简谐运动的描述

合集下载

简谐运动的描述

简谐运动的描述
的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平
面上做简谐运动,振动过程中A、B之间无相对运动,A的下表面与B的上
表面间的动摩擦因数为μ,弹簧的劲度系数为k。若滑动摩擦力等于最
大静摩擦力,重力加速度大小为g,则该简谐运动的最大位移为(
A.
mg
k
M m g
C.
k
B.
小球,小球静止。现将小球向下拉动距离A后由静止释放,并开始计时,
小球在竖直方向做简谐运动,周期为T。经 T 时间,小球从最低点向上
8
运动的距离_____
A (选填“大于”、“小于”或“等于”);在 T 时
2
4
刻,小球的动能______(选填“最大”或“最小”)。
【答案】小于
最大
典例分析
【典例3】(2022·河北·临城中学高二开学考试)如图所示,质量为m
问题1:O—D—B—D—O是一个周期吗?
问题2:若从振子经过C向右起,经过
怎样的运动才叫完成一次全振动?
问题3:如何测弹簧振子的周期? 简谐运动的周期与振幅有关吗?
二、周期和频率
做一做
测量小球振动的周期
如图,弹簧上端固定,下端悬挂钢球。把钢球从平衡位置
向下拉一段距离 A,放手让其运动,A 就是振动的振幅。
2.振动周期与弹簧的劲度系数有
关,劲度系数较大时,周期较小。
3.振动周期与振子的质量有关,质量较小时,周期较小。 T 2 m
k
结论: 弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与
振幅无关,所以常把周期和频率叫做固有周期和固有频率。
二、周期和频率
根据正弦函数规律,(ωt+)在每增加2π的过程中,函数值循

简谐运动的描述(高中物理教学课件)完整版

简谐运动的描述(高中物理教学课件)完整版

四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。

课件2:2.2 简谐运动的描述

课件2:2.2 简谐运动的描述

只是改变翅膀振动幅度即“振幅”的大小和翅膀的倾斜 度;只在受到天冷的影响的时候才增加每秒钟振动翅膀 的次数.正是因为这个缘故,昆虫在飞行的时候发出的音 调总是不变的.
知识梳理
1.描述简谐运动的物理量 (1)振幅: ①定义:振动物体离开平衡位置的 最大距离 ,叫做 振幅.用A表示,单位为米(m). ②物理含义:振幅是描述振动 强弱 的物理量;振幅 的大小反映了振动系统 能量 的大小. (2)全振动:振动物体以相同的 速度 相继通过同一 位置所经历的过程.

在t=0.1 s时的相位是____1_0___;在1 s的时间内振子通
过的路程是___2_0____ cm. 解可析知:,f=由1振H动z,t方=程0.1可s知时,,A,=相5位cm为,ω2π=×20π.,1由+ωπ2==2Tππ,=1 s2的πf 时间内振子通过的路程为4 A=20 cm.
知识要点1 简述简谐运动的物理量及其之间的关系
2.简谐运动的表达式 简谐运动的一般表达式为:x=Asin(ωt+φ). (1)A表示简谐运动的__振__幅____.
(2)ω是一个与频率成正比的量,称做简谐运动的圆频

率,表示简谐运动的快慢,ω=___T__=__2_π_f_. (3)ωt+φ代表简谐运动的相位,φ表示t=0时的相位, 叫做初相. 注意 对于简谐运动,质点振动的位移是随时间变化的, 但振幅不变,振幅等于质点振动时最大位移的大小.
一物体简谐运动图象如图所示,由x-t图象可知振 幅A=5 cm,周期T=4 s,2.5 s末位移为负,加速度 为正,速度为负.
名师指点 (1)简谐运动的振幅大,其振动位移不一定大,但其 最大位移一定大. (2)四分之一个周期内的路程可以等于一个振幅,可 以大于一个振幅,也可以小于一个振幅.

2.2 简谐运动的描述

2.2 简谐运动的描述
(1)明确表达式中各物理量的意义,可直接读出振幅、圆频率、初相。
(2)
2
=2πf 是解题时常涉及到的表达式。
T
像,会使解答过程简捷、明了。
(3)解题时画出其振动图
课堂评价
1.如图所示为A、B 两个简谐运动的位移—时间图像。试根据图像写出:
⑴A 的振幅、周期;B 的振幅、周期。
⑵试写出这两个简谐运动的位移随时间变化的衡位置为点O,在B、C之间做简谐运动。B、C相
距20cm。小球经过B点开始计时,经过0.5s首次到达C点。
⑴画出小球在第一个周期内的x-t图像。
⑵求5s内小球通过的路程及5s末小球的位移。
C
考虑:①对称性
②周期性
O
B
x
总结:用简谐运动位移表达式解答振动问题的方法
⑶在时间t =0.05s时两质点的位移分别是多少?
参考答案
(1)由题图知:A 的振幅是0.5 cm,周期是0.4 s;
B 的振幅是0.2 cm,周期是0.8 s。
(2) xA=0.5sin(5πt+π)cm

