第四章复习2

合集下载

毛概总复习之第四章重点及出题方向2

毛概总复习之第四章重点及出题方向2

一、名词解释和平赎买:国家有偿地将私营企业改变为国营企业,将资本主义所有制转变为社会主义公有制。

.过渡时期的国家资本主义:在无产阶级国家管理之下的、用各种形式和社会主义国营经济联系着的、并受工人监督的资本主义经济,是从资本主义私有制到社会主义公有制的一种过渡的经济形式。

二、问答题1、土地改革后,中国农村出现了什么样的新问题?针对出现的问题党中央对个体农业进行社会主义改造基本思路是什么?答:土地改革基本完成后,在广大农村中还存在着富农的资本主义所有制和广泛的个体农民所有制。

党中央对农村中出现的两极分化现象和资本主义自发倾向极为关注,毛泽东曾尖锐地指出:“对于农村的阵地,社会主义不去占领,资本主义就必然会去占领。

”农业合作化是发展农业生产力的需要,是社会主义工业化的需要。

而且在我国农村也极有实现合作化的可能性:一是广大农民愿意在党的领导下逐步走上社会主义道路;二是党有能力领导农民进入社会主义。

2、社会主义改造的历史经验P102页3、社会主义改造中的失误和偏差:P104最后一段4、在我国社会主义改造的历史上,有两个事实是世界历史上各种革命大变动中罕见的:P105倒数第五行5、为什么要对资本主义工商业实行和平赎买而不是暴力没收?答:1.民族资产阶级是具有两面性的阶级。

2.中国工人阶级同民族资产阶级有着长期的统一战线的关系。

3.我国建立了人民民主专政的国家政权。

4.我国民族资产阶级具有一定现代科学文化知识和技术专长,可以为社会主义建设服务。

6、对资本主义工商业改造的基本形式P101第一段7、对资本主义工商业的社会主义改造经历了三个步骤:P101第二段三、材料题案例一“整个国家形象”的穷棒子社20世纪50年代初,在全国的农业合作化运动中,涌现出了很多先进的集体,其中有一面我国农业合作化运动中的鲜红旗帜——河北省遵化县西铺村的“穷棒子”社。

它以勤俭创业的非凡业绩,受到了毛泽东主席的表彰,被赞誉为“我们整个国家的形象”。

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》期末复习综合训练2(附答案)

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》期末复习综合训练2(附答案)

