a∥c8. 如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A. 16cmB. 24cmC. 28cmD. 32cm二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9. 计算:(-2)0=_______;(12)-1=_______.10. 因式分解:a3-a=______.11. 人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m,将0.000 000 156用科学记数法表示为___.12. 请写出命题“直角三角形的两个锐角互余”的逆命题:__________.13. 若9m=8,3n=2,则32m﹣n的值为_____.14. 若216x mx++是一个完全平方式,则m=________15. 如图,直角三角形ABC的直角边AB=4cm,将△ABC向右平移3cm得△A′B′C′,则图中阴影部分的面积为_____cm2.16. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17. 若a+b=-4,ab=-12,则a2+b2的值为______.18. 已知a=12018+2017,b=12018+2018,c=12018+2019,则代数式a2+b2+c2﹣ab﹣bc﹣ca=_____.三、解答题(本大题共9小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:(1)a⋅a3﹣a6÷a2;(2)(x+2)(x+1)﹣2x(x﹣1)20. 将下列各式分解因式:(1)x3﹣2x2y+xy2;(2)m2(m﹣1)+4(1﹣m).21. 先化简,再计算:(b+2a) (b-2a)-(b-3a)2,其中a=-1,b=-2.22. 在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积.(2)若连接AD、CF,则这两条线段之间的关系是;(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.23. 在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,∠1+∠2=1800,∠3=∠4.求证:EF∥GH.证明:∵∠1+∠2=1800(已知),∠AEG =∠1(对顶角相等)∴,∴AB∥CD(),∴∠AEG=∠(),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠,(等式性质)∴,∴EF∥GH.24. 积的乘方公式为:(ab)n= .(n是正整数),请写出这一公式的推理过程.25. 证明:两直线平行,同旁内角互补.(在下面方框内画出图形)已知:.求证:.证明:26. 发现与探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:(1)(x﹣1)(x+1)=x2﹣1;(2)(x﹣1)(x2+x+1)=x3﹣1;(3)(x﹣1)(x3+x2+x+1)=x4﹣1;……由此我们可以得到:(x ﹣1)(x 2019+x 2018+x 2017+……+x +1)= ;请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+……+3+1;(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).27. 如图,已知直线a // b ,点A 、E 在直线a 上,点B 、F 在直线b 上,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧.若将线段EF 沿射线 AD 的方向平移,在平移的过程中BD 所在的直线与 EF 所在的直线交于点P .试探索 ∠1的度数与∠EPB 的度数有怎样的关系?为了解决以上问题,我们不妨从EF 的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图,当∠1=40°,且点P 在直线a 、b 之间时,求∠EPB 的度数;(2)当∠1=70 °时,求∠EPB 的度数;【一般化】(3)当∠1=n°时,求∠EPB 的度数.(直接用含n 的代数式表示)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 计算(﹣2)5÷(﹣2)3的结果是()A. ﹣4B. 4C. ﹣2D. 2【答案】B【解析】【分析】根据同底数幂除法法则进行计算即可.【详解】(-2) 5 ÷ (-2) 3=(-2) 5-3 =(-2) 2=4故选B【点睛】考核知识点:同底数幂除法.掌握法则是关键. 2. 下列计算正确的是()A. x+x=x2 B. x2•x3=x6 C. x3÷x=x2 D. (x2)3=x5【答案】C【解析】【分析】根据整式运算法则分别计算分析即可.【详解】A. x+x=2x,故本选项错误;B. x2 · x3=x5,故本选项错误;C. x3 ÷ x=x2,,故本选项正确;D. (x2)3=x6,故本选项错误;故选C【点睛】考核知识点:整式运算法则(合并同类项,同底数幂相乘,同底数幂相除,幂的乘方).3. 如图,∠1的内错角是( )A. ∠2B. ∠3C. ∠4D. ∠5【答案】D【解析】试题分析:根据内错角位于截线异侧,位于两条被截线之间可知∠1的内错角是∠5.故选D.点睛:本题考查了内错角的辨识,熟记内错角的概念是解决此题的关键.4. 如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. ∠3=∠4B. ∠1=∠2C. ∠D=∠DCED. ∠D+∠DCA=180°【答案】B【解析】【分析】根据内错角相等,两直线平行可分析出∠1=∠2可判定AB∥CD.