xB=0.2 sin(2.5πt+ ) cm
(3) xA=-
2
4
2
cm xB =
5
0.2sin π
1
T
f
2

2f
T
3.周期与振幅关系
探究:如图是竖直悬挂的弹簧振子,向下拉开一段距离A使其做简谐运动。
⑴是否振幅A越大,运动的周期T也越大?
⑵给你一个秒表,应该如何测量周期T?请验证你的猜想。
演示:测量小球振动的周期
结论:在简谐运动中,一个确定的振动系统的周期由振动系统本身的因素决定,
与振幅无关。

人教版选修3-4 第11章 第2节 简谐运动的描述

人教版选修3-4 第11章 第2节 简谐运动的描述

一、描述简谐运动的物理量┄┄┄┄┄┄┄┄① 1.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

用A 表示,单位为米(m)。

(2)物理意义:振幅是描述振动强弱的物理量;振幅的大小反映了振动系统能量的大小。

2.全振动:振动物体以相同的速度相继通过同一位置所经历的过程。

3.周期(T)和频率(f)内容 周期频率定义 做简谐运动的物体完成一次全振动需要的时间 单位时间内完成全振动的次数单位 秒(s)赫兹(Hz)物理含义 表示振动快慢的物理量关系式T =1f相位:表示振动物体不同状态的物理量,用来描述周期性运动在各个时刻所处的不同状态。

[说明]1.振幅是振子离开平衡位置的最大距离,数值上等于最大位移的绝对值。

2.正确理解全振动,应注意把握全振动的五个特征 (1)振动特征:一个完整的振动过程。

(2)物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同。

(3)时间特征:历时一个周期。

(4)路程特征:振幅的4倍。

(5)相位特征:增加2π。

①[判一判]1.振幅就是指振子的位移(×)2.振子从离开某位置到重新回到该位置的过程为一次全振动过程(×) 3.振子完成一次全振动的路程等于振幅的4倍(√) 二、简谐运动的表达式┄┄┄┄┄┄┄┄②简谐运动的一般表达式为:x =Asin(ωt+φ)。

1.x 表示振动物体相对于平衡位置的位移。

2.A 表示简谐运动的振幅。

3.ω是一个与频率成正比的量,称做简谐运动的圆频率,表示简谐运动振动的快慢,ω=2πT =2πf。

4.(ωt+φ)代表简谐运动的相位,φ表示t =0时的相位,叫做初相。

[说明]1.相位差是指两个相位之差,在实际应用中经常用到的是两个具有相同频率的简谐运动的相位差,设其初相位分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1,它反映出两个简谐运动的步调差异。

(1)同相:表明两个振动物体步调相同,相差位Δφ=0。

简谐运动的描述

简谐运动的描述

简谐运动的描述引言简谐运动是物理学中一种重要的运动形式,它在自然界和工程领域中都有广泛的应用。

本文将对简谐运动进行详细描述,并深入探讨其特征、数学表达以及应用。

定义简谐运动是一种周期性运动,其特点是运动体沿着某个轴线上往复振动,并且振动的加速度与位移成正比,且恒定。

在简谐运动中,运动体会围绕平衡位置作周期性的振动,如弹簧振子、摆锤等。

特征简谐运动有以下几个主要特征:1.振幅(Amplitude):振幅是指运动体离开平衡位置的最大位移。

它决定了简谐运动的最大振幅。

2.周期(Period):周期是指运动体完成一次完整振动所需的时间。

它与频率的倒数成正比,可以用公式T = 1/f来表示,其中T代表周期,f代表频率。

3.频率(Frequency):频率是指运动体单位时间内振动的次数。

它与周期的倒数成正比,可以用公式f = 1/T来表示,其中f代表频率,T代表周期。

4.相位(Phase):相位是指简谐运动的偏移值,用角度来度量。

在简谐运动中,相位角随时间而变化,可以用公式θ = ωt来表示,其中θ代表相位角,ω代表角频率,t代表时间。

5.动能和势能:在简谐运动中,运动体会交替转化为动能和势能。

当运动体离开平衡位置时,具有最大位移和最大动能;当运动体接近平衡位置时,具有最小位移和最小动能,但具有最大势能。

数学表达简谐运动的数学表达可以通过以下公式得到:1.位移(Displacement):\[x(t) = A \cos(\omega t + \phi)\] 其中,x代表位移,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

2.速度(Velocity):\[v(t) = -A \omega \sin(\omega t + \phi)\] 其中,v代表速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