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》期末复习综合训练2(附答案)1.如果点A(m+2,m﹣1)在x轴上,那么点B(m+3,m﹣2)关于x轴的对称点的坐标是()A.(4,﹣1)B.(﹣4,﹣1)C.(4,1)D.(﹣4,1)2.如图,象棋盘上若“马”位于点(6,1),则“将”位于()A.(3,﹣2)B.(2,﹣2)C.(0,﹣1)D.(﹣3,0)3.点P(x,y)在第四象限,且点P到x轴和y轴的距离分别为3和5,则点P的坐标为()A.(3,﹣5)B.(﹣5,3)C.(5,﹣3)D.(﹣3,5)4.在平面直角坐标系中,点P(﹣2,3)关于直线x=1的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,点A的坐标为(﹣3,4),那么下列说法不正确的是()A.点A与点B(﹣3,﹣4)关于x轴对称B.点A与点C(3,4)关于y轴对称C.点A与点D(﹣3,﹣1)关于直线y=1对称D.点A与点E(1,4)关于直线x=﹣1对称6.已知点P(3,﹣1),关于y轴的对称点的坐标是.7.点P(4,0)到点Q(5,﹣12)的距离是.8.在平面直角坐标系中,点P(﹣3,1)关于坐标原点中心对称的点P′的坐标是.9.已知点A(﹣1,1),点B(1,3),若点M是线段AB的中点,则点M的坐标为.10.在平面直角坐标系中,点A(﹣2,0),B(0,6),C是x轴负半轴上的一点,且∠ABC =45°,则点C的坐标为.11.在平面直角坐标系xOy中,点A(2+2m,1),点B(2﹣m,4),其中m为实数,点O 关于直线AB的对称点为C,则AB的最小值为,点P(﹣2,0)到点C的最大距离为.12.如图,在平面直角坐标系中,O是原点,点B、C在x轴正半轴上,点A在第一象限,∠AOC=60°,OA=6,OB=9,∠OAC=∠ABO,在y轴上找一点P,使△ACP是直角三角形,则点P的坐标是.13.如图,在平面直角坐标系中,A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),点E 在x轴上,满足∠BED=∠DEC,则点E的坐标为.14.平面直角坐标系中,点A(0,5),点B(﹣5,3),点C为x轴负半轴上一点,且∠BAC =45°,则点C的横坐标为.15.已知点P(a+2,2a﹣3),根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(﹣3,a),直线PQ∥x轴.16.已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)点M在象限的角平分线上,求点M的坐标;(2)点M到x轴的距离为1时,求点M的坐标.17.在平面直角坐标系中,点A(2m﹣n,m+2n)在第四象限,点A到x轴的距离为1,到y轴的距离为8,试求(m+n)2021的值.18.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.19.已知a,b都是实数,设点P(a+2,),且满足3a=2+b,我们称点P为“梦之点”.(1)判断点A(3,2)是否为“梦之点”,并说明理由.(2)若点M(m﹣1,3m+2)是“梦之点”,请判断点M在第几象限,并说明理由.20.在平面直角坐标系中:(1)若点M(m﹣6,2m+3),点N(5,2),且MN∥y轴,求M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求M的坐标;(3)若点M(m﹣6,2m+3)到两坐标轴的距离相等求M的坐标.21.在平面直角坐标系中,任两点A(x1,y1),B(x2,y2).规定运算:①A⊙B=(x1+x2,y1+y2);②当x1=x2,y1=y2时,有A=B成立.设点C(x3,y3),若A⊙B=B⊙C,试说明A=C.22.定义:若实数x,y,x′,y′满足x=kx′+3,y=ky′+3(k为常数,k≠0),则在平面直角坐标系xOy中,称点(x,y)是点(x',y')的“k值关联点”.例如,点(7,﹣5)是点(1,﹣2)的“4值关联点”.(1)判断在A(2,3),B(2,4)两点中,哪个是P(1,﹣1)的“k值关联点”;(2)设两个不相等的非零实数m,n满足点E(m2+mn,2n2)是点F(m,n)的“k值关联点”求点F到原点O的距离的最小值.23.先阅读一段文字,再回答下列问题:已知在平面内两点坐标P1(x1,y1),P2(x2,y2),其两点间距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于x轴或垂直于x轴,距离公式可简化成|x2﹣x1|或|y2﹣y1|.(1)已知A(3,5),B(﹣2,﹣1),试求A,B两点的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点的距离.(3)已知一个三角形各顶点坐标为A(0,6),B(﹣3,2),C(3,2),你能断定此三角形的形状吗?说明理由.24.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.25.如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P从O点出发沿折线OA ﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C 重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.26.如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB则可量出∠OAB=30°.若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C 是线段AB的“等长点”.(1)在点,点,点中,线段AB的“等长点”是点;(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求m和n的值.参考答案1.解:∵点A(m+2,m﹣1)在x轴上,∴m﹣1=0,解得:m=1,∴m+3=4,m﹣2=﹣1,∴点B(m+3,m﹣2)即(4,﹣1)关于x轴的对称点的坐标是(4,1).故选:C.2.解:如图所示:“将”位于(3,﹣2).故选:A.3.解:点P(x,y)点在第四象限,且点P到x轴、y轴的距离分别为3、5,则点P的坐标为(5,﹣3),故选:C.4.解:点P(﹣2,3)关于直线x=1的对称点P′(4,3),∴P′在第一象限,故选:A.5.解:A、点A与点B(﹣3,﹣4)关于x轴对称,正确,本选项不符合题意.B、点A与点C(3,4)关于y轴对称,正确,本选项不符合题意.C、点A与点D(﹣3,﹣1)关于直线y=1对称,错误应该是关于直线y=1.5对称,本选项符合题意.D、点A与点E(1,4)关于直线x=﹣1对称,正确,本选项不符合题意.故选:C.6.解:∵点P(3,﹣1),∴点P关于y轴的对称点的坐标是(﹣3,﹣1),故答案为:(﹣3,﹣1).7.解:点P(4,0)到点Q(5,﹣12)的距离==.故答案为.8.解:根据关于原点对称的点的坐标的特征,得点P(﹣3,1)关于坐标原点中心对称的点P′的坐标是(3,﹣1).故答案为:(3,﹣1).9.解:(1)∵A(﹣1,1),B(1,3),∴线段AB的中点M(0,2),故答案为:(0,2).10.解:如图,在x轴正半轴上取点D,使OD=OB=6,则∠BDC=∠ABC=45°,∵∠BCA=∠DCB,故答案为:(﹣12,0).11.解:∵A(2+2m,1),点B(2﹣m,4),∴点A在直线y=1上,点B在直线y=4上,∴AB的最小值为3,如图,设直线AB的解析式为y=kx+b.则有,解得,∴直线AB的解析式为y=﹣•x+3+,∵x=2时,y=3,∴直线AB经过定点D(2,3),连接PD,CD,OD,∵P(﹣2,0),∵PD==5,OD==,∵O,C关于直线AB对称,∴DC=OD=,∴PC≤PD+CD=5+,∴PC的最小值为5+.故答案为:3,5+.12.解:∵∠AOC=∠BOA,∠OAC=∠ABO,∴C(4,0),当∠ACP=90°时,过点A作AH⊥OB于H,则OH=OA•cos60°=3,AH=3,∵∠ACP=∠OCP=∠AHC=90°,∴∠ACH+∠OCP=90°,∠OCP+∠OPC=90°,∴∠ACH=∠OCP,∴OP=,∴P(0,﹣),当∠P′AC=90°时,同法可得P′(0,),当∠APC=90°时,设P(0,m),则有()2+(m﹣)2=()2,方程无解,此种情形不存在,综上所述,满足条件的点P的坐标为(0,﹣)或(0,).13.解:①如图,过D作DT⊥AC于T,∵A(4,0),B(﹣2,0),C(4,4),D(﹣2,6),∴∠DBA=∠BAT=∠ATD=90°,BD=BA=6,∴四边形ABDT是正方形,连接AD,则∠BAD=∠TAD=45°,∴E,A重合时,有∠BED=∠DEC,∴E点的坐标为(4,0).②如图,过D作DH⊥EC于H,∵∠BED=∠DEC,DB⊥BE,∴DB=DH=6,∵C(4,4),D(﹣2,6),∴CD=,CH=,由三角形内角和定理可得:∠BDE=∠HDE,∵DB⊥BE,DH⊥EH,∴BE=HE设BE=x,则HE=x,CE=x+2,AE=6﹣x,∵CA⊥EA,CA=4,∴(x+2)2=(6﹣x)2+42,解得,x=3,∴BE=3,∴E点的坐标为(1,0);综上,E点的坐标为(1,0)或(4,0).故答案为:(1,0)或(4,0).14.解如图,过B作AB的垂线与AC的延长线交于E点,过A、E点作x轴平行线,过B作y轴平行线,分别交于点G、H,则∠ABE=90°,又∠BAC=45°,∴△ABE为等腰直角三角形,∵∠GAB+∠GBA=∠HBE+∠GBA=90°,∴∠GAB=∠HBE,△ABG与△BEH中,,∴△ABG≌△BEH(AAS),∴BH=AG=5,HE=GB=2,∴E为(﹣3,﹣2),又A为(0,5),∴直线AE的解析式为:,令y=0,得,∴C为(,0),∴C点的横坐标为﹣故答案为:.15.解:(1)令a+2=0,解得a=﹣,∴2a﹣3=2×(﹣)﹣3=﹣,∴P点的坐标为(0,﹣);(2)令2a﹣3=a,解得a=3.∴a+2=×3+2=,2a﹣3=2×3﹣3=3,所以P点的坐标为(,3).16.解:(1)当点M在一、三象限角平分线上时,m﹣1=2m+3,∴m=﹣4,∴点M坐标为(﹣5,﹣5);当点M在二、四象限角平分线上时,﹣(m﹣1)=2m+3,∴m=﹣,∴点M坐标为(﹣,);∴点M坐标为(﹣,)或(﹣5,﹣5);(2)∵|2m+3|=1,∴2m+3=1或2m+3=﹣1,解得:m=﹣1或m=﹣2,∴点M坐标为(﹣2,1)或(﹣3,﹣1).17.解:∵点A(2m﹣n,m+2m)在第四象限,点A到x轴的距离为1,到y轴的距离为8,∴,解得,∴(m+n)2021=12021=1.18.解:如图所示:国旗杆(0,0),校门(﹣3,0),教学楼(3,0),实验楼(3,﹣3),图书馆(2,3).19.解:(1)当A(3,2)时,a+2=3,,解得a=1,b=1,则3a=3,2+b=3,所以3a=2+b,所以A(3,2),是“梦之点”;(2)点M在第三象限,理由如下:∵点M(m﹣1,3m+2)是“梦之点”,∴a+2=m﹣1,,∴a=m﹣3,b=6m+1,∴代入3a=2+b有3(m﹣3)=2+(6m+1),解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.20.解:(1)∵MN∥y轴,∴M点的横坐标和N点的横坐标相同,∴m﹣6=5,得m=11,∴M点坐标为(5,25),故M点坐标为(5,25);(2)∵MN∥x轴,∴M点的纵坐标和N点的纵坐标相同,∴b=2,∵MN=3,∴|a﹣5|=3,解得a=8或a=2,∴M点坐标为(8,2)或(2,2),故M点坐标为为(8,2)或(2,2);(3)∵M点到两坐标轴距离相等,M点横坐标和纵坐标不能同时为0,∴M不在原点上,分别在一三象限或二四象限,当在一三象限时,可知m﹣6=2m+3,得m=﹣9,M点坐标为(﹣15,﹣15),当在二四象限时,可知m﹣6=﹣(2m+3),得m=1,M点坐标为(﹣5,5),∴M点坐标为(﹣15,﹣15)或(﹣5,5),故M点坐标为(﹣15,﹣15)或(﹣5,5).21.解:∵A(x1,y1),B(x2,y2),C(x3,y3),∴A⊙B=(x1+x2,y1+y2),B⊙C=(x2+x3,y2+y3),∵A⊙B=B⊙C,∴x1+x2=x2+x3,y1+y2=y2+y3,∴x1=x3,y1=y3,∴A=C.22.解:(1)若A(2,3)是P(1,﹣1)的“k值关联点”,则k+3=2,解得k=﹣1,﹣k+3=3,解得k=0,∵k的值前后矛盾,∴A(2,3)不是P(1,﹣1)的“k值关联点”,若B(2,4)是P(1,﹣1)的“k值关联点”,则k+3=2,解得k=﹣1,﹣k+3=4,解得k=﹣1,∵k值符合题意,∴B(2,4)是P(1,﹣1)的“k值关联点”;(2)由题意可得:,整理,可得,∴m2n+mn2﹣3n=2mn2﹣3m,mn(m﹣n)+3(m﹣n)=0,(m﹣n)(mn+3)=0,∵m≠n,∴mn+3=0,即mn=﹣3,∴m=﹣,∵点F(m,n)到原点O的距离为,且(m+n)2≥0,∴m2+n2+2mn≥0,∴m2+n2≥﹣2mn,而﹣2mn=﹣2n•=6,∴m2+n2≥6,∴点F(m,n)到原点O的距离≥,即点F到原点O的距离的最小值为.23.解:(1)∵A(3,5)、B(﹣2,﹣1),∴AB==;(2)设点A的坐标为(m,5),则点B的坐标为(m,﹣1),∴AB==6;(3)△ABC为等腰三角形.理由如下:∵A(0,6),B(﹣3,2),C(3,2),∴AB==5,BC==6,AC==5,∴AB=AC,∴△ABC为等腰三角形.24.(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).25.解:(1)∵a,c满足关系式(a﹣6)2+(c+8)2=0,∴a﹣6=0,C+8=0,∴a=6,c=﹣8,∴B(6,﹣8).当点P到AB的距离为2个单位长度时,s=6﹣2=4,或s=6+8+2=16,∴4÷2=2s或16÷2=8s,故答案为:2s或8s.(2)①当0≤t≤3时,点P在OA上,此时,P(2t,0).②当3≤t≤7时,点P在AB上,此时,P A=2t﹣6,由于点P在第四象限,纵坐标小于0,则P(6,6﹣2t).③当7≤t≤10时,点P在BC上,此时PB=2t﹣OA﹣AB=2t﹣14,PC=BC﹣PB=6﹣(2t﹣14)=20﹣2t.∴P(20﹣2t,﹣8).(3)当点P在线段AB上时,分两种情况:①如图3中,结论:∠PEA+∠PFC=160°,理由如下:连接OP,∵∠PFC=∠FPO+∠FOP,∠AEP=∠EOP+∠EPO,∴∠PEA+∠PFC=∠FPO+∠FOP+∠EOP+∠EPO=∠AOF+∠EPF=90°+70°=160°;②如图4中,结论:∠PFC﹣∠AEP=20°,理由如下:设PM交OC于G,∵∠AEP+∠EGO=90°,∠EGO=∠PGF=110°﹣∠PFC,∴∠AEP+110°﹣∠PFC=90°,∴∠PFC﹣∠AEP=20°,综上所述,∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°.26.解:(1)∵A(0,3),B(,0),∴AB=2 ,∵点C1(0,3+2 ),∴AC1=3+2﹣3=2,∴AC1=AB,∴C1是线段AB的“等长点”,∵点C2(﹣,0),∴AC2==2,∴AC2=AB,∴C2是线段AB的“等长点”,∵点C3(0,﹣),∴BC3=,∴BC3≠AB,∴C3不是线段AB的“等长点”;故答案为:C1,C2;(2)如图,在Rt△AOB中,OA=3,OB=,∴AB=2 ,∴∠OAB=30°,当点D在y轴左侧时,∵∠DAB=60°,∴∠DAO=∠DAB﹣∠BAO=30°,∵点D(m,n)是线段AB的“等长点”,∴AD=AB,∴D(﹣,0),∴m=,n=0,当点D在y轴右侧时,∵∠DAB=60°,∴∠DAO=∠BAO+∠DAB=90°,∴n=3,∵点D(m,n)是线段AB的“等长点”,∴AD=AB=2 ,∴m=2,综上,m=,n=0或m=2,n=3.。

2022年高考化学一轮复习第四章课时2硫及其重要化合物

2022年高考化学一轮复习第四章课时2硫及其重要化合物

H2的混合气体
()
(5)向溶液中滴加Ba(NO3)2溶液出现白色沉淀,说明该溶液
中一定有SO42-
()
答案:(1)× (2)× (3)√ (4)√ (5)×
2.下列关于硫酸的叙述中,正确的是
()
A.浓硫酸具有脱水性,因而能使蔗糖炭化
B.浓硫酸有强氧化性,不可贮存在铝、铁容器中
C.浓硫酸是一种干燥剂,能够干燥氨气、氢气等气体
Ca(ClO)2、Na2O2、 H2O2、O3等
不可逆、 持久
与有机色质内
加合 部 “ 生 色
型 团”“化合”
SO2
可逆、 不持久
成无色物质
吸附 将有色物质吸 型 附而褪色
活性炭
物理 变化
备注 无选 择性
有选 择性
吸附 色素
(3)实验室制备与探究流程
[名师点拨] 用70%左右的浓硫酸而不用98.3%的浓硫酸 或稀硫酸的原因:若用98.3%的浓硫酸,因其含水少,硫酸主 要以分子形式存在,H+浓度很小,难以反应。若用稀硫酸, 则含水量多,因SO2易溶于水,不利于SO2的逸出。
即为BaSO4白色沉淀,C项中不能排除AgCl沉淀的可能。
答案:C
知识点三 硫及其化合物的 相互转化及应用
【考必备·清单】 1.理清硫元素的化合价与氧化性、还原性之间的关系
2.掌握硫及其化合物之间的转化规律 (1)相同价态硫的转化是通过与酸、碱反应实现的 如:
②、③、④反应的化学方程式分别为 ②H2SO3+2NaOH===Na2SO3+2H2O; ③Na2SO3+H2SO4===Na2SO4+H2O+SO2↑; ④SO2+Na2SO3+H2O===2NaHSO3。
+3H2O)
知识点二 硫酸 硫酸根离子 的检验

2024届新高考一轮总复习人教版 第四章 第2节 同角三角函数的基本关系式及诱导公式 课件(35张)

2024届新高考一轮总复习人教版 第四章 第2节 同角三角函数的基本关系式及诱导公式 课件(35张)