【详解】解:A、∠D=∠A不能判定AB∥CD,故此选项不合题意;B、∠1=∠2可判定AB∥CD,故此选项符合题意;C、∠3=∠4可判定AC∥BD,故此选项不符合题意;D、∠D=∠DCE判定直线AC∥BD,故此选项不合题意;故选:B.【点睛】此题主要考查了平行线的判定,关键是掌握同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.5. 下列各式从左到右变形中,是因式分解的为()A. ab+ac+d=a(b+c)+dB. (x+2)(x﹣2)=x2﹣4C. 6ab=2a⋅3bD. x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6. 下列各式中不能用平方差公式计算的是( )A. ()()x y x y --+B. ()()x y x y -+--C. ()()x y x y ---D. ()()x y x y +-+ 【答案】A【解析】【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【详解】A .()()x y x y --+,含y 的项符号相反,含x 的项符号相反,不能用平方差公式计算,故本选项符合题意;B .()()x y x y -+--,含x 的项符号相同,含y 的项符号相反,能用平方差公式计算,故本选项不符合题意;C .()()x y x y ---,含y 的项符号相同,含x 的项符号相反,能用平方差公式计算,故本选项不符合题意;D .()()x y x y +-+,含y 的项符号相同,含x 的项符号相反,能用平方差公式计算.故本选项不符合题意.【点睛】本题考查了平方差公式,两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为:22()()a b a b a b +-=-7. 下列说法正确的是( )A. 同位角相等B. 在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC. 相等的角是对顶角D. 在同一平面内,如果a ∥b ,b ∥c ,则a ∥c【答案】D【解析】【分析】根据平行线的性质和判定以及对顶角的定义进行判断.【详解】解:A选项:只有在两直线平行这一前提下,同位角才相等,故A选项错误;B选项:同一平面内,如果a⊥b,b⊥c,则a∥c,故B选项错误;C选项:相等的角不一定是对顶角,因为对顶角还有位置限制,故C选项错误;D选项:由平行公理的推论知,故D选项正确.故选D.【点睛】本题考查了平行线的性质、判定,对顶角的性质,注意对顶角一定相等,但相等的角不一定是对顶角.8. 如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A. 16cmB. 24cmC. 28cmD. 32cm【答案】B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm,宽为ycm,根据题意得:7-x=3y,即7=x+3y,则图②中两块阴影部分周长和是:2×7+2(6-3y)+2(6-x)=14+12-6y+12-2x=14+12+12-2(x+3y)=38-2×7=24(cm).故选B.【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:(-2)0= _______;(12)-1 =_______. 【答案】 (1). 1 (2). 2【解析】【分析】根据0指数幂和负指数幂的意义求值.【详解】(-2)0=1, (12)-1 =2 故答案为1,2【点睛】考核知识点:0指数幂和负指数幂.掌握定义是关键.10. 因式分解:a 3-a =______.【答案】a (a -1)(a + 1)【解析】分析:先提取公因式a ,再对余下的多项式利用平方差公式继续分解.解答:解:a 3-a ,=a (a 2-1),=a (a+1)(a-1).11. 人体内某种细胞可近似地看作球体,它的直径为0.000 000 156m ,将0.000 000 156用科学记数法表示为___.【答案】71.5610⨯-【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).0.000 000 156第一个有效数字前有7个0(含小数点前的1个0),从而70.000?000?1561.5610=⨯-. 12. 请写出命题“直角三角形的两个锐角互余”的逆命题:__________.【答案】两个锐角互余的三角形是直角三角形【解析】【分析】把原命题的题设与结论部分交换即可得到其逆命题.【详解】解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”. 故答案为:两个锐角互余的三角形是直角三角形.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.13. 若9m =8,3n =2,则32m ﹣n 的值为_____.【答案】4【解析】【分析】先把32m-n 变形为(32)m ÷3n ,再代入计算即可. 【详解】∵9m =8,3n =2,∴32m-n =(32)m ÷3n =9m ÷3n =8÷2=4. 故答案为4.【点睛】此题考查了同底数幂的除法,用到的知识点是幂的乘方、同底数幂的除法,关键是灵活运用有关法则,把要求的式子进行变形.14. 若216x mx ++是一个完全平方式,则m =________【答案】±8 【解析】【分析】利用完全平方公式的结构特征可确定出m 的值.【详解】解:∵多项式222164x mx x mx ++=++是一个完全平方式,∴m =±2×1×4,即m =±8, 故答案为:±8. 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.15. 