3.加速度(Acceleration):\[a(t) = -A \omega^2 \cos(\omega t + \phi)\] 其中,a代表加速度,A代表振幅,ω代表角频率(ω = 2πf),t代表时间,φ代表相位角。

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。

第3节-简谐运动的描述

第3节-简谐运动的描述

7,简谐振动运动过程分析:
变x化 F回 随 角 复振 时 度 k子 间 x把 F在 中 不 回握 复 振 各 断 a振 , , mF动 物 发 从 动 x,F回 过 理 生 mk运 过 ,复 a x,程 av量 变 、 ,动 程 E动 K 节 aa中 ,与 与 的 化 E 学 vvP力 都 反 同 的 变 的 向 向学 , 是 重 时 时化 ::也 减 加和 点 速 速是 是 运 运能 动 动 。 本 难 量
B
O
C
x最大 F最大 a最大
v=0 EK=0 EP最大
x=0 F=0 a=0 v最大 EK最大 EP=0
x最大 F最大 a最大
v=0 EK=0 EP最大
总机械能=任意位置动能+势能=振幅位置的势能
8,简谐运动的特点 :
(1)回复力与位移成正比而方向相反,总是指向平衡位置.
(2)简谐运动是一种理想化的运动,振动过程中无阻力,所 以振动系统机械能守恒.
此时回复力为零,该位置为平衡位置记为O。
若拉长x,则弹力为F∕=k(x0+x)
此时回复力F=F∕-mgsinθ=kx,而F方向与x方向相反。
故 F= - kx成立
该振动为简谐运动
二、简谐运动的能量
简谐运动中动能和势能在发生相互转 化,但机械能的总量保持不变,即机械能守 恒。
简谐运动的能量与振幅有关,振幅越大, 振动的能量越大。一个确定简谐运动是等幅振 动
第三节 简谐运动的回复力和能量
一、简谐运动的回复力
F
x
F
x
C
O
B
1,位移x:由平衡位置O指向物体所在位置的有向线段。
2,回复力F: 物体做机械振动时,一定受到总指向平衡位

2.2简谐运动的描述

2.2简谐运动的描述

例5.如图 ,弹簧振子的平衡位置为 O 点,在 B、C两点之间做简谐运动。B、C 相距 20 cm。小球经过 B 点时开始计时,经过 0.5 s 首次到达 C 点。 (1)画出小球在第一个周期内的 x-t 图像。 (2)求 5 s 内小球通过的路程及 5 s 末小球的位移。
【思考】 振子的振幅为多大? 振子的周期为多大? 振子的圆频率为多少? 振子的初相是多大?
简谐运动的位移-时间关系
振动图象:正弦曲线
振动方程:
x Asin(t )
振子水 平方向振动 的位移恰好 等于质点做 匀速圆周运 动在竖直方 向的投影。
二.简谐运动的表达式
x Asin(t )
x A sin t (平衡位置处开始计时) x A cos t (最大位移处开始计时)
振幅
相位
离是20 cm,A到B运动时间是2 s,如图所示,则( A.从O→B→O振子做了一次全振动 半个周期
C)
B.振动周期为2 s,振幅是10 cm
C.从B开始经过6 s,振子通过的路程是60 cm
D.从O开始经过3 s,振子处在平衡位置
6s=1.5T s=6A=60cm
1个周期=4s
3s=0.75T
例4.(多选)一质点做简谐运动,其位移x与时间t的关系图
标量
矢量
标量
在稳定的振动系统 中不发生变化
大小和方向随时间 做周期性变化
随时间增加
(1)振幅等于位移最大值的数值;(2)振子在一个周期内的 路程等于4个振幅;而振子在一的特点是什么?
往复性-重复性-周期性
2.周期和频率:
(1)周期:做简谐运动的物体完成一次全振动所需要
结论:弹簧振子的周期由振动系统本身
的质量和劲度系数决定,而与振幅无关, 所以常把周期和频率叫做固有周期和固

高中物理选修3---4第十一章第二节《简谐运动的描述》

高中物理选修3---4第十一章第二节《简谐运动的描述》

(2)符号A,是标量
(3)振动物体运动范围为振幅的两倍(2A)
(4)物理意义:描述振动强弱的物理量
(5)简谐运动没有能量损耗,所以机械 能守恒定律。系统总的机械能为:
E