所以 cos2α=190,由 α 为第二象限角,易知 cosα<0,所以 cos α=-31010,sin α= 1100,
C.sin 54π+α=12
B.cos π4-α=12 D.cos 54π-α=-12
解析:由 sin π4+α=12,可得 cos (π4+α)=± 23,sin 54π+α=sin π+π4+α=-sin π4+α=-12,cos π4-α=cos [π2-π4+α]=sin π4+α=12,cos 54π-α=cos π+π4-α= -cos π4-α=-12.
(sin α+cos α)2-(sin α-cos α)2=4sin αcos α;
sin α=tan αcos αα≠π2+kπ,k∈Z;
sin
2α=sin
sin 2α 2α+cos
2α=tanta2nα2+α 1;
cos2α=sin
cos 2α 2α+cos
2α=tan21α+1.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)若 α,β 为锐角,则 sin2α+cos2β=1.( ) (2)sin(π+α)=-sin α 成立的条件是 α 为锐角.( ) (3)若 α∈R,则 tan α=csoins αα恒成立.( ) (4)若 sin (kπ-α)=13(k∈Z),则 sin α=13.( ) 答案:(1)× (2)× (3)× (4)×
2.三角函数的诱导公式
组数




角 2kπ+α(k∈Z) π+α
-α
π-α
正弦 余弦 正切
口诀
__s_in__α__ __c_o_s_α__ __ta_n__α__
__-__s_i_n_α__ __-__s_in__α__ __s_in__α__ __-__c_o_s_α__ __co_s__α__ _-___co_s__α__ __t_an__α__ __-__t_a_n_α__ _-___ta_n_α___

第四章 代数式复习(2)2

第四章 代数式复习(2)2

1、某同学计算 2 ( - 3 ) 时,错抄成 2× - 3 ,因此得到错误答案为 a , 如果正确答案为 b ,那么 a – b = 3 。
2.在计算当
2
( x 2 xy y) 2( y xy) (3x y)
2
1 x , y 10, 求代数式 2
的值时,小明把 y= -10 错抄成 -1 , 但他计算的
浙教版七年级上册 第4章 代数式
代数式复习课 (第二课时)
做一做:
根据数量关系填空:
1、梨的价格是每箱x元,a箱梨共 ax 元。 2、正方形边长为a cm,则正方形周长为 4a 2 2 面积为 a cm。 cm,
3、温州二中七年级一班有学生x人,二班比一班多y人, 则二班有学生 (X+y) 人。
2
合并同类项: 把同类项的系数相加,所得结果作 为系数,字母和字母的指数不变。
3、下列各式去括号正确的是( D ) A、a-(b-c+d) = a-b+c+d
B、-(a-b)+(-c+d)= a+b-c-d
C、a-3(b-2c)=a-3b+2c D、(a-b)-(c-d)=a-b-c+d 去括号法则:
3 1 3) h 1 h 2 2
4)
3 h 2
2(a b)
(a b) 2 (a b)2
结合你的生活实际,
举2个可以用a-b表示结果的实际问题
注意:1. 根号里 能否把以下代数式进行分类 : 含字母,分母含 ax , 4a , a x+y,10a+2b, 字母都不是整式
2003的值。 求( 2a+5b ) 解:
(1)由题意得:m-1=2,得 m=3于是 2ax3y+5bx3y=(2a+5b)x3y=0,且xy≠0,

2021-2022学年浙教版九年级数学上册《第4章相似三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版九年级数学上册《第4章相似三角形》期末综合复习训练2(附答案)

2021-2022学年浙教版九年级数学上册《第4章相似三角形》期末综合复习训练2(附答案)1.已知,那么下列等式中,不成立的是()A.B.C.(y≠﹣4a)D.4x=3y2.下列线段中,能成比例的是()A.3cm,6cm,8cm,9cm B.3cm,5cm,6cm,9cmC.3cm,6cm,7cm,9cm D.3cm,6cm,9cm,18cm3.如图,已知点D、F在△ABC的边AB上,点E在边AC上,且DE∥BC,要使得EF∥CD,还需添加一个条件,这个条件可以是()A.B.C.D.4.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3B.6C.D.105.若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍B.8倍C.4 倍D.2 倍6.如图,在△ABC中,AB=9,BC=18,AC=12,点D在边AC上,且CD=4,过点D 作一条直线交边AB于点E,使△ADE与△ABC相似,则DE的长是()A.12B.16C.12或16D.以上都不对7.附加题:若x=,则x=.8.已知线段a=4,b=1,如果线段c是线段a、b的比例中项,那么c=.9.如图,△ABC中,D在AC上,且AD:DC=1:n,E为BD的中点,AE的延长线交BC 于F,那么的值为(用n表示).10.利用复印机的缩放功能放大一个三角形,将原图中边长为3,5,6的三角形的最长边放大到8,那么放大后的那个三角形的周长为.11.如图,一个矩形广场的长为90m,宽为60m,广场内有两横,两纵四条小路,且小路内外边缘所围成的两个矩形相似,如果两条横向小路的宽均为1.2m,那么每条纵向小路的宽为m.12.两个相似三角形周长的差是4cm,面积的比是16:25,那么这两个三角形的周长分别是cm和cm13.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD 于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF ∽△ACD,其中一定正确的是.(填序号)14.如图,在直线m上摆放着三个等边三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S2,S3,若S1+S3=12,则S2=.15.如图,数学兴趣小组测量校园内旗杆的高度,小华拿一支刻有厘米分划的小尺,站在距旗杆30米的地方,手臂向前伸直,小尺竖直,看到尺上约12个分划恰好遮住旗杆,已知臂长60cm,则旗杆高为米.16.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.17.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)18.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.19.如图,BC,AD相交于点C,△ABC∽△DEC,AC=4.8,CD=1.6,BC=9.3.(1)求CE的长;(2)求证:BC⊥AD.20.如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.21.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.22.已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.(1)如图1,当OA=OB,且D为OA中点时,求的值;(2)如图2,当OA=OB,且时,求tan∠BPC的值.(3)如图3,当AD:AO:OB=1:n:时,直接写出tan∠BPC的值.参考答案1.解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.2.解:A、∵3×9≠6×8,故此选项错误;B、∵3×9≠5×6,故此选项错误;C、∵3×9≠6×7,故此选项错误;D、∵3×18=6×9,故此选项正确;故选:D.3.解:∵DE∥BC,∴,∴当时,,∴EF∥CD,故C选项符合题意;而A,B,D选项不能得出EF∥CD,故选:C.4.解:∵AD∥BC,∴△CBE∽△AED,∴BE:AE=CE:ED=3:5,∵CD=16.CE+ED=CD,∴DE=,故选:D.5.解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的4倍,那么正方形的面积是原来正方形面积的4×4=16倍.故选:A.6.解:∵∠A=∠A,分为两种情况:①DE∥BC(即∠ADE=∠C),∴△ADE∽△ACB,∴=,∴,∴DE=12,②∠ADE′=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,∴=,∴AE=>AB,不合题意,故选:A.7.解:①a+b+c=0时,b+c=﹣a,c+a=﹣b,a+b=﹣c,∴x===﹣1;②a+b+c≠0时,x===.综上所述,x=或﹣1.故答案为:或﹣1.8.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.则c2=4×1,c=±2,(线段是正数,负值舍去),故c=2;故答案为2.9.证明:∵AD:DC=1:n,∴AD:AC=1:(n+1).作DG平行于AF交BC于G,则=,根据比例的性质知,==,又E是BD的中点,∴EF是△BGD的中位线,∴BF=FG.∴=.故答案为:.10.解:因为原图中边长为3,5,6的三角形的最长边放大到8,所以放大前后的两个三角形的周长比为6:8=14:,故答案为:11.解:设每条纵向小路的宽为xm.∵小路内外边缘所围成的两个矩形相似,∴,解得,x=1.8,或,解得x=25.8(不符合实际意义)故答案为:1.8.12.解:由题意,相似比=4:5,两个相似三角形周长的比是4:5,可得:5x﹣4x=4,解得:x=4,所以这两个三角形的周长分别是16cm,20cm;故答案为:16;2013.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵==,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故答案为:①②③.14.解:设AC与FH交于P,CD与HG交于Q,∵F、G分别是BC、CE的中点,AB∥HF∥DC∥GN,∴MF=AC=BC,PF=AB=BC,又∵BC=CE=CG=GE,∴CP=MF,CQ=BC,QG=GC=CQ=AB,∴S1=S,S3=2S,∵S1+S3=12,∴S+2S=12,∴S=4.8,故答案为:4.8.15.解:由题意可知△ABC是等腰三角形,AG为高,∴BG=BC,DF=DE=×12cm=0.06m,AF为臂长,即60cm=0.6m.AG=30m,由题意可知△AFD∽△AGB,即=,即=,解得BG=3m,∴BC=2BG=2×3=6m.16.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).17.解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.18.证明:∵DE∥BC,∴,∵AD2=AF•AB,∴,∴,∴EF∥DC.19.解:(1)∵△ABC∽△DEC,∴又∵AC=4.8,CD=1.6,BC=9.3∴EC=3.1;(2)∵△ABC∽△DEC,∴∠ACB=∠DCE,∵∠ACB+∠DCE=180°,∴∠ACB=∠DCE=90°,∴BC⊥AD.20.解:(1)△BPQ是等边三角形当t=2时AP=2×1=2,BQ=2×2=4∴BP=AB﹣AP=6﹣2=4∴BQ=BP又∵∠B=60°∴△BPQ是等边三角形;(2)过Q作QE⊥AB,垂足为E在Rt△BEQ中,∠BQE=90°﹣∠B=30°,QB=2t,∴BE=t,QE=t由AP=t,得PB=6﹣t∴S△BPQ=×BP×QE=(6﹣t)×t=﹣t ∴S=﹣t;(3)∵QR∥BA∴∠QRC=∠A=60°,∠RQC=∠B=60°∴△QRC是等边三角形∴QR=RC=QC=6﹣2t∵BE=BQ•cos60°=×2t=t∴EP=AB﹣AP﹣BE=6﹣t﹣t=6﹣2t∴EP∥QR,EP=QR∴四边形EPRQ是平行四边形∴PR=EQ=t又∵∠PEQ=90°,∴∠APR=∠PRQ=90°∵△APR∽△PRQ,∴,∴解得t=∴当t=时,△APR∽△PRQ.21.证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.22.解:(1)过D作DE∥CO交AC于E,∵D为OA中点,∴AE=CE=,,∵点C为OB中点,∴BC=CO,,∴,∴PC==,∴=2;(2)过点D作DE∥BO交AC于E,∵,∴==,∵点C为OB中点,∴,∴,∴PC==,过D作DF⊥AC,垂足为F,设AD=a,则AO=4a,∵OA=OB,点C为OB中点,∴CO=2a,在Rt△ACO中,AC===2a,又∵Rt△ADF∽Rt△ACO,∴,∴AF=,DF=,PF=AC﹣AF﹣PC=2a﹣﹣=,tan∠BPC=tan∠FPD==.(3)与(2)的方法相同,设AD=a,求出DF=a,PF=a,所以tan∠BPC=.。