如图,直角三角形ABC 的直角边AB =4cm ,将△ABC 向右平移3cm 得△A ′B ′C ′,则图中阴影部分的面积为_____cm 2.【答案】12【解析】【分析】根据平移的性质,可知阴影部分为平行四边形,然后根据图形求面积.【详解】根据题意阴影部分为平行四边形,阴影面积=234=12cm ⨯故答案为12【点睛】本题考查平移的性质,难度不大,关键是根据题意得到阴影部分为平行四边形,然后根据图形的面积公式计算即可.16. 如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.【答案】65【解析】【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17. 若a+b=-4,ab=-12,则a2+b2的值为______.【答案】17【解析】【分析】原式利用完全平方公式变形,将a+b,ab的值代入计算即可求出值.【详解】∵a+b=-4,ab=-12,∴a2+b2=a2+2ab+b2-2ab=(a+b)2-2ab =16+1=17.故答案为17【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.18. 已知a=12018+2017,b=12018+2018,c=12018+2019,则代数式a2+b2+c2﹣ab﹣bc﹣ca=_____.【答案】3 【解析】【分析】把已知的式子化成12[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.【详解】原式=12(2a2+2b2+2c2-2ab-2ac-2bc)=12[(a2-2ab+b2)+(a2-2ac+c2)+(b2-2bc+c2)] =12[(a-b)2+(a-c)2+(b-c)2] =12[(12018+2017-12018-2018)2+(12018+2017-12018-2019)2+(12018+2018-12018-2019)2] =12×[1+4+1]=3.故答案为3.【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键.三、解答题(本大题共9小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19. 计算:(1)a⋅a3﹣a6÷a2;(2)(x+2)(x+1)﹣2x(x﹣1)【答案】(1)0(2)-x2 +5x+2【解析】【分析】(1)根据同底数幂乘除法则进行计算;(2)根据单项式和多项式的乘法去括号合并同类项即可. 【详解】(1)解:原式=a4-a4=0(2)解:原式=x2+3x+2-2x2+2x=-x2 +5x+2【点睛】考核知识点:同底数幂乘除法,整式乘法.掌握法则是关键.20. 将下列各式分解因式:(1)x3﹣2x2y+xy2;(2)m2(m﹣1)+4(1﹣m).【答案】(1) x3+2x2y+xy2= x(x2+2xy+y2)= x(x+y) 2(2) m2(m-1)+4(1-m)= (m-1) ( m2-4)=(m-1) ( m+2) ( m-2)【解析】利用平方和和平方差因式分解21. 先化简,再计算:(b+2a) (b-2a)-(b-3a)2,其中a=-1,b=-2.【答案】-13a2+6ab,-1【解析】【分析】运用整式乘法公式化简,再代入已知值计算.【详解】解:原式=b2-4a2-(b2-6ab+9a2)=b2-4a2-b2+6ab-9a2=-13a2+6ab当a=-1,b=-2时,原式=-13+12=-1【点睛】考核知识点:整式化简求值.熟记平方差公式和完全平方公式是解题关键.22. 在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)请画出平移后的△DEF,并求△DEF的面积.(2)若连接AD、CF,则这两条线段之间的关系是;(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.【答案】(1)作图见解析;7;(2)平行且相等;(3)见解析【解析】【分析】(1)根据图形平移的性质画出平移后的△DEF,再求出其面积即可;(2)根据图形平移的性质可直接得出结论;(3)找出线段AB的中点P,连接PC即可.【详解】解:(1)如图所示,S△DEF=4×4-12×4×1-12×2×4-12×2×3=16-2-4-3=7.故答案为7;(2)∵A、C的对应点分别是D、F,∴连接AD、CF,则这两条线段之间的关系是平行且相等.故答案为平行且相等;(3)如图,线段PC即为所求.【点睛】本题考查的是作图-平移变换,熟知图形平移的性质是解答此题的关键.23. 在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,∠1+∠2=1800,∠3=∠4.求证:EF∥GH.证明:∵∠1+∠2=1800(已知),∠AEG =∠1(对顶角相等)∴,∴AB∥CD(),∴∠AEG=∠(),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠,(等式性质)∴,∴EF∥GH.【答案】见解析【解析】【分析】本题根据平行线的判定和性质交互运用,最后证出∠FEG=∠HGE,可得EF∥GH.【详解】∵∠1+∠2=1800(已知),∠AEG =∠1(对顶角相等),∴∠AEG+∠2=1800,∴AB∥CD(同旁内角互补,两直线平行),∴∠AEG=∠DGE(两直线平行,内错角相等),∵∠3=∠4(已知),∴∠3+∠AEG =∠4+∠DGE ,(等式性质)∴∠FEG=∠HGE ,∴EF ∥GH .【点睛】本题考查了平行线的性质与判定:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行. 24. 积的乘方公式为:(ab)n = .(n 是正整数),请写出这一公式的推理过程.【答案】见解析【解析】【分析】根据乘方的定义和同底数幂乘法进行计算,即可写出推导过程.