Ek

Ep

1 2
kA(2 其中k为一个常数)
课堂小 结
二、全振动: 1.定义:做简谐运动的物体从某一初始状态开 始,再次回到初始状态(即位移、速度、加速 度其中的任意两个物理量完全相同)所经历的 过程。
A
定为4A;
B
(2)半个周期通过的路程必 定为2A;
x/m
(3)四分之一个周期通过的路
程可能等于A,可能小于A,还
可能大于A。
t/s
六、拓展延伸:
3.简谐运动初相位 0 的求解方法:
x/m
注意:
一般情况下,初相位的取值范围- 0
t/s
①函数法:
将位移与时间的函数关系式正确表示出来:
A C O DB
物体的运动存在 周期性。
二、全振动:
A C O DB
1.定义:做简谐运动的物体从某一初始状态开始,再次回到初 始状态(即位移、速度、加速度其中的任意两个物理量完全相 同)所经历的过程。
2.规律:物体完成一次全振动经过的路程为4A。
3.规律:物体完成一次全振动所用时间均相同。
问题:若从振子经过C向右起,经过怎样的运动才叫完成一次 全振动?
x Asin(t 0) ,其中A0,0
②平移法:
将x A sin t的图像在- 范围内平移得到
x A sin(t 0 )的图像,当向左移时,0取正值, 向右移时0取负值,并且0 t
【例题】有两个简谐动:

简谐运动的描述课件

简谐运动的描述课件

详细描述
能量图是用来描述简谐运动时振子的能量随时间变化的 图像。这个图像通常以时间为横坐标,以振子的能量为 纵坐标。在能量图中,我们可以看到振子的能量是如何 随时间变化的,以及在运动过程中能量的转换和损耗。
05
简谐运动的实例分析
单摆的简谐运动
定义
单摆是一种理想的物理模型,由一根固定在一端的轻杆或 细线,另一端悬挂质量块组成。
《简谐运动的描述课件》
2023-10-30
目录
• 简谐运动概述 • 简谐运动的基本概念 • 简谐运动的公式与计算 • 简谐运动的图像描述 • 简谐运动的实例分析 • 简谐运动的总结与展望
01
简谐运动概述
简谐运动的定义
简谐运动的定义
简谐运动是指物体在一定范围内周期性地来回运动,其运动轨迹呈现为正弦 或余弦函数的形状。这种运动是自然界中最简单、最基本的周期性运动之一 。
高阶效应
对于一些高阶的振动系统,除了振幅和频率的变化外,还需要考虑高阶效应的影响。高阶 效应会导致系统的响应呈现出更为复杂的特性。
未来对简谐运动的研究方向与价值
研究方向
未来对简谐运动的研究方向主要包括:研究更为复杂 的振动系统,例如多自由度振动系统和耦合振动系统 ;研究更为精细的振动模型,例如包含更多影响因素 和非线性效应的模型;研究更为高效的求解方法,例 如能够处理大规模数据和复杂情况的数值方法。
加速度与速度
加速度
在简谐运动中,振子的速度会不断变化,因此加速度也会不断变化。加速度是描述速度变化快慢的物 理量。
速度
在简谐运动中,振子的位置不断变化,因此速度也会不断变化。速度是描述物体运动快慢的物理量。
位移与回复力
位移
在简谐运动中,振子的位置会不断变化, 这种变化称为位移。位移是描述物体位置 变化的物理量。

简谐运动的描述

简谐运动的描述

简谐运动的描述简谐运动的描述简谐运动是指一个物体在一个恒定的力场中做周期性的振动。

它是一种特殊的振动,具有周期性、稳定性和可预测性等特点。

简谐运动在自然界和工业生产中都有广泛应用,如弹簧振子、钟摆、电磁波等。

一、简谐运动的基本概念1.1 振幅振幅是指简谐运动中物体从平衡位置最大偏离距离。

通常用字母A表示,单位为米(m)。

1.2 周期周期是指简谐运动中物体完成一次完整振动所需要的时间。

通常用字母T表示,单位为秒(s)。

1.3 频率频率是指单位时间内完成的振动次数。

通常用字母f表示,单位为赫兹(Hz)。

1.4 相位相位是指在同一时刻内处于不同状态的两个物体之间的时间差。

相位差可以用角度来表示,通常用字母Φ表示。

二、简谐运动的数学描述2.1 速度与加速度公式对于简谐运动而言,速度和加速度分别可以用以下公式来计算:v = Aωcos(ωt + Φ)a = -Aω^2sin(ωt + Φ)其中,ω为角速度,可以用以下公式计算:ω = 2πf2.2 位移公式对于简谐运动而言,物体的位移可以用以下公式来计算:x = Acos(ωt + Φ)其中,A为振幅,Φ为相位差。