2022-2023学年北师大版数学七年级下册+第四章+三角形++期末复习题(2)

2022-2023学年北师大版数学七年级下册+第四章+三角形++期末复习题(2)

第四章三角形期末复习(二)一.选择题1.现有两根长度分别3cm和7cm的木棒,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.4cm B.7cm C.10cm D.13cm2.如图,沿笔直小路DE的一侧栽植两棵小树B,C,小明在A处测得AB=5米,AC=7米,则点A到DE的距离可能为()A.4米B.5米C.6米D.7米3.如图,在△ABC中,AC=BC,∠ACB=90°,点D为AC边上一点,过点A作AH⊥BD交BD延长线于点H,交BC延长线于点M,若满足BD=2AH,那么∠CBD的度数为()A.30°B.25°C.22.5°D.20°4.如图,D、E分别是AC、BD的中点,△ABC的面积为12cm2,则△BCE的面积是()A.6cm2B.3cm2C.4cm2D.5cm25.一块三角形玻璃,被摔成如图所示的四块,小敏想去店里买一块形状、大小与原来一样的玻璃,借助“全等三角形”的相关知识,小敏只带了一块去,则这块玻璃的编号是()A.①B.②C.③D.④6.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,S△DEF=2,则S△ABC=()A.16B.14C.12D.107.如图,在△ABC和△DEF中,∠A=∠D,AC=DF,要使得△ABC≌△DEF,还需要补充一个条件,则下列错误的条件是()A.BF=CE B.AC∥DF C.∠B=∠E D.AB=DE8.下列长度的三条线段,能组成三角形的是()A.2,3,4B.2,3,5C.2,2,4D.2,2,59.如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为()A.12B.14C.16D.1810.若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm二、填空题36.如图,在△ABC中,AD平分∠BAC,∠BAC=80°,∠B=35°,则∠ADC的度数为°.13.如图,在△ABC中,AB=AC,BF=CD,BD=CE.若∠A=40°,则∠FDE=°.14.如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B =40°,DE交线段AC于点E.下列结论:①∠CDE=∠BAD;②BD=CE;③当D为BC中点时,DE⊥AC;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的是(填序号).三、解答题15.已知:如图,AB∥CD,AB=CD,BF=CE.(1)求证:△ABF≌△DCE.(2)已知∠AFC=80°,求∠DEC的度数.16.如图,已知AB=DC,AB∥CD,E、F是AC上两点,且AF=CE.求证:△ABE≌△CDF.17.如图,已知∠A=∠EDF,AD=BE,AC=DF.求证:BC∥EF.18.如图,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AD=AB.求证:AC=AE.19.如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.20.本学期,我们学习了三角形相关知识,而四边形的学习,我们一般通过辅助线把四边形转化为三角形,通过三角形的基本性质和全等来解决一些问题.(1)如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①小明发现,此时AC平分∠BCD.他通过观察、实验,提出以下想法:延长CB到点E,使得BE=CD,连接AE,证明△ABE≌△ADC,从而利用全等和等腰三角形的性质可以证明AC平分∠BCD.请你参考小明的想法,写出完整的证明过程.②如图2,当∠BAD=90°时,请你判断线段AC,BC,CD之间的数量关系,并证明.(2)如图3,等腰△CDE、等腰△ABD的顶点分别为A、C,点B在线段CE上,且∠ABC+∠ADC=180°.请你判断∠DAE与∠DBE的数量关系,并证明.21.已知△ABC和△ADE都是等边三角形,点D在射线BF上,连接CE.(1)如图1,BD与CE是否相等?请说明理由;(2)如图1,求∠BCE的度数;(3)如图2,当D在BC延长线上时,连接BE,△ABE、△CDE与△ADE的面积有怎样的关系?并说明理由.22.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为一边且在AD的右侧作等腰直角三角形ADE,AD=AE,∠DAE=90°.解答下列问题.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,求证:BD=CE,BD⊥CE.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,请说明理由.(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外).先画出相应图形,再说明理由.4 5 5。

2022年高考地理总复习第一部分考点复习第四章第二节海水的性质

2022年高考地理总复习第一部分考点复习第四章第二节海水的性质

方向
规律
水平方向
_表__层__海__水__密度随纬度的增高而增大,同纬度海域海水的密度大致相同
垂直 方向
1 000米以内海水密度随深度_增__大__而迅速_增__加__;1 000米以外海水密度 中低纬度海区
随深度变化很小
_高__纬__度__海区
海水密度随深度的变化较小
特殊海区 海水密度随深度_增__大__而_减__小__的情况,称为“海中断崖”
【加固训练】
温盐环流是一个依靠海水的温度和含盐密度驱动的全球洋流循环系统(下图)。表层海
水在水平气压梯度力作用下做水平运动。研究发现,全球气候变暖对温盐环流影响很大。据此
完成1、2题。
1.图中①处表层海水下沉的主要原因不可能是 ( )
A.海水北上不断向大气释放热量使水温降低
B.洋流在向北流时因水汽蒸发而使盐度逐渐升高
【解析】第(1)题,影响海水温度的因素有纬度、太阳辐射强度、日照时间的长 短以及天气。阿拉伯海表层海水温度较高,从图中可以看出纬度较低,受太阳辐 射影响较大,海洋接受的热量较多,温度高,靠近阿拉伯半岛周围为热带沙漠气候, 陆地热辐射对海洋影响大,受到副热带高气压带控制,该地区晴天多降水少,日照 时间长。因此该海域温度较高。第(2)题,从图中可以看出,阿拉伯海表层海水温 度东高西低,东部的等温线呈南北走向,西部出现了闭合中心,为低温区。 答案:(1)纬度低,太阳辐射强;晴天多,日照时间长;受周边陆地影响大。 (2)东南高,西北低;西部形成一个低温中心。
【核心考点·突破】 突破 海水温度的时空变化及原因
时空变化
变化规律
原因
随时间变化 夏季水温高,冬季水温低
夏季海水热量收入大于支出,冬季海水热量收入小于 支出

小学数学苏教版(2014秋)四年级下册第四章 用计算器计算单元复习-章节测试习题(2)

小学数学苏教版(2014秋)四年级下册第四章  用计算器计算单元复习-章节测试习题(2)

章节测试题1.【答题】OFF是开机键.()【答案】×【分析】此题考查的是计算器各个按键的功能.【解答】OFF是关机键,而ON是开机键.故此题是错误的.2.【答题】在计算器上输入89,再按AC键,显示屏上会显示0.()【答案】✓【分析】此题考查的是计算器上按键表示的功能.【解答】计算器上的AC键是清除键,在计算器上输入89,再按AC键,显示屏上会显示0..故此题是正确的.3.【答题】用计算器计算51054÷127=42.()【答案】×【分析】此题考查的是用计算器计算.【解答】51054÷127=402.故此题是错误的.4.【答题】在计算器上OFF键是用来清除的.()【答案】×【分析】此题考查的是对计算器各个按键的功能的了解.【解答】在计算器上,OFF键是关机键;CE键是清除键.故此题是错误的.5.【答题】电子计算器只能进行加减法的运算.()【答案】×【分析】此题考查的是计算器的使用.【解答】电子计算器不仅能进行加减法的运算,还能进行乘除法的运算.故此题是错误的.6.【答题】在计算器上按出30×78,再按“=”键屏幕上显示的是计算出的积.()【答案】✓【分析】此题考查的是计算器的使用方法.【解答】在计算器上先输入“30”,再输入“×”,然后输入“78”,最后输入“=”,屏幕上就显示出“30×78”的积.故此题是正确的.7.【答题】用计算器计算时,首先要按一下“OFF”键打开计算器,再依次输入数字计算.()【答案】×【分析】此题考查的是计算器各个按键的功能.计算机上ON键是开机键,由此进行求解.【解答】用计算器计算时,按ON键打开计算器.故此题是错误的.8.【答题】电子计算器上的CE键主要功能是关机.()【答案】×【分析】此题考查的是计算器各个按键的功能.在计算器上,CE是清除键,关机键是OFF,据此判断即可.【解答】电子计算器上的OFF键是关机键.故此题是错误的.9.【答题】用计算器做两步计算题时,要把第一步计算的结果记录下来,然后清除数据,再进行第二步计算.()【答案】×【分析】此题考查的是对计算器的认识和了解.【解答】用计算器做两步计算题时,要把第一步计算的结果记录下来,然后接着再进行第二步计算.故此题是错误的.10.【答题】算盘是我国的传统计算工具,它的一颗上珠表示().A. 1B. 5C. 10【答案】B【分析】此题考查的是算盘的历史.【解答】算盘是我国的传统计算工具,它的一颗上珠表示5.选B.11.【答题】用计算器计算3449+527+1640时,如果要清屏按()键.A. ACB. ONC. OFF【答案】A【分析】此题考查的是计算器上按键表示的功能.AC是清屏键,ON是开机键,CE 是清除键,据此解答即可.【解答】用计算器计算3449+527+1640时,如果要清屏按AC键.选A.12.【答题】①使用计算器对学生没有任何益处;②只要是计算题,用计算器一定很快捷;③计算器不能完全代替计算知识的学习.以上说法,错误的有几个?()A. 3B. 2C. 1【答案】B【分析】此题考查的是对计算器的了解.【解答】使用计算器对学生没有任何益处,这种说法错误;只要是计算题,用计算器一定很快捷说法错误,只有正确使用计算器,才能算得又对又快;计算器不能完全代替计算知识的学习说法正确,故以上说法错误的有2个.选B.13.【答题】计算器上的数字键“8”坏了,如果用计算器计算734-198,不正确的是().A. 734-200+2B. 735-199C. 733-197D. 734-200-2【答案】D【分析】根据减法性质进行计算.【解答】A、734-198=734-(200-2)=734-200+2;B、734-198=734+1-198-1=735-199;C、733-198=734-1-198-1=733-197;D、734-200-2=734-202.选D.14.【答题】计算器屏上的()是关机键.A. ONB. OFFC. CE【答案】B【分析】此题考查的是计算器各个按键的功能在电子计算器上.计算器屏上的关机键是OFF键,据此解答即可.【解答】在计算器上,ON起到开关作用.OFF是关机键.选B.15.【答题】用计算器计算下面各题.9715÷145+325=______ 5038-645÷15=______80000-325×77=______ 351×9-280=______【答案】392 4995 54975 2879【分析】根据整数四则运算的计算方法和四则混合运算的顺序用计算器计算即可.【解答】9715÷145+325=392;5038-645÷15=4995;80000-325×77=54975;351×9-280=2879.16.【题文】芳芳在用计算器计算“896×567”时,输入“896”与“×”后,发现将“×”输入成了“+”,你有办法帮芳芳解决这个问题吗?【答案】(答案不唯一)根据一个数加上0后还等于原来的数,芳芳将“×”输入成了“+”,可以再输入“0”、“×”、“567”.【分析】此题考查的是计算器的使用方法.根据一个数加上0后还等于原来的数,芳芳将“×”输入成了“+”,可以再输入“0”,结果还是等于896,然后再依次输入“×”、“567”,求出算式的值是多少即可.【解答】(答案不唯一)根据一个数加上0后还等于原来的数,芳芳将“×”输入成了“+”,可以再输入“0”,结果还是等于896,然后再依次输入“×”、“567”.17.【题文】一个普通计算器的数字键“4”坏了,如果要在计算器上算出948×22和5166÷40的得数,该怎么办呢?请用算式写出你的思考过程.【答案】(答案不唯一)948×22=(950-2)×22;5166÷40=5166÷5÷8.【分析】此题考查的是计算器的使用方法.【解答】把948化为一个不含数字4的数,可以为948×22=(950-2)×22,答案不唯一;把5166÷40写为5166÷5÷8.948×22=(950-2)×22;5166÷40=5166÷5÷8.。