【详解】解:(ab )n =nab ab ab ab ab ⨯⨯⨯⨯⋯⨯=n na a ab b b ••⋯••⋯• =a n b n【点睛】本题考查同底数幂乘法与积的乘方,解题的关键是明确它们的计算方法.25. 证明:两直线平行,同旁内角互补.(在下面方框内画出图形)已知: .求证: .证明:【答案】见解析【解析】【分析】根据命题证明的要求,结合命题内容写出已知和求证;根据两直线平行,同位角相等进行证明.详解】解:已知:如图, 直线a 、b 被直线c 所截,a ∥b求证:∠2+∠3=1800.证明:∵a∥b,∴∠1 =∠2,∵∠1+∠3=1800,∴∠2+∠3=1800【点睛】考核知识点:平行线性质定理的推导.熟记已有平行线性质是关键.26. 发现与探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:(1)(x﹣1)(x+1)=x2﹣1;(2)(x﹣1)(x2+x+1)=x3﹣1;(3)(x﹣1)(x3+x2+x+1)=x4﹣1;……由此我们可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)=;请你利用上面的结论,完成下面两题的计算:(1)32019+32018+32017+……+3+1;(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).【答案】x2020-1;(1)2020312-(2)51223-【解析】【分析】根据所给式子从而总结出规律是(x-1)(x2019+x2018+x2017+…+x+1)=x2020-1.(1)将32019+32018+32017+……+3+1;写成(3-1)(32019+32018+32017+…+3+1)÷2的形式进行计算即可.(2)(-2)50+(-2)49+(-2)48+……+(-2)=(-2-1)[ (-2)50 + (-2)49+ (-2)48+……+ (-2) +1]÷(-3)-1,根据规律计算即可.【详解】解:根据规律可得:x2020-1(1)∵(3-1)(32019+32018+32017+…+3+1) =32020-1,∴ 32019+32018+32017+…+3+1=2020312-.(2)(-2)50 + (-2)49+ (-2)48+……+ (-2)=(-2)50 + (-2)49+ (-2)48+……+ (-2) +1-1=(-2-1)[ (-2)50 + (-2)49+ (-2)48+……+ (-2) +1]÷(-3)-1=()51213----1=5122 3-【点睛】此题主要考查了学生的分析、总结、归纳能力,规律型的习题一般要根据所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律,难度一般.27. 如图,已知直线a // b,点A、E在直线a上,点B、F在直线b上,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧.若将线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.试探索∠1的度数与∠EPB的度数有怎样的关系?为了解决以上问题,我们不妨从EF的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图,当∠1=40°,且点P在直线a、b之间时,求∠EPB的度数;(2)当∠1=70 °时,求∠EPB的度数;【一般化】(3)当∠1=n°时,求∠EPB的度数.(直接用含n的代数式表示)【答案】(1)170°(2)见解析(3)①见解析②见解析【解析】【分析】(1)作PG∥a,根据平行线性质和角平分线性质可得∠GPB=180°-12∠ABC=130°,计算即可;(2)作PG∥a,结合画图,分3种情况分析:当交点P在直线a上方,∠EPB=20°;当交点P在直线a、b之间,∠EPB=160°;当交点P在直线b下方,∠EPB=20°;(3)根据(1)(2)情况,分2种情况分析:①当n>50°时;②当n<50°时,各有3种情况.【详解】(1)作PG∥a,∴∠EPG=∠EFC=400∵a∥b∴PG∥b∴∠GPB+∠CBD=1800又∵BD是∠ABC平分线,且∠ABC=1000,∴∠GPB=1800-12∠ABC=1300∴∠EPB=∠EPG+∠GPB=1700(2)①当交点P在直线a上方,作PG∥a,∵a∥b∴PG∥b∴∠EPG=∠1,∠GPB=∠DBC∴∠EPB=700-500=200②当交点P在直线a、b之间,作PG∥a,∵a∥b∴PG∥b∴∠GPB=∠PBC=12∠ABC=500,∠BFE=∠EPG=1800-∠1∴∠EPB=∠EPG+∠GPB=500+1800-∠1=2300-700=1600③当交点P在直线b下方,作PG∥a,∵a∥b∴PG∥b∴∠EPG=∠1,∠GPB=∠DBC∴∠EPB=700-500=200(3)由(1)(2)得:①当n>500时,交点P在直线a上方,∠EPB=n-500交点P在直线a、b之间,∠EPB=2300-n交点P在直线b下方,∠EPB=n-500②当n<500时,交点P在直线a上方,∠EPB=500-n交点P在直线a、b之间,∠EPB=1300+n交点P在直线b下方,∠EPB=500-n【点睛】考核知识点:平行线性质和判定的综合运用.作好辅助线,分类讨论是解决问题的关键.。
苏科版数学七年级下册江苏省无锡地区-期中复习试题8.docx
11 1 21 1331 1…………………………(a +b )1 …………………………(a +b )2 …………………………(a +b )3…………………EDCBA图2班级 姓名一、细心填一填(第1题每空1分,其余每空2分,共29分.) 1、计算:(-p)2·(-p)3=_______;(-12a 2b )3=_______;xy 2·( )=-yz x 26 ()()=+-a a 65 ; 200820074)25.0(⨯-=___ ___;2、用科学记数法表示0.0000618= 。