三、简谐运动的特点3.1 周期性简谐运动具有周期性,即物体在恒定的力场中做周期性的振动。

物体完成一次完整振动所需要的时间是固定的。

3.2 稳定性简谐运动具有稳定性,即物体在恒定的力场中做周期性的振动时,其运动状态是稳定并可预测的。

3.3 可预测性由于简谐运动具有稳定性和周期性,因此可以精确地预测物体在未来某一时刻所处的位置、速度和加速度等状态。

四、简谐运动的应用4.1 弹簧振子弹簧振子是一种常见的简谐振动系统。

它由一个质量和一个弹簧组成,在重力作用下进行周期性振动。

弹簧振子广泛应用于工业生产中的测量和控制系统中。

4.2 钟摆钟摆是一种通过重力驱动的简谐振动系统。

它由一个重物和一个支架组成,在重力作用下进行周期性振动。

钟摆广泛应用于时间测量、科学研究和导航等领域。

1.2《简谐运动的描述》

1.2《简谐运动的描述》


结论:弹簧振子的周期T由振子的 质量m和弹簧的劲度系数k决定,而 与振幅A无关。

结论:弹簧振子的周期T由振子的质量m和弹 簧的劲度系数k决定,而与振幅A无关。
(观察两个弹簧的劲度系数不同的弹簧振子的周期)
简谐运动的周期由振动系统本身性质决定, 与振幅大小无关,称为振动的固有周期?
猜想:弹簧振子的振动周期可能由 哪些因素决定? 设计实验:
(1)实验过程中,我们应该选择哪个位 置开始计时?
(2)一次全振动的时间非常短,我们应 该怎样测量弹簧振子的周期?
进行实验: 实验1:探究弹簧振子的T与k的关系. 实验2:探究弹簧振子的T与m的关系. 实验3:探究弹簧振子的T与A的关系.
s
例题3: 一个质点在平衡位置0点附近
做简谐运动,若从0点开始计时,经过3s质 点第一次经过M点;若再继续运动,又经 过2s它第二次经过M点;则质点第三次 经过M点所需要的时间是: CD A、8s B、4s C、14s D、(10/3)s
(观察两个弹簧的劲度系数相同、振幅不同的弹簧振子的周 期)
二、简谐运动的图像描述
简谐运动的物体运动情况每时每刻的变 化,用图像的方法可以形象地描述
• 简谐运动的图像是一条正弦(或余弦)曲 线,说明简谐运动的位移随时间按正弦 (或余弦)曲线规律变化。
你从图像上得到了哪些信息呢?
你从图像上得到了哪些信息呢?
振幅和位移的区别
(1)振幅等于最大位移的数值. (2)对于一个给定的振动,振子的 位移是时刻变化的,但振幅是 不变的. (3)位移是矢量,振幅是标量.
若从振子向右经过某点B起,经过 怎样的运动才叫完成一次全振动?
C
O
B
一次全振动: 物体从B到O,O到C,C到O,O到B运动过程. 振子的运动过程就是这一次全振动的不断 重复.

第三节简谐运动的公式描述

第三节简谐运动的公式描述

第三节简谐运动的公式描述简谐运动是一种特殊的周期性运动,它的公式描述可以使用正弦函数或者余弦函数来表示。

在简谐运动中,物体围绕平衡位置以固定的频率振动,振动的幅度保持不变,且运动轨迹为周期性的。

简谐运动的公式描述有以下几种形式:1. 位移公式:x(t) = A * cos(ωt + φ)其中,x(t)代表物体在时间t时刻的位移,A为振幅,ω为角频率,t为时间,φ为初相位。