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) 指出下列平面图形各是什么几何体的展开图.【答案】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【详解】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【点睛】本题主要考查几何体展开图的知识点,熟记常见几何体的平面展开图的特征是解决此类问题的关键.62.如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?【答案】(1)面F.(2)面C.(3)面A.【解析】【分析】利用长方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.【详解】由图可知,“C”与面“E”相对.则(1)∵面“A”与面“F”相对,∴A面是长方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.A面会在上面.【点睛】本题考查的知识点是展开图折叠成长方体,解题关键是注意长方体的空间图形,从相对面入手,分析及解答问题.63.两位同学画的小动物如图所示,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?【答案】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【解析】【分析】左图是由立体图形组成的,右图是由平面图形组成的,仔细识图即可作答.【详解】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【点睛】本题考查的知识点是立体图形和平面图形的区别,解题关键是熟记立体图形和平面图形的定义.64.以给定的图形“○○、△△、=”(两个圆、两个三角形、两条线段)为构件,构思独特且有意义的图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.【答案】见解析.【解析】【分析】本题答案不唯一,结合实际生活中的实物,画一幅图画,再说出它像什么就可以.【详解】答案不唯一,如:【点睛】本题的关键是要善于观察与思考,结合实际有利于培养想象能力.65.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【答案】(1)见表格解析;(2)V+F=E+1;(3)30.【解析】【分析】(1)根据图中的四个平面图形数出其顶点数、边数、区域数得出结果;(2)根据表(1)数据总结出归律;(3)根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【详解】(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.(2)根据以上数据,顶点用V表示,边数用E表示,区域用F表示,他们的关系可表示为:V+F=E+1;(3)把V=20,F=11代入上式得:E=V+F﹣1=20+11﹣1=30.故如果平面图形有20个顶点和11个区域,那么这个平面图形的边数为30.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.66.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?【答案】1对4,2对5,3对6;或1对5,2对4,3对6.【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.【详解】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.故答案为1对4,2对5,3对6;或1对5,2对4,3对6.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.67.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?【答案】(1)面B;(2)面D;(3)面F.【解析】【分析】根据题意可以将多面体的展开图动手折一下,观察每个面的对面,进行转动,再找到其对面.【详解】将多面体的展开图再动手折一下,得到:A和D相对,B和F相对,C和E 相对.故(1)如果面F在正方体的底部,那么面B会在上面;(2)如果面B在前面,从左面看是面C,那么面D会在上面;(3)如果从右面看到面D,面E在后面,那么面F会在上面.【点睛】本题考查了灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.68.如图是一个几何体的平面展开图.(1)这个几何体是____;(2)求这个几何体的体积.(π取3.14)【答案】(1)圆柱;(2)1570cm3【解析】【分析】(1)根据几何体的展开图侧面是矩形,两底面是圆形,可得几何体;(2)根据圆柱的体积公式,可得答案.【详解】解:(1)几何体的展开图侧面是矩形,两底面是圆形,几何体是圆柱.故答案为圆柱;(2)由图可知:底面直径为10cm,高为20cm,故圆柱的体积=3.14×(10÷2)2×20=1570cm3.答:这个几何体的体积是1570cm3.【点睛】本题考查了几何体的展开图,几何体的展开图侧面是矩形,两底面是圆形的几何体是圆柱.69.如图,在一次数学活动课上,张明用17个底面为正方形,且底面边长为a,高为b的小长方体达成了一个几何体,然后他请王亮用尽可能少的同样的长方体在旁边再搭一个几何体,使王亮所搭的几何体恰好可以和张明所搭的几何体拼成一个大长方体(即拼大长方体时将其中一个几何体翻转,且假定组成每个几何体的小长方体粘合在一起).(1)王亮至少还需要个小长方体;(2)请画出张明所搭几何体的左视图,并计算它的表面积(用含,a b的代数式表示);(3)请计算(1)条件下王亮所搭几何体的表面积(用含,a b的代数式表示).【答案】(1)19(2),23418.ab a(3)2+ab a3216.【解析】【分析】(1)确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.(2)根据图形,画出左视图,计算表面积即可.(3)画出王亮所搭几何体的俯视图,即可求出表面积.【详解】(1)∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体2⨯=个,4336∵张明用17个边长为1的小正方体搭成了一个几何体,∴王亮至少还需36−17=19个小立方体.(2)张明所搭几何体的左视图有三列,第一列有4个长方形,第二列有2个长方形,第三列有1个长方形:表面积为:()()22+++++=+ab a ab a101077993418.(3)王亮所搭几何体的俯视图如图所示,图中数字代表该列小正方体的个数.故王亮所搭几何体的表面积为:()()22+++++=+9977883216.ab a ab a 【点睛】本题主要考查的是由三视图判断几何体的知识,能够根据题意确定出两人所搭几何体的形状是解答本题的关键;70.如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.【答案】(1)8;(2)1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,然后根据幂的乘方的性质和同底数幂的除法的运算性质分别进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.【点睛】考查正方体的表面展开图,根据相对的面之间一定相隔一个正方形,确定向对面是解题的关键.三、填空题。

2025年高考地理一轮复习24第四章第二节塑造地表形态的力量

2025年高考地理一轮复习24第四章第二节塑造地表形态的力量
2.根据岩石特点:岩浆岩中,花岗岩致密坚硬,玄武岩有流纹或气孔;沉积岩具有层理构造或含有化石以及非金属矿产。
3.判断三大类岩石和岩浆,大致可以用进出箭头的多少来区分
(1)岩浆:三进一出。
(2)岩浆岩:一进三出。
(3)变质岩和沉积岩:二进二出。
注:沉积物指向的一定是沉积岩,沉积岩一般含有化石并具有层理构造。
课时质量评价(十七)
一、选择题
岩层和地质构造是地壳运动的证据。如果两组岩层之间出现沉积间断或地层缺失,则称为地层不连续。读某山地的地质剖面示意图(页岩颗粒小于砾岩),完成1~2题。
1.该地一定经历了()
A.一次断层活动B.多次地壳升降
C.海侵海退现象D.明显变质作用
2.从页岩到砾岩的物质积累期,自然环境变迁情况最可能是()
如图所示的我国祁连山西段某山间盆地边缘,山坡、冲积扇和冲积平原的植被均为草原,其中冲积平原草原茂盛。山坡表面多覆盖有沙和粉沙物质。附近气象站(海拔3 367米)监测的年平均气温为-2.6℃,年降水量约291毫米,集中在夏季,冬春季多风。
(1)说明冲积扇和山坡堆积物中砾石的差异及其原因。
(2)分析分布在山坡表面的沙和粉沙的空间迁移过程。
第二节 塑造地表形态的力量
一、内力作用
1.能量来源:主要是来自地球内部的热能。
2.表现形式
表现形式
对地表形态的影响
地壳运动
大陆漂移、地面抬升和沉降、地震等
岩浆活动
岩浆只有喷出地表才能直接影响地表形态
变质作用
不能直接塑造地表形态
3.结果:内力作用奠定了地表形态的基本格局,总的趋势是使地表变得高低不平。

岩浆岩、沉积岩和已生成的变质岩
变质作用(高温高压)

人教版七年级数学上册第四章几何图形复习试题二(含答案) (88)

人教版七年级数学上册第四章几何图形复习试题二(含答案) (88)