3、如图1,如果希望c ∥d ,那么需要添加的条件是:_____________(填一个即可)4、如图2, 点B 、C 、D 在同一条直线上,CE //AB ,∠ACB =90°,如果∠ECD =36°, 那么∠A =_________.5、把多项式y x x 234016+-提出一个公因式28x -后,另一个因式是 . 6、若92+-ax x 是一个完全平方式,则a = .7、①若112842=⨯⨯n n ,则n = ②若510=m , 310=n ,则n m 3210-=8、如果2x y -=,3xy =,则22x y xy -=________9、若凸n 边形的内角和为1260°,则从一个顶点出发引的对角线条数是__ __ 10、 等腰三角形有两条边的长分别为2和6,那么这个三角形的周长是 .11、 我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。
如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律。
例如,在三角形中第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中的系数;第四行的四个数1,3,3,1,恰好对应着()3322233a b a a b ab b +=+++展开式中的系数等等。
苏科版七年级下学期数学期中试题(有答案) (1)
七下数学期中模拟试卷(二)一、选择题(本大题共7小题,共21.0分)1. 下列等式从左到右的变形,属于因式分解的是( )A. 8x 2 y 3=2x 2⋅4 y 3B. ( x +1)( x −1)=x 2−1C. 3x −3y −1=3( x −y)−1D. x 2−8x +16=( x −4)22. (−23)5×(32)4等于( ) A. 1 B. −23 C. −1 D. 23 3. 下列各式是二元一次方程的是( )A. y +12xB. x+y3−2y =0 C. x =2y +1 D. x 2+y =04. 下图中,由AB//CD ,能得到∠1=∠2的是( )A. B.C. D.5. 若一个多边形的内角和为1080°,则这个多边形的边数为( )A. 6B. 7C. 8D. 96. 小淇用大小不同的9个长方形拼成一个大的长方形ABCD ,则图中阴影部分的面积是( )A. (a +1)(b +3)B. (a +3)(b +1)C. (a +1)(b +4)D. (a +4)(b +1)7. 若a =(−13)−2,b =−0.32,c =−3−2,d =(−13)0,则它们的大小关系是( ) A. a <b <c <d B. b <c <d <a C. a <d <c <b D. c <b <d <a二、填空题(本大题共9小题,共27.0分)8.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为______.9.x2+kx+9是完全平方式,则k=______.10.写出命题“直角三角形的两个锐角互余”的逆命题:______.11.若2a=10,2b=5,则2a+b=______.12.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为______.13.已知多项式x2+ax−4恰等于两个多项式x+1和x+n的积,则a n=______.14.若m+n=3,mn=5,则m−n=______.415.如图,在Rt△ABC中,∠B=90°,∠ACB=59°,EF//GH,若∠1=58°,则∠2=______°.16.如图,在△ABC中,∠A=80°,点O是∠ABC,∠ACB角平分的交点,点P是∠BOC,∠OCB角平分线的交点,若∠P=100°,则∠ACB的度数是______.三、计算题(本大题共3小题,共30.0分)17.计算:(1)−(−1)−3+20192−2017×2021(2)−2xy⋅3x2y−x2y(−3xy+xy2)(3)(2a−b)(2b+a)−(a−3b)218.因式分解:(1)m3(a−2)+m(2−a)(2)x4−16y4(3)81x4−18x2y2+y4(4)(x2−4x)2+8(x2−4x)+1619.先化简,再求值:x(x−4y)+(2x+y)(2x−y)−(2x−y)2,其中x=−2,y=−1.四、解答题(本大题共6小题,共42.0分)20.如图,在边长为1个单位的正方形网格中,△ABC经过平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题(保留画图痕迹):(1)画出△A′B′C′;(2)画出△ABC的高BD;(3)连接AA′、CC′,那么AA′与CC′的关系是______,线段AC扫过的图形的面积为______.21.如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.22.如图,直线AB、CD相交于点O,∠AOD=2∠BOD+60°.(1)求∠BOD的度数;(2)以O为端点引射线OE、OF,射线OE平分∠BOD,且∠EOF=90°,求∠BOF的度数.23.已知△ABC中,∠C是其最小的内角,如果过点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC关于点B的奇异分割线.例如:图1,在Rt△ABC中,∠A=90°,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的奇异分割线.(1)如图2,在△ABC中,若∠A=50°,∠C=20°.请过顶点B在图2中画出△ABC关于点B的奇异分割线BD交AC于点D,此时∠ADB=______度;(2)在△ABC中,∠C=30°,若△ABC存在关于点B的奇异分割线,画出相应的△ABC及分割线BD,并直接写出此时∠ABC的度数(要求在图中标注∠A、∠ABD及∠DBC的度数).24.