2. 速度公式:v(t) = -A * ω * sin(ωt + φ)其中,v(t)代表物体在时间t时刻的速度。

3. 加速度公式:a(t) = -A * ω^2 * cos(ωt + φ)其中,a(t)代表物体在时间t时刻的加速度。

在上述的公式中,振幅A代表物体的最大位移,角频率ω代表单位时间内振动的周期数,初相位φ则决定了物体振动的起始位置。

通过这些公式,我们可以描述简谐运动的各种特性。

首先,振幅A决定了物体在简谐运动中的最大位移。

振幅越大,表示物体振动的幅度越大;振幅越小,表示物体振动的幅度越小。

其次,角频率ω决定了振动的频率,即单位时间内振动的周期数。

角频率越大,表示物体振动的频率越高;角频率越小,表示物体振动的频率越低。

初相位φ则决定了物体振动的起始位置。

当φ为零时,物体在平衡位置开始振动;当φ不为零时,物体将在偏离平衡位置的位置开始振动。

速度公式和加速度公式则描述了物体在简谐运动中的速度和加速度变化情况。

速度公式表明,在简谐运动中,物体的速度是按照正弦函数的形式进行变化的;加速度公式则表明,在简谐运动中,物体的加速度是按照余弦函数的形式进行变化的。

简谐运动的公式描述可以通过实验观察数据和理论推导得到。

在实验中,我们可以测量物体的运动轨迹、位移、速度和加速度,并通过这些数据来计算振幅、角频率和初相位等参数。

而在理论推导中,我们可以通过运动方程以及牛顿第二定律等原理,推导出简谐运动的公式描述。

总之,简谐运动的公式描述为x(t) = A * cos(ωt + φ),其中x(t)为位移,A为振幅,ω为角频率,t为时间,φ为初相位。

11.2简谐运动的描述

11.2简谐运动的描述

11.2
阅读课本P 阅读课本P5—P6,完成下列问题
1、振幅的定义及其物理意义 2、什么叫做全振动、周期、 什么叫做全振动、周期、 频率? 频率? 3、什么叫相位,初相位,相位差? 什么叫相位,初相位,相位差? 相位的物理意义是什么? 相位的物理意义是什么?
一、描述简谐运动的物理量
1、振幅(符号A) 振幅(符号A)
____
(3) 对于一个给定的振动,振子的位 对于一个给定的振动, 移是时刻变化的,但振幅是不变的. 移是时刻变化的,但振幅是不变的
-A≤X≤A
(4) 振幅等于最大位移的数值 振幅等于最大位移的数值.
问题1 若从振子经过C 问题1:若从振子经过C向 右起, 右起,经过怎样的运动才 叫完成一次振动? 叫完成一次振动?
π
π
科学漫步——月相 科学漫步——月相 1、随着月亮每天在星空 中自西向东移动, 中自西向东移动,在地球 上看,它的形状从圆到缺, 上看,它的形状从圆到缺, 又从缺到圆周期性地变化 着,周期为29.5天,这就 周期为29.5 29.5天 是月亮位相的变化, 是月亮位相的变化,叫做 月相。 月相。 2、随着月亮相对于地球和 太阳的位置变化, 太阳的位置变化,使它被 太阳照亮的一面有时朝向 地球,有时背向地球; 地球,有时背向地球;朝 向地球的月亮部分有时大 一些,有时小一些, 一些,有时小一些,这样 就出现了不同的月相。 就出现了不同的月相。
题1: 一个质点作简谐运动的振动 :
图像如图.从图中可以看出, 图像如图.从图中可以看出,该质点 的振幅A= 0.1 m,周期T=__ s,频 __ ,周期T 0.4 , 的振幅 开始在△ 0 内 率f= __ Hz,从t=0开始在△t=0.5s内 从 开始在 2.5 __ 路程 ___ 路程= 质点的位移0.1m,路程 0.5m .

简谐运动的描述课件

简谐运动的描述课件

思路分析:正确理解简谐运动的表达式中各个字母所代表的物
理意义是解题的关键。由简谐运动的表达式我们可以直接读出振动
的振幅 A、圆频率 ω(或周期 T 和频率 f)及初相 φ0。
解析:振幅是标量,A、B 的振幅分别是 3 m、5 m,选项 A 错误;A、

B 的周期均为 T=100 s=6.28×10-2 s,选项 B 错误;因为 TA=TB,所以
看,为什么?


1
2


答案:当 为整数或 的奇数倍时,t 时间内通过的路程仍为 ×4A,


1
2


但如果 不是整数,且余数不为 时,则路程不一定等于 ×4A。譬如,余
1
1
数为 ,则 T
4
4
内通过的路程,运动起点不同,路程就会不同,只有起点在
平衡位置或最大位移处时其通过的路程才等于一个振幅(A)。
此时对框架进行受力分析,可知弹簧向上的弹力恰等于框架的重力,
由此可得弹簧的压缩量。根据振幅的定义,找出平衡位置,则振幅可
求。
解析:框架的重力为 Mg,只有当铁球处在最高位置、弹簧被压缩、
框架受到竖直向上的弹力等于 Mg 时,框架对桌面的压力才恰好减
小为零。根据胡克定律,此时弹簧被压缩

Δl= ,铁球静止(处于平衡)
初始状态相同。
②时间特征:历时一个周期。
③路程特征:振幅的 4 倍。
④相位特征:增加 2π。
2.简谐运动中振幅和几个物理量的关系
(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能
量仅由振幅决定。振幅越大,振动系统的能量越大。
(2)振幅与位移:振动中的位移是矢量,振幅是标量。在数值上,