人教版七年级数学上册第四章几何图形复习试题二(含答案) 写出下图中几何体的名称,并按锥体和柱体把它们分类.【答案】见解析【解析】分析:结合学过的常见几何体写出各几何体的名称.长方体、圆柱和棱柱都是柱体,圆锥是椎体,据此将它们按锥体和柱体进行分类.详解:(1)长方体;(2)圆锥;(3)六棱柱;(4)圆柱;(1)(3)(4)是一类,都是柱体;(2)是锥体.点睛:本题主要考查了几何体的分类,需结合柱体和锥体的特征进行解答.三、填空题72.如图它是正方体的表面展开图,则C面的对面是________面.【答案】F【解析】【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【详解】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“C”字相对的字是“F”.故填F.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.73.如图,将图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,则剪法共有________种.【答案】3【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:根据有“田”字格的展开图都不是正方体的表面展开图可知,故应剪去我或喜或学,共3种.故答案为:3.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.74.在高邮市委、市政府的领导下,全市人民齐心协力进行“四城同创”,即“历史文化名城”、“环保模范城市”、“卫生城市”、“文明城市”.小红同学制作的一个正方体玩具,其展开图如图所示,则原正方体中与“化”字所在的面相对的面的字应是________.【答案】历【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由题意可知,“历”与“化”是相对面,“文”与“名”是相对面,“史”与“城”是相对面.故答案为:历.【点睛】本题考点:正方体的展开图.75.一个正方体的表面涂满了同种颜色,按如图所示将它切成27个大小相等的小立方块.设其中仅有i 个面()1,2,3涂有颜色的小立方块的个数为i x ,则1x 、2x 、3x 之间的数量关系为________.【答案】1232x x x -+=【解析】【分析】根据题图分别找出3个面,2个面,1个面涂有颜色的正方体即可.【详解】解:由题图可知:在原正方体的8个顶点处的8个小正方体上,有3个面涂有颜色;2个面涂有颜色的小正方体有12个,1个面涂有颜色的小正方体有6个,则123-+=6﹣12+8=2.x x x故答案为:1232-+=.x x x【点睛】本题主要考查认识立体几何图形,根据已知得出涂有颜色不同的小立方体的个数是解题关键.76.如图是一个正方体的平面展开图,在正方体上与“心”字相对的面上的字是________.【答案】过【解析】【分析】可通过立体想象,也可通过用纸手动还原来解答.【详解】解:由题意可知,“过”字相对面上的字是“心”,“个”字相对面上的字是“寒”,“开”字相对面上的字是“假”.故答案为:过.【点睛】本题考查正方体的展开图,不能通过立体想象进行还原的同学,也可以利用纸张手动进行还原,这样的正确率也更高.77.侧面积与上、下底面积之和为144的圆柱,高和底面半径的比是7:2,则圆柱的高为________.【答案】π【解析】【分析】首先设出圆柱的高为7x ,则圆柱的底面半径为2x ,利用侧面积与上、下底面积之和为144列出方程求解即可.【详解】∵圆柱的高和底面半径的比是7:2,∴设圆柱的高为7x ,则圆柱的底面半径为2x ,∴4πx ×7x+2π(2x )2=144,解得:则圆柱的高为7×π=π;故答案为:π.【点睛】此题考查了圆柱的计算,用到的知识点是圆柱的侧面积和底面积的计算公式,关键是根据题目中的等量关系列出方程.78.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是________.【答案】6【解析】【分析】利用正方体及其表面展开图的特点以及题意解题,把“6”作为正方体的底面,然后把平面展开图折成正方体,然后看“2”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“6”相对,所以图中“2”在正方体的前面,则这个正方体的后面是6.故答案为6.【点睛】本题考查了专题:正方体相对两个面上的文字,解题的关键是根据正方体及其表面展开图的特点找出2的相对面.79.10个棱长为1的正方体,如果摆放成如图所示的上下三层,那么该物体的表面积为________;依图中摆放方法类推,继续添加相同的正方体,如果该物体摆放了上下100层,那么该物体的表面积为________.【答案】3630300【解析】【分析】由题中图示,从上、下、左、右、前、后等六个方向直视的平面图相同,根据每个方向上均有6个等面积的小正方形.进而得出每个方向上均有(1+2+3+…+100)个等面积的小正方形,再分别求出其表面积即可.【详解】解:①6×(1+2+3)=36.故该物体的表面积为36;②6×(1+2+3+…+100)=30300.故该物体的表面积为30300.故答案为36;30300.【点睛】本题考查了几何体的表面积,解题的关键是熟练的掌握几何体表面积公式.80.如图,将图形沿虚线旋转一周,所围成的几何体是________,它的侧面展开图是________形.【答案】圆柱长方【解析】【分析】根据题意,一个长方形沿虚线旋转一周,所围成的几何体是圆柱,圆柱的侧面展开图是长方形.【详解】解:结合图形特征可知,所围成的几何体是圆柱,它的侧面展开图是长方形.故答案填:圆柱,长方.【点睛】本题考查了旋转的知识,解题的关键是判断出旋转后得到的图形与其展开图.。

人教版七年级数学上册第四章角复习题二(含答案) (26)

人教版七年级数学上册第四章角复习题二(含答案) (26)