【知识生成】我们已经知道,对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式,例如由图1可以得到(a+2b)(a+b)=a2+3ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式______;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z=______;【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个数学等式:______.25.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.答案和解析1.D解:①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;2.B解:原式=(−23×32)4×(−23)=−23.3.B解:A、不是等式,则不是方程,选项错误;B、正确;C、不是整式方程,故选项错误;D、是二次方程,选项错误.4.B解:A、∵AB//CD,又∵∠1=∠2是同旁内角,∴不能判断∠1=∠2,故本选项错误;B、如图,∵AB//CD,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2,故本选项正确;C、不能得到∠1=∠2,故本选项错误;D、不能得到∠1=∠2,故本选项错误.5.C解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.6.B解:由平移可知,图中阴影部分的长为(a +3),宽为(b +1),则图中阴影部分的面积是(a +3)(b +1).7.D解:∵a =(−13)−2=9,b =−0.32=−0.09,c =−3−2=−19,d =(−13)0=1, ∴c <b <d <a .8.1.05×10−5解:杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为1.05×10−5.9.±6解:中间一项为加上或减去x 和3的积的2倍,故k =±6.10.两个锐角互余的三角形是直角三角形解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.11.50解:∵2a =10,2b =5,∴2a+b =2a ×2b =10×5=50,12.12解:∵a +b =4,a −b =1,∴(a +1)2−(b −1)2=(a +1+b −1)(a +1−b +1)=(a +b)(a −b +2)=4×(1+2)=12.13.181解:(x +1)(x +n)=x 2+(n +1)x +n ,由题意知a=n+1,n=−4,则a=−3,,所以a n=(−3)−4=18114.±2,解:∵m+n=3,mn=54=±2.∴m−n=±√(m+n)2−4mn=√32−4×5415.27解:∵Rt△ABC中,∠B=90°,∠ACB=59°,∴∠A=31°,由三角形外角性质,可得∠ADF=∠1−∠A=27°,又∵EF//GH,∴∠2=∠ADF=27°,16.60°解:设∠BCP=∠PCO=x,∠BOP=∠COP=y,∵∠P=100°,∴x+y=80°,∴2x+2y=160°,∴∠OBC=180°−160°=20°,∵BO平分∠ABC,∴∠ABC=40°,∵∠A=80°,∴∠ACB=180°−40°−80°=60°.17.解:(1)−(−1)−3+20192−2017×2021=1+20192−(2019−2)×(2019+2)=1+20192−20192+4=5;(2)−2xy⋅3x2y−x2y(−3xy+xy2)=−6x3y2+3x3y2−x3y3=−3x3y2−x3y3;(3)(2a−b)(2b+a)−(a−3b)2=4ab+2a2−2b2−ab−a2+6ab−9b2=a2+9ab−11b2.18.解:(1)原式=m3(a−2)−m(a−2)=m(a−2)(m+1)(m−1);(2)原式=(x2+4y2)(x2−4y2)=(x2+4y2)(x+2y)(x−2y);(3)原式=(9x2−y2)2=(3x+y)2(3x−y)2;(4)原式=(x2−4x+4)2=(x−2)4.19.解:原式=x2−4xy+4x2−y2−4x2+4xy−y2=x2−2y2,当x=−2,y=−1时,原式=4−2=2.20.(1)如图所示,△A′B′C′即为所求;(2)如图所示,BD即为所求;(3)平行且相等10解:(3)如图所示,AA′与CC′的关系是平行且相等,线段AC扫过的图形的面积为10×2−2×12×4×1−2×12×6×1=10,21.解:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD//EF,∴∠DCB=∠1.∵∠1=∠2,∴∠DCB=∠2,∴DG//BC,∴∠ADG=∠B=45°.又∵在△ADG中,∠A=65°,∠ADG=45°,∴∠AGD=180°−∠A−∠ADG=70°.22.解:(1)由邻补角互补,得∠AOD+∠BOD=180°,又∵∠AOD=2∠BOD+60°,∴2∠BOD+60°+∠BOD=180°,解得∠BOD=40°;(2)如图:由射线OE平分∠BOD,得∠BOE=12∠BOD=12×40°=20°,由角的和差,得∠BOF′=∠EOF′+∠BOE=90°+20°=110°,∠BOF=∠EOF−∠BOE=90°−20°=70°.∴∠BOF的度数为110°或70°.23.40解:(1)如图所示:直线BD即为所求,此时∠ADB=90°−∠A=40°.故答案为40.(2)设BD为△ABC的奇异分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=30°.