2 简谐运动的描述

2 简谐运动的描述

2 简谐运动的描述一、描述简谐运动的物理量1.振幅:振动物体离开平衡位置的最大距离.2.全振动(如图1所示)图1类似于O →B →O →C →O 的一个完整的振动过程. 3.周期和频率 (1)周期①定义:做简谐运动的物体完成一次全振动所需要的时间. ②单位:国际单位是秒(s). (2)频率①定义:单位时间内完成全振动的次数. ②单位:赫兹(Hz). (3)T 和f 的关系:T =1f .4.相位描述周期性运动在各个时刻所处的不同状态. 二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示振动物体相对于平衡位置的位移;t 表示时间.2.A 表示简谐运动的振幅.3.ω叫做简谐运动的“圆频率”,表示简谐运动的快慢,ω=2πT=2πf (与周期T 和频率f 的关系). 4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相位(或初相). 5.相位差若两个简谐运动的表达式为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2),则相位差为 Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.一、描述简谐运动的物理量 1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,称为一次全振动. (2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同. ②时间特征:历时一个周期. ③路程特征:振幅的4倍. ④相位特征:增加2π. 2.对周期和频率的理解(1)周期(T )和频率(f )都是标量,反映了振动的快慢,T =1f ,即周期越大,频率越小,振动越慢.(2)一个振动系统的周期、频率由振动系统决定,与振幅无关. 3.对振幅的理解(1)振动物体离开平衡位置的最大距离. (2)振幅与位移的区别 ①振幅等于最大位移的数值.②对于一个给定的振动,振动物体的位移是时刻变化的,但振幅是不变的. ③位移是矢量,振幅是标量. (3)路程与振幅的关系①振动物体在一个周期内的路程为四个振幅. ②振动物体在半个周期内的路程为两个振幅. ③振动物体在14个周期内的路程不一定等于一个振幅.例1 如图2所示,将弹簧振子从平衡位置下拉一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子由A 首次到B 的时间为0.1 s ,求:图2 (1)振子振动的振幅、周期和频率; (2)振子由A 到O 的时间;(3)振子在5 s 内通过的路程及偏离平衡位置的位移大小.例2 (多选)(2018·嘉兴市高二第一学期期末)如图3所示为一质点的振动图象,曲线满足正弦变化规律,则下列说法中正确的是( )图3 A.该振动为简谐振动 B.该振动的振幅为10 cmC.质点在前0.12 s 内通过的路程为20 cmD.0.04 s 末,质点的振动方向沿x 轴负方向二、简谐运动表达式的理解2.从表达式x =A sin (ωt +φ)体会简谐运动的周期性.当Δφ=(ωt 2+φ)-(ωt 1+φ)=2n π时,Δt =2n πω=nT ,振子位移相同,每经过周期T 完成一次全振动.3.从表达式x =A sin (ωt +φ)体会特殊点的值.当(ωt +φ)等于2n π+π2时,sin (ωt +φ)=1,即x =A ;当(ωt +φ)等于2n π+3π2时,sin (ωt +φ)=-1,即x =-A ;当(ωt +φ)等于n π时,sin (ωt +φ)=0,即x =0.例3 (多选)一弹簧振子A 的位移x 随时间t 变化的关系式为x =0.1sin 2.5πt ,位移x 的单位为m ,时间t 的单位为s.则( )A.弹簧振子的振幅为0.2 mB.弹簧振子的周期为1.25 sC.在t =0.2 s 时,振子的运动速度为零D.若另一弹簧振子B 的位移x 随时间t 变化的关系式为x =0.2sin (2.5πt +π4),则A 滞后B π4三、简谐运动的周期性和对称性 如图4所示图4(1)时间的对称①物体来回通过相同两点间的时间相等,即t DB =t BD .②物体经过关于平衡位置对称的等长的两线段的时间相等,图中t OB =t BO =t OA =t AO ,t OD =t DO =t OC =t CO . (2)速度的对称①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D )时,速度大小相等,方向可能相同,也可能相反. (3)位移的对称①物体经过同一点(如C 点)时,位移相同.②物体经过关于O 点对称的两点(如C 与D )时,位移大小相等、方向相反.利用简谐运动图像理解简谐运动的对称性(1)相隔Δt =⎝ ⎛⎭⎪⎫n +12T (n =0,1,2,…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向,速度也等大反向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简谐运动的描述
学习目标:
1、 理解振幅的概念;
2、 懂得周期、频率与弹簧振子的关系;
3、 学会计算周期和频率;
4、 掌握相位和初相位;
5、 掌握位移的函数表达式。

重难点:
重点:简谐运动的振幅、周期和频率;
难点:函数表达式运用。

知识要点:
一、振幅(A )
1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

2、物理意义:表示振动强弱的物理量。

3、单位:m 、cm 等长度单位。

4、振幅A 和位移X 的区别:振幅是离开平衡位置最大的位移,同一个振动振幅一定,且为正值;位移是随振子不断变化的,有正有负。

二、全振动
振子完成一个周期的振动叫做一次全振动,一次全振动的路程等于4A 。

三、周期(T )和频率(f )
1、周期T 的定义:做简谐运动的物体完成一次全振动所需要的时间。

2、频率f :单位时间内完成全振动的次数。

3、周期T 与频率f 的关系:T=f
1。

4、弹簧振子的周期与频率的特点:对同一个弹簧振子而言,它振动的周期和频率由它本身的性质所决定,与振幅的大小无关,所以弹簧振子的周期和频率又称为固有周期/固有频率。

四、相位
用于描述周期性运动在各个时刻所处的不同状态。

五、简谐运动的函数表达式
1、表达式:X=Asin (ωt+ψ);A 表示振幅,ω为角速度:ω=
T
π2=2πf ,t 为时间,ωt+ψ为相位,ψ为t=0时的相位,又叫初相位。