人教版七年级数学上册第四章角复习题二(含答案) 如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,76AOC ∠=︒,OF OD ⊥.求EOF ∠的度数.【答案】52︒.【解析】【分析】根据对顶角的性质可得∠BOD=∠AOC=76°,然后根据角平分线的定义即可求出∠EOD ,再根据垂直的定义和互余的定义即可求出EOF ∠.【详解】解:∠∠AOC 与∠BOD 是对顶角,∴∠BOD=∠AOC=76°∠OE 平分∠BOD ,∴∠EOD=∠BOD=12×76°=38° ∠OF ∠OD ,∴∠DOF=90°∠∠FOE+∠EOD=90°∠∠FOE=90°-∠EOD=90°-38°=52°.【点睛】此题考查的是角的和与差,掌握对顶角的性质、垂直的定义和角平分线的定义是解决此题的关键.52.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=38°,求∠COD的度数.【答案】19°【解析】【分析】根据题意,两角和和角平分线定义很容易求解.【详解】解:∠∠BOC=2∠AOC,∠AOC=38°∠∠BOC=2×38°=76°∠∠AOB=∠BOC+∠AOC=76°+38°=114°∠OD平分∠AOB∠∠AOD=12∠AOB=12×114°=57°∠∠COD=∠AOD﹣∠AOC=57°-38°=19°.【点睛】本题考查了两角和的计算,及角平分线的定义,认准角之间的关系是解题关键.53.如图,已知∠AOB=150º,∠AOC=40º,OE是∠AOB内部的一条射线,OF平分∠AOE,且OF在OC的右侧.(1)若∠EOB=10º,求∠COF的度数;(2)若∠COF=20º,求∠EOB的度数;(3)若∠COF=nº,求∠EOB的度数(用含n的式子表示).【答案】(1)∠COF=30°;(2)∠EOB=30°;(3)∠EOB=70°-2n°【解析】【分析】(1)先求出∠AOE,再根据角平分线的定义求出∠AOF,然后根据∠COF=∠AOF-∠AOC代入数据计算即可得解;(2)先求出∠AOF,再根据角平分线的定义求出∠AOE,然后根据∠EOB=∠AOB-∠AOE代入数据计算即可得解;(3)先表示出∠AOF,再根据角平分线的定义表示出∠AOE,然后根据∠EOB=∠AOB-∠AOE代入计算即可得解.【详解】(1)∵∠AOB=150°,∠EOB=10°,∴∠AOE=∠AOB-∠EOB=150°-10°=140°,∵OF平分∠AOE,∴∠AOF=12∠AOE=12×140°=70°,∴∠COF=∠AOF-∠AOC=70°-40°=30°;(2)∵∠AOC=40°,∠COF=20°,∴∠AOF=∠AOC+∠COF=40°+20°=60°,∵OF 平分∠AOE ,∴∠AOE=2∠AOF=2×60°=120°,∴∠EOB=∠AOB-∠AOE=150°-120°=30°;(3)∵∠AOC=40°,∠COF=n °,∴∠AOF=∠AOC+∠COF=40°+n °,∵OF 平分∠AOE ,∴∠AOE=2∠AOF=2(40°+n °)=80°+2n °,∴∠EOB=∠AOB-∠AOE=150°-(80°+2n °)=70°-2n °.【点睛】本题考查了角的计算,主要利用了角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键,也是本题的难点.54.如图,已知直线AB ,CD 相交于点O ,OE 平分∠AOB ,∠EOC=2825︒'.(1)求∠AOD 的度数;(2)判断∠AOD 与∠COB 的大小关系,并说明理由.【答案】(1) 6135'AOD ∠=︒;(2)AOD COB ∠=∠,理由见解析. 【解析】【分析】(1)根据两直线相交可得∠AOB=∠COD=180°,由OE 平分∠AOB ,知∠AOE=∠BOE=90°,于是∠AOD=180°-∠AOE-∠COE 计算即可;(2)因为∠COB 与∠AOD 是对顶角所以相等.【详解】(1)直线,AB CD 相交于点O ,180COD AOB ∴∠=∠=︒, OE 平分AOB ∠,1902AOE AOB ∴∠=∠=︒, 180902825'AOD COD AOE COE ∴∠=∠-∠-∠=︒-︒-︒6135'=;(2)∠AOD=∠COB ,∵∠BOC 与∠AOD 是对顶角,∴∠BOC=∠AOD .【点睛】本题考查了对顶角的性质、度分秒的换算以及角平分线的性质,熟练掌握性质是解题的关键.55.如图,A 地和B 地都是海上观测站,B 地在A 地正东方向,且A 、B 两地相距2海里. 从A 地发现它的北偏东60°方向有一艘船C ,同时,从B 地发现船C 在它的北偏东30°方向.(1)在图中画出船C 所在的位置;(要求用直尺与量角器作图,保留作图痕迹)(2)已知三角形的内角和等于180°,求∠ACB 的度数.(3)此时船C与B地相距______海里.(只需写出结果,不需说明理由)【答案】(1)见解析;(2)∠ACB=30°;(2)2.【解析】【分析】(1)根据方向角的概念,分别过A、B作射线,两条射线的交点即为船C 的位置;(2)首先求出∠CAB和∠ABC的度数,再根据三角形内角和是180°求出∠ACB的度数;(3)由(2)中得出∠ACB=30°可知△ABC为等腰三角形,所以BC=AB.【详解】(1)如图所示,C点即为船C所在的位置;(2)在△ABC中,∠CAB=90°-60°=30°,∠ABC=90°+30°=120°∵∠ACB+∠CAB+∠ABC=180°∴∠ACB=180°-30°-120°=30°(3)∵∠ACB=∠CAB=30°∴△ABC 为等腰三角形∴BC=AB=2海里所以船C 与B 地相距2海里,故答案为:2.【点睛】本题考查了方位角问题,熟练掌握方位角的定义与角度的和差计算是解题的关键.56.已知150AOB ∠=︒,OC 为AOB ∠内部的一条射线,60BOC ∠=︒.(1)如图1,若OE 平分AOB ∠,OD 为BOC ∠内部的一条射线,12COD BOD ∠=∠,求DOE ∠的度数;(2)如图2,若射线OE 绕着O 点从OA 开始以每秒15︒的速度顺时针旋转至OB 结束、OF 绕着O 点从OB 开始以每秒5︒的速度逆时针旋转至OA 结束,当一条射线到达终点时另一条射线也停止运动.若运动时间为t 秒,当EOC FOC ∠=∠时,求t 的值;(3)若射线OM 绕着O 点从OA 开始以每秒15︒的速度逆时针旋转至OB 结束,在旋转过程中,ON 平分AOM ∠,试问2BON BOM ∠-∠在某时间段内是否为定值;若不是,请说明理由;若是,请补全图形,并直接写出这个定值以及t 相应所在的时间段.(本题中的角均为大于0︒且小于180︒的角)【答案】(1)35︒;(2)t 的值为3或7.5;(3)当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值,此时补全的图形见解析.【解析】【分析】(1)先根据角平分线的定义求出∠BOE 的度数,再根据角的倍差求出BOD ∠的度数,最后根据角的和差即可;(2)先求出AOC ∠的度数和t 的最大值,从而可知停止运动时,OF 在OC 的右侧,因此,分OE 在OC 左侧和右侧两种情况,再根据EOC FOC ∠=∠列出等式求解即可;(3)因本题中的角均为大于0︒且小于180︒的角,则需分OM 与OB 在一条直线上、ON 与OB 在一条直线上、OM 与OA 在一条直线上三个临界位置,从而求出此时t 的取值范围,并求出各范围内BON ∠和BOM ∠的度数,即可得出答案.【详解】(1)OE 平分AOB ∠,150AOB ∠=︒7512AO OE B B ∠∴=∠=︒ 160,2BOC COD BOD ∠=︒∠=∠2403BOD BOC ∴∠=∠=︒ 754035BOE BO DOE D ∴∠-∠=︒-︒=∠=︒;(2)15060,A C O BO B ∠=︒∠=︒90AOC AOB BOC ∠∴∠-=∠=︒由题意知,当OE 转到OB 时,两条射线均停止运动 此时150101515AOB t ︒==∠=︒︒(秒) 则OF 停止转动时,55060BOF t ∠=︒=︒<︒即OF 从开始旋转至停止运动,始终在OC 的右侧因此,分以下2种情况:①当OE 在OC 左侧时,9015605EOC AOC AOE t FOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得9015605t t ︒-︒=︒-︒,解得3t =②当OE 在OC 右侧时,1590605EOC AOE AOC t FOC BOC BOF t ∠=∠-∠=︒-︒⎧⎨∠=∠-∠=︒-︒⎩则由EOC FOC ∠=∠得1590605t t ︒-︒=︒-︒,解得7.5t =综上,t 的值为3或7.5;(3)射线OM 从开始转动至OB 结束时,转动时间为3601501415t ︒-︒==︒(秒) 由题意,分OM 与OB 在一条直线上(180150215t ︒-︒==︒)、ON 与OB 在一条直线上(2(180150)415t ⨯︒-︒==︒)、OM 与OA 在一条直线上(1801215t ︒==︒)三个临界位置①当02t ≤≤时,如图1所示 此时,1151501502215015t BON AOB AON AOM BOM AOB AOM t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=∠+∠=︒+︒⎩则1522(150)(15015)1502t BON BOM t ︒∠-∠=⨯︒+-︒+︒=︒为定值 ②当24t <<时,如图2所示 此时,11515015022360()360(15015)21015t BON AOB AON AOM BOM AOB AOM t t︒⎧∠=∠+∠=︒+∠=︒+⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(150)(21015)90302t BON BOM t t ︒∠-∠=⨯︒+-︒-︒=︒+︒不为定值 ③当412t ≤≤时,如图3所示 此时,1515360()360(150)21022360()360(15015)21015t t BON AOB AON BOM AOB AOM t t︒︒⎧∠=︒-∠+∠=︒-︒+=︒-⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(210)(21015)2102t BON BOM t ︒∠-∠=⨯︒--︒-︒=︒为定值 ④当1214t <<时,如图4所示 此时,1360151515030222360()360(15015)21015t t BON AOB AOM BOM AOB AOM t t︒-︒︒⎧∠=∠-∠=︒-=-︒⎪⎨⎪∠=︒-∠+∠=︒-︒+︒=︒-︒⎩ 则1522(30)(21015)302702t BON BOM t t ︒∠-∠=⨯-︒-︒-︒=︒-︒不为定值 综上,当02t ≤≤或412t ≤≤时,2BON BOM ∠-∠为定值.【点睛】本题考查了角平分线的定义、角的和差倍分,较难的是题(3),正确找出三个临界位置是解题关键.57.如图, 已知∠AOB=∠EOF=90°,OM 平分∠AOE ,ON 平分∠BOF .(1)求证∠AOE=∠BOF(2)求∠MON的度数;【答案】(1)见解析;(2)90°.【解析】【分析】(1)根据同角的余角相等可得∠AOE=∠BOF;(2)由OM平分∠AOE,ON平分∠BOF,可得∠AOM=∠EOM=∠BON=∠FON,进而得出∠MON=∠AOB=90°.【详解】(1)∵∠AOB=∠EOF=90°,∴∠AOB-∠BOE=∠EOF-∠BOE,∴∠AOE=∠BOF.(2)∵OM平分∠AOE,ON平分∠BOF.∴∠BON=∠FON,∠AOM=∠EOM,由(1)得:∠AOE=∠BOF,∴∠AOM=∠EOM=∠BON=∠FON,∴∠MON=∠EOM+∠BOE+∠BON=∠AOM+∠EOM+∠BOE=∠AOB =90°.【点睛】考查同角的余角相等,等式的性质、角平分线的意义,根据图形直观得出各个角的和或差,是解决问题的前提,等量代换在得出结论的过程中,起到至关重要的作用.58.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,231∠=∠.(1)若118∠=°,求COE ∠的度数;(2)若70COE ∠=°,求2∠的度数;【答案】(1)72°;(2)60°.【解析】【分析】(1)依据∠1=18°,∠2=3∠1,可得∠2=54°,进而得出∠AOD 的度数,再根据OC 平分∠AOD ,可得∠3=54°,进而得到∠COE 的度数;(2)根据角平分线的定义和平角的定义,借助于图形得到:x °+∠2+2(70°-x °)=180°,则∠2=40°+x °,进而得到40°+x °=3x °,则易求∠2的度数.【详解】解:(1)∵118∠=°,231∠=∠,∴254∠=°,∠180AOD ∠=°-12180∠-∠=°-18°-54°=108°,∠OC 平分AOD ∠,∴354∠=°, ∠COE=∠1+∠3=18°+54°=72°(2)设∠1=x °,∵OC 平分AOD ∠,COE ∠=∠1+∠3=70°,∠∠3=∠4=70°-x °,又∵∠1+∠2+∠3+∠4=180°,∠x °+∠2+2(70°-x °)=180°,∠∠2=40°+x °∠231∠=∠,∴ 40°+x °=3x °,解得x =20,∠231∠=∠=3×20°=60°,即∠2的度数为60°.【点睛】本题考查了角的计算,角平分线的定义.本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.59.如图所示,AB 为一条直线,OC 是AOD ∠的平分线,OE 在BOD ∠内,:2:5DOE BOD ∠∠=,80COE ∠=︒,求EOB ∠的度数.【答案】60°【解析】【分析】由OC 是AOD ∠的平分线及:2:5DOE BOD ∠∠=设未知数后,根据80COE ∠=︒、180AOC COD DOB ∠+∠+∠=︒列出方程组,解方程组即可.【详解】解:∵OC 是AOD ∠的平分线∴设∠AOC=∠COD=x∵:2:5DOE BOD ∠∠=∴设=2y,5DOE BOD y ∠∠=∴3BOE y ∠=∵80COE ∠=︒,=2COE COD DOE x y ∠∠+∠=+∴x+2y 80=∵180AOC COD DOB ∠+∠+∠=︒,∴x+x+5y 180=∴x+y=80x+x+5y 180⎧⎨=⎩解得:x=40y 20⎧⎨=⎩∴=60EOB ︒∠【点睛】本题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,掌握角平分线及角的和差关系是解题的关键.60.如图,已知COB 2BOD ∠∠=,OA 平分COD ∠,且BOD 42∠=︒,求AOB ∠的度数.【答案】21°.【解析】【分析】先通过条件算出∠COB,进而求出∠COD,由平分得∠AOD,用∠AOD 减去∠BOD 即可得出∠AOB 的度数.【详解】∵∠BOD=42°,∠COB=2∠BOD,∴∠COB=84°,∵OA 平分∠COD,∴∠AOD=()11(8442)6322COB BOD +=︒+︒=︒∠∠, ∴∠AOB=∠AOD-∠BOD=63°-42°=21°.【点睛】本题考查角度的计算,关键在于理解题意,由图中得到信息.。

cubeescape第四章2攻略

cubeescape第四章2攻略

cubeescape第四章2攻略
(原创版)
目录
1.cubeescape 第四章 2 攻略概述
2.关卡一:解决方法
3.关卡二:解决方法
4.关卡三:解决方法
5.关卡四:解决方法
6.关卡五:解决方法
正文
cubeescape 第四章 2 攻略如下:
1.关卡一:首先,你需要仔细观察这个房间,发现一个可以移动的方块。