当∠A=90°时,△ABC存在奇异分割线,此时∠ABC=60°.当∠ABD=90°时,△ABC存在奇异分割线,此时∠ABC=120°当∠ADB=90°时,不符合题意.第二种情况:△BDC是直角三角形,△ABD是等腰三角形,11当∠DBC=90°时,此时BD=AD,则△ABC存在奇异分割线,此时∠ABC=120°.当∠BDC=90°时,此时BD=AD,则△ABC存在奇异分割线,此时∠ABC=105°综上所述,满足条件的∠ABC的值为60°或120°或105°24.(a+b+c)2=a2+b2+c2+2ab+2ac+2bc9 x3−x=x(x−1)(x+1)解:(1)最外层正方形的面积为:(a+b+c)2,分部分来看,有三个正方形和六个长方形,其和为:a2+b2+c2+2ab+2ac+2bc总体看的面积和分部分求和的面积相等.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵a+b+c=11,ab+bc+ac=38,∴112=a2+b2+c2+2×38∴a2+b2+c2=121−76=45∴a2+b2+c2的值为45.(3)∵(2a+b)(a+2b)=2a2+2b2+5ab∴x=2,y=2,z=5∴x+y+z=9故答案为:9.(4)大立方体的体积等于x3,挖去的长方体的体积为x×1×1=x,从而剩余部分的体积为x3−x;重新拼成的新长方体体积为:x(x−1)(x+1)两者体积相等.故答案为:x3−x=x(x−1)(x+1).25.解:(1)∵∠ABC+∠ADC=360°−(α+β)=240°,∴∠MBC+∠NDC=180°−∠ABC+180°−∠ADC=α+β=120°.(2)β−α=60°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),12在△BCD中,∠BDC+∠CBD=180°−∠BCD=180°−β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴12(α+β)+180°−β+30°=180°,∴β−α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD−∠DHB=β−∠DHB,∴∠CBE+β−∠DHB=12(α+β),∵α=β,∴∠CBE+β−∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE//DF.13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第6题)(第10题)2015—2016学年第二学期期中试卷初 一 数 学 2016.4(考试时间:100分钟 满分100分)一、选择题:(每小题3分,共30分)1.下列各计算中,正确的是………………………………………………………………………( )A .3x 2▪4x 2=12x 2B .x 3▪x 5=x 15C .x 4÷x =x 3D .(x 5)2=x 7 2.以下现象:①传送带上,瓶装饮料的移动;②打气筒打气时,活塞的运动;③钟摆的摆动;④在荡秋千的小朋友.其中属于平移的是……………………………………………………( ) A .①② B .①③ C .②③ D .②④3.下列各式中,不能用平方差公式计算的是……………………………………………………( ) A .(-x -y )(x -y ) B .(x -y )(-x +y )C .(x +y )(-x +y )D .(-x +y )(-x -y )4.如果一个三角形的两条边长分别为2和6,那么这个三角形第三边的长可能是…………( )A .2B .3C .4D .6.25. 一个多边形的每一个外角都是72°,那么这个多边形的内角和为………………………( ) A .540° B .720° C .900° D .1080° 6.如图,下列条件中:(1)∠B +∠BCD =180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B =∠5.其中能判定AB //CD 的条件个数 有………………………………………………………( ) A .4B .3C .2D .17.如果a =(-2016)0,b =(12)-1,c =(-3)-2,那么a 、b 、c 的大小关系为…………………………( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b8.下列哪条线段能把一个三角形分成面积相等的两部分………………………………………( )A .中线B .高C .角平分线D .以上都不是 9.下列各图中,正确画出AC 边上的高的是……………………………………………………( )A .B .C .D . 10.如图,△ABC 的角平分线 CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ; ②CA 平分∠BCG ;③∠ADC =∠GCD ;④∠DFB =12∠CGE .其中正确的结论是………………………………………( ) A .①③ B .②④ C .①③④ D .①②③④班级 姓名 考试号 座位号---------------------------------------------------------------答 题 不 得 超 出 封 卷 线--------------------------------------------------------------------------A B CA B C E A B CA BC E(第16题)(第17题)(第18题)AB MOEN二、填空题:(每小题2分,共16分) 11.(-2xy 3)3= .12.某种生物孢子的直径为0.00063m ,用科学记数法表示为 m .13.若(x +a )(x -2)的结果中不含关于字母x 的一次项,则a = . 14. 