2、写出下列振动图象的函数表达式:
典型例题
【例题1】两个简谐振动分别为
x 1=4a sin (4πbt +21π) 和 x 2=2a sin (4πbt +2
3π) 求它们的振幅之比、各自的频率,以及它们的相位差。

【例题2】如图所示是A 、B 两个弹簧振子的振动图象,求它们的相位差。

课内训练巩固:
1.一个做简谐运动的物体,从平衡位置开始计时,经历10 s 测得物体通过了200 cm 的路程,已知物体的振动频率为2 Hz ,则该振动的振幅为______________;另一个物体作简谐运动,在24 s 共完成60次全振动,其振动周期为______________,频率为______________。

2.一个做简谐运动的质点,其振幅是4 cm ,频率是2.5 Hz ,若从平衡位置开始经过2s ,质点完成了_____________次全振动,质点的位移为_____________,通过的路程是_____________。

3.同一个弹簧振子分别被两次拉离平衡位置5 cm 和1 cm 处放手,使它们都做简谐运动,则前后两次振幅之比为_____________,周期之比为_____________,回复力的最大值之比为_____________,最大加速度之比为_____________。

4.某质点做简谐运动,从质点经过某一位置时开始计时,则 ( )
A .当质点再次经过此位置时,经历的时间为一个周期
B .当质点的速度再次与零时刻的速度相同时,经过的时间为一个周期
C .当质点的加速度再次与零时刻的加速度相同时,经过的时间为一个周期
D .以上三种说法都不对
5.如图所示,弹簧振子以O 为平衡位置在B 、C 间做简谐运动,则 ( )
A .从
B →O →
C 为一次全振动
B .从O →B →O →
C 为一次全振动
C .从C →O →B →O →C 为一次全振动
D .从D →C →D →O → B 为一次全振动
6.在上题中的弹簧振子,若BC=5 cm ,则下列说法中正确的是 ( )
A .振幅是5 cm
B .振幅是2.5 cm
C .经3个全振动时振子通过的路程是30 cm
D .不论从哪个位置开始振动,经两个全振动,振子的位移都是零
7.下列关于简谐运动的周期、频率、振幅的说法正确的是 ( )
A .振幅是矢量,方向是从平衡位置指向最大位移处
B .周期和频率的乘积是个常数
C .振幅增大,周期也必然增大,而频率减小
D .弹簧振子的频率只由弹簧的劲度系数决定
8.一弹簧振子的振动周期为0. 20 s ,当振子从平衡位置开始向右运动,经过1.78 s 时,振子的运动情况是 ( )
A .正在向右做减速运动
B .正在向右做加速运动
C .正在向左做减速运动
D .正在向左做加速运动
9.一个做简谐运动的物体,频率为25 Hz ,那么它从一侧最大位移的中点D ,振动到另一侧最大位移的中点C 所用的最短时间,下面说法中正确的是 ( )
A .等于0.01 s
B .小于0.01 s
C .大于0.01 s
D .小于0.02 s 大于0.01 s
课后拓展延伸:
10.质点沿直线以O 为平衡位置做简谐运动,A 、B 两点分别为正最大位移处与负最大位移处的点,A 、B 相距10 cm ,质点从A 到B 的时间为0.1 s ,从质点到O 点开始计时,经0.5 s ,则下述说法中正确的是 ( )
A .振幅为10 cm
B .振幅为20 cm
C .通过路程50 cm
D .质点位移为50 cm
11.弹簧振子在振动过程中,振子经a 、b 两点的速度相等,且从a 点运动到b 点最短历时为0.2 s ,从b 点再到b 点最短历时0.2 s ,则这个弹簧振子的振动周期和频率分别为
( )
A .0.4s ,2.5Hz
B .0.8s ,2.5Hz
C .0.4s ,1.25Hz
D .0.8s ,1.25Hz
12.如图所示,弹簧振子在BC 间做简谐运动,O 为平衡位置,BC 间距离为10cm ,B→C 运动时间为1 s ,则 ( )
A .从O→C→O 振子做了一次全振动
B .振动周期为1 s ,振幅为10 cm
C .经过两次全振动,通过的路程为20 cm
D .从B 开始经过3 s ,振子通过的路程是30 cm
13.弹簧振子以O 点平衡位置在B 、C 两点之间做简谐运动,B 、C 相距20 cm ,某时刻振子处于B 点,经过0.5 s ,振子首次到达C 点,求:
(1)振动的周期和频率;(2)振子在5 s 内通过的路程。

14.一个质点在平衡位置O 点附近做简谐运动,若从O 点开始计时,经过5 s 质点第一次经过M 点,如图所示;再继续运动,又经过2 s 它第二次经过M 点,求该质点的振动周期。

b O M。

相关文档
最新文档