将方块移动到正确的位置,以揭示隐藏的门。

然后,打开门并进入下一个房间。

2.关卡二:在这个房间里,你会发现一个复杂的密码锁。

通过仔细查看周围的线索,找到正确的密码并打开锁。

这将打开一扇通往下一个房间的门。

3.关卡三:这个房间有一个有趣的难题。

你需要找到一种方法,使得两个重量不同的物体平衡在秤上。

通过试验和错误,你会发现解决此难题的方法,并进入下一个房间。

4.关卡四:这个房间有一个旋转的激光束。

你需要找到一种方法,使激光束照射到正确的位置,以打开通往下一个房间的门。

仔细观察房间,找到解决此难题的线索。

5.关卡五:这是本章的最后一个房间。

在这个房间里,你会发现一个
复杂的拼图。

通过找到并正确放置所有拼图碎片,你将解决这个难题,并成功完成 cubeescape 第四章 2 的攻略。

希望这些攻略能帮助你顺利通过 cubeescape 第四章 2。

中考数学 精讲篇 考点系统复习 第四章 三角形 微专题(二) 勾股定理的验证及应用

中考数学 精讲篇 考点系统复习 第四章 三角形 微专题(二) 勾股定理的验证及应用

即 c2=4×12ab+(b-a)2,整理得 c2=a2+b2, ∴直角三角形的斜边的平方等于两个直角边的平方和.
Байду номын сангаас
2.做 8 个全等的直角三角形,设它们的两条直线边分别为 a , b ,斜边 为 c ,再做 3 个边长分别为 a , b, c 的正方形,把它们按图 1,图 2 所 示的方式拼成两个正方形.利用两个正方形的面积相等来证明勾股定理: a2+b2=c2.
4.★公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵 爽弦图”如图所示,它是由四个全等的直角三角形与中间的小 正方形拼成的一个大正方形,如果大正方形的面积是 125,小
1 正方形的面积是 25,则(sin α-cos α)2= 5 .
5.(2020·绍兴)如图①,直角三角形纸片的一条直角边长为 2,剪四块
这样的直角三角形纸片,把它们按图②放入一个边长为 3 的正方形中(纸 片在结合部分不重叠无缝隙),则图②中阴影部分面积为_4_ 5 __.
6.(2021·兴庆区校级一模)把图 1 中的菱形沿对角线分成四个全等的直 角三角形,将这四个直角三角形分别拼成如图 2、图 3 所示的正方形,则 图 1 中菱形的面积为 1212..
证明:由图 1 可知大正方形的边长为:a+b,则面积为(a+b)2, 图 2 中把大正方形的面积分为了四部分,分别是:边长为 a 的正方形, 边长为 b 的正方形,还有两个长为 b ,宽为 a 的长方形, 根据面积相等得:(a+b)2=a2+b2+4×12ab, 由图 1 可得(a+b)2=c2+4×12ab. 所以 a2+b2=c2.
微专题(二) 勾股定理的验证及应用
(宁夏:2020T16,2019T16)
1.公元 3 世纪,我国数学家赵爽在注解《周髀算经》中,利用下列弦图 证明了勾股定理.即用 4 个全等的直角三角形拼成如图所示的正方形 ABCD,中间留出一个小正方形空格.请你利用这个弦图证明勾股定理.

高考物理一轮复习 第四章 第2讲 抛体运动

高考物理一轮复习 第四章 第2讲 抛体运动

A.2 m/s
√B.4 m/s
C.8 m/s
D.10 m/s
小物件做平抛运动,恰好擦着窗子上沿右侧墙边缘
穿过时速度v最大. 此时有:L=vmaxt1, h=12gt12, 代入数据解得:vmax=7 m/s, 小物件恰好擦着窗口下沿左侧墙边缘穿过时速度v最小, 则有:L+d=vmint2,H+h=12gt22, 代入数据解得:vmin=3 m/s,故v的取值范围是3 m/s≤v≤7 m/s,故B 正确,A、C、D错误.
√A.飞行的时间之比为1∶3
B.水平位移大小之比为1∶9 C.竖直下落高度之比为1∶3 D.落至斜面时速度大小之比为1∶3
对于 A 球,tan 30°=yxAA=12vg0ttAA2,解得 tA=2v0tagn 30°,对于 B 球,tan 60° =xyBB=12vg0ttBB2,解得 tB=2v0tagn 60°,所以ttBA=ttaann 6300°°=13,由 x=v0t 可知 水平位移大小之比为 1∶3,由 y=12gt2,可知竖直下 落高度之比为 1∶9,故 A 正确,B、C 错误;
考向2 平抛运动的极值问题
例9 某科技比赛中,参赛者设计了一个轨道模型,如图所示.模型放到
Hale Waihona Puke 0.8 m高的水平桌子上,最高点距离水平地面2 m,右端出口水平.现让小
球在最高点由静止释放,忽略阻力作用,为使小球飞得最远,右端出口
距离桌面的高度应设计为
A.0
B.0.1 m
√C.0.2 m
D.0.3 m
小球从最高点到右端出口,满足机械能守恒,有 mg(H-h)=12mv2,从 右端出口飞出后小球做平抛运动,有 x=vt,h=12gt2,联立解得 x= 2 H-hh,根据数学知识知,当 H-h=h 时,x 最大,即 h=1 m 时, 小球飞得最远,此时右端出口距离桌面高度为 Δh=1 m-0.8 m=0.2 m, 故 C 正确.

第四章整式的加减复习小结(第2课时专题讲解)(教学课件)-七年级数学上册同步课件(人教版2024)

第四章整式的加减复习小结(第2课时专题讲解)(教学课件)-七年级数学上册同步课件(人教版2024)
=-x2-xy-15.
1
1
2
当x=-2,y= 时,原式=-(-2) -(-2)× -15=-18.
2
2
2
拓展练习
1.按一定规律排列的单项式:2a2,4a3,6a4,8a5,10a6,…,第n个单项式
是( B )
A.2na2n
B.2nan+l
C.n2an+1
D.n2a2n
2.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排
4.已知a,b,c三个数在数轴上对应的点如图所示,
化简: b − a − 2a − b + a − c − c
解:根据数轴可知:c < b < 0 < a,|c|>|a|>|b|,
所以b-a<0,2a-b>0,a-c>0,
原式= a − b − 2a − b + a − c − −c ,
= a − b − 2a + b + a − c + c
= −99a + 90b + 9c
= 9ሺ−11a + 10b + cሻ.
所以N − M能被9整除.
例1..若(2x2+ax-y+6)-(2bx2-3x+5y-1)的值与x的取值无关,求5ab2-[a2b+
2(a2b-3ab2)]的值.
解:(2x2+ax-y+6)-(2bx2-3x+5y-1)
=2x2+ax-y+6-2bx2+3x-5y+1
=(2-2b)x2+(a+3)x-6y+7.
因为该式的值与x的取值无关,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.下列变化中,属于化学变化的是
A .用苯从溴水中萃取溴
B .重油裂化得到轻质燃料油
C .从煤焦油中提取苯、甲苯、二甲苯
D .石油分馏得到汽油、煤油等产物
2.化学与环境保护密切相关,下列叙述正确的是
A .绿色化学的核心是应用化学原理对环境污染进行治理
B .处理废水时加入明矾作为消毒剂对水进行杀菌消毒。

C .PM2.5(2.5微米以下的细颗粒物)主要来自化石燃料的燃烧
D .某雨水样品采集后放置一段时间,pH 由4.68变为4.28,是因为水中溶解了较多的CO 2
3.形成节约能源和保护生态环境的产业结构是人类与自然和谐发展的重要保证,你认为下列行为中有悖于这一保证的是
A .开发太阳能、水能、风能等新能源,减少使用煤、石油等化石燃料
B .研究采煤、采油新技术,提高产量以满足工业生产的快速发展
C .在农村推广使用沼气
D .减少资源消耗、增加资源的重复使用和资源的循环再生
4.绿色化学的核心就是利用化学原理从源头上减少和消除工业生产对环境的污染。

下列做法不符合绿色化学理念的是
A .研制水溶剂涂料替代有机溶剂涂料
B .用可降解塑料生产包装盒或快餐盒
C .用反应:Cu +2H 2SO 4(浓)CuSO 4+SO 2↑+2H 2O 制备硫酸铜
D .用反应:制备环氧乙烷
5..绿色化学的核心是反应过程的绿色化,即要求原料物质中的所有原子完全被利用且全部转入期望的产品中,下列过程不符合这一思想的是
A .甲烷与氯气反应制氯仿:CH 4+3Cl 2 −−→−光照
CHCl 3+3HCl B .烯烃与水煤气发生的羰基合成反应:RCH =CH 2+CO+H 2−−
→−催化剂RCH 2CH 2CHO C .甲烷、CO 合成乙酸乙酯:2CH 4+2CO −−
→−催化剂 CH 3COOCH 2CH 3
D .乙烯合成聚乙烯CO nCH 24+−−→−催化剂
6.在“绿色化学”工艺中,理想的状态是反应物中的原子全部转化为期望的最终产物,即原子的利用率为100%。

下列反应类型中能体现“原子经济性”原则的是( )
①置换反应 ②化合反应 ③分解反应 ④取代反应 ⑤加成反应 ⑥加聚反应
A.①②⑤
B.②⑤⑥
C.③④
D.只有⑥
7.从淡化海水中提取溴的流程如下:
下列有关说法不正确的是( )
A.X试剂可用Na2SO3饱和溶液
B.步骤Ⅲ的离子反应:2Br-+Cl2=2Cl-+Br2
C.工业上每获得1molBr2,需要消耗Cl244.8L
D.步骤Ⅳ包含萃取、分液和蒸馏
8.“绿色化学”提倡化工生产应尽可能将反应物的原子全部利用,从根本上解决环境污染问题。

在下列制备环氧乙烷的反应中,最符合“绿色化学”思想的是 ( )
A.CH 2=CH2+(过氧乙酸)+CH3COOH
B.CH 2=CH2+Cl2+Ca(OH)2+CaCl2+H2O
C.2CH2=CH2+O22
D.+HOCH2CH2—O—CH2CH2OH+2H2O
9.下列说法不正确的是
A.大气污染物主要来自化石燃料和工业生产过程产生的废气
B.形成酸雨的主要物质是硫氧化物和氮氧化物(NO x)
C.绿色化学的核心就是在生产过程中减少污染
D.水华、赤潮等水体污染是由于含氮、磷的大量污水任意排放造成的
1、我国制碱工业的先驱侯德榜将制碱与制氨结合起来的联合制碱法,为纯碱和氮肥工业技术的发展做出了杰出的贡献.其生产工艺流程示意图如下:
(1)粗盐水中主要含有Ca2+、Mg2+、SO42-等杂质离子,工业上常用加入稍过量的NaOH溶液、Na2CO3溶液、BaCl2溶液及适量的盐酸等
除杂、精制.则加入试剂合理的顺序为、盐酸(只写一种).加盐酸的作用是(用化学方程式表示)、.
(2)制碱原理为:NaCl+CO2+NH3+H2O=NaHCO3↓+NH4Cl,该反应原理可看作是由:①CO2+NH3+H2O=NH4HCO3和②NaCl+NH4HCO3=NaHCO3↓+NH4Cl 两个反应加合而成,则该反应类型为.
(3)X的化学式为.
(4)Y是滤液中最主要成分,Y与Ca(OH)2反应的产物之一可用于循环使用,该产物的名称为,Y的化学式为,写出Y的一种用途制取.。

相关文档
最新文档