若x 2+mx +16是一个完全平方式,则m 的值为 .15.等腰三角形的两边长分别是5cm 和10cm ,则它的周长是 cm .16.如图,面积为8cm 2的△ABC 沿BC 方向平移至△DEF 位置,平移的距离是边BC 长的两倍,则图中四边形ACED 的面积是______cm 2.17.如图,将正方形纸片ABCD 沿BE 翻折,使点C 落在点F 处,若∠DEF =30°,则∠ABF 的度数为 .18. 如图,已知∠MON =80°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .当AB ⊥OM ,且△ADB 有两个相等的角时,∠OAC 的度数为 .三、解答题(本大题共8小题,共54分) 19.计算:(每小题4分,共16分)(1) (π-3.14)0-(12)-3-12016 (2) (-a 2)3▪(a 3)2(3) -3x 2(2x -4y )+2x (x 2-xy ) (4) 2a ▪a 2▪a 3+(-2a 3)2-a 8÷a 220.(本题5分)先化简,再求值:a (a -2b )+2(a +b )(a -b )-(a -b )2,其中a =-12,b =1.-----------21.(本题5分)(1)如图是用4个全等的长方形拼成的一个“回形”正方形, 将图中阴影部分面积用2种方法表示可得一个等式,这个 等式为 ;(2)若(3x -2y )2=5,(3x +2y )2=9,求xy 的值.22.(本题6分)画图并填空:如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点. (1)画出△ABC 的AB 边上的中线CD ;(2)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1; (3)图中AC 与A 1C 1的关系是: ; (4)图中△ABC 的面积是 .23.(本题6分)将一副三角板拼成如图所示的图形,∠DCE 的平分线CF 交DE 于点F . (1)求证:CF ∥AB .(2)求∠DFC 的度数.24.(本题7分)如图①,在△ABC 中,AD 平分∠BAC ,AE ⊥BC ,∠B =40°,∠C =70°. (1)求∠DAE 的度数;(2)如图②,若把“AE ⊥BC ”变成“点F 在DAABC的延长线上,FE ⊥BC ”,其它条件不变, 求∠DFE 的度数.25.(本题9分)如图1,O 为直线AB 上一点,过O 作射线OC ,使∠AOC =120°.将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方,其中∠ONM =30°.(1)将图1中的三角尺绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠(2)将图1中的三角尺绕点O 按每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN 恰好与直线OC 垂直;在第 秒时,直线ON 恰好平分∠AOC .(直接写出结果);(3)将图1中的三角尺绕点O 逆时针旋转,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系式.并说明理由.初一数学期中考试参考答案与评分标准一.选择题: (每小题3分,共30分))NMB OACCA OBMNNMB O ACNMBO A C(图1) (图2) (备用图)±819.(1)原式=-8 …………4′(2)原式=-a12…………4′(3)原式=-4x3+10x2y …………4′(4)原式=5a6…………4′20.原式=a2-2ab+2a2-2b2-a2+2ab-b2……………………3′=2a2-3b2……………………………………………4′当a=-12,b=1时,原式=-52……………………………5′21. (1)(a+b)²-(a-b)²=4ab…………………………………2′(2)∵(3x+2y)²-(3x-2y)²=4×3x×2y…………………4′∴9-5=24x y,即xy=1 6………………………………5′22. (1)图略……1′;(2)图略……1′;(3)互相平行且相等……4′;(4)8……6′.23.(1)由题意知∠BAC=45°,∠DCE=90°………………………………1′∵CF平分∠DCE,∴∠DCF=∠FCE=45°…………………2′∵∠BAC=45°,∴∠DCF=∠BAC………………………3′∴AB∥CF………………………………………………………4′(2)由题意知∠E=60°,∵∠DFC=∠FCE+∠E………………………5′∴∠DFC=45°+60°=105°………………………………………6′24.解(1)∵∠B=40°,∠C=70°,∴∠BAC=70°………………………………1′∵CF平分∠DCE,∴∠BAD=∠CAD=35°…………………………2′∴∠ADE=∠B+∠BAD=75°…………………………………………3′∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=15°…………4′.(2)同(1),可得∠ADE=75°…………5′∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=15°……7′25.(1)∠CON=120°…………1′(2)9,27;3,21 …………5′(3)答:∠NOC±∠AOM=30°…………………………………………………………7′理由:当OM在直线AB下方时,∵∠MON=90°,∠AOC=120°,∴∠AOM=90°-∠AON,∠NOC=120°-∠AON∴∠NOC-∠AOM=(120°-∠AON)-(90°-∠AON)=30°………8′当OM在直线AB上方时,∵∠MON=90°,∠AOC=120°,∴∠NOC+∠AOM=120°-90°=30°………………………………9′。