高考数学三角函数典型例题
高考数学三角函数试题及解析
三角函数与解三角形一.选择题1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.3.(2014•河南)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>04.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④ D.①③5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度 B.向右平行移动1个单位长度C.向左平行移动π个单位长度 D.向右平行移动π个单位长度6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1 D.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数 B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.二.填空题11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为_________ .12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()= _________ .13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于_________ .14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ= _________ .15.(2014•山东)函数y=sin2x+cos2x的最小正周期为_________ .16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= _________ .17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于_________ .18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c= _________ ;sinA= _________ .三.解答题19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.三角函数与解三角形一.选择题1.(2014•广西)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.2.(2014•广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角专题:空间角.分析:由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.解答:解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.点评:本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.3.(2014•河南)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0考点:三角函数值的符号专题:三角函数的求值.分析:化切为弦,然后利用二倍角的正弦得答案.解答:解:∵tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.点评:本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.4.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③考点:三角函数的周期性及其求法专题:三角函数的图像与性质.分析:根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论.解答:解:∵函数①y=cos丨2x丨=cos2x,它的最小正周期为=π,②y=丨cosx丨的最小正周期为=π,③y=cos(2x+)的最小正周期为=π,④y=tan(2x﹣)的最小正周期为,故选:A.点评:本题主要考查三角函数的周期性及求法,属于基础题.5.(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.6.(2014•陕西)函数f(x)=cos(2x+)的最小正周期是()A.B.πC.2πD.4π考点:三角函数的周期性及其求法专题:三角函数的图像与性质.分析:由题意得ω=2,再代入复合三角函数的周期公式求解.解答:解:根据复合三角函数的周期公式得,函数f(x)=cos(2x+)的最小正周期是π,故选:B.点评:本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.7.(2014•辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增考点:函数y=Asin(ωx+φ)的图象变换专题:三角函数的图像与性质.分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.解答:解:把函数y=3sin(2x+)的图象向右平移个单位长度,得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].即y=3sin(2x﹣).由,得.取k=0,得.∴所得图象对应的函数在区间[,]上单调递增.故选:B.点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.8.(2014•江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A.﹣B.C.1 D.考点:余弦定理;正弦定理专题:解三角形.分析:根据正弦定理,将条件进行化简即可得到结论.解答:解:∵3a=2b,∴b=,根据正弦定理可得===,故选:D.点评:本题主要考查正弦定理的应用,比较基础.9.(2014•福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称考点:函数y=Asin(ωx+φ)的图象变换专题:三角函数的图像与性质.分析:利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由cos=cos(﹣)=0即可得到正确选项.解答:解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.即f(x)=cosx.∴f(x)是周期为2π的偶函数,选项A,B错误;∵cos=cos(﹣)=0,∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.故选:D.点评:本题考查函数图象的平移,考查了余弦函数的性质,属基础题.10.(2014•安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换专题:三角函数的求值.分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.解答:解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,所得图象是函数y=sin(2x+﹣2φ),图象关于y轴对称,可得﹣2φ=kπ+,即φ=﹣,当k=﹣1时,φ的最小正值是.故选:C.点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.二.填空题11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.考点:三角函数的最值专题:三角函数的求值.分析:展开两角和的正弦,合并同类项后再用两角差的正弦化简,则答案可求.解答:解:∵f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+cosxsinφ﹣2sinφcosx=sinxcosφ﹣sinφcosx=sin(x﹣φ).∴f(x)的最大值为1.故答案为:1.点评:本题考查两角和与差的正弦,考查了正弦函数的值域,是基础题.12.(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()= .考点:函数y=Asin(ωx+φ)的图象变换专题:三角函数的图像与性质.分析:哟条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.解答:解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈z,∴ω=,φ=,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.13.(2014•上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.考点:两角和与差的正弦函数;正弦函数的图象专题:三角函数的求值.分析:由三角函数公式可得sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,结合x∈[0,2π],可得x值,求和即可.解答:解:∵sinx+cosx=1,∴sinx+cosx=,即sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,又∵x∈[0,2π],∴x=,或x=,∴+=故答案为:点评:本题考查两角和与差的三角函数公式,属基础题.14.(2014•陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若•=0,则tanθ= .考点:平面向量数量积的运算专题:平面向量及应用.分析:由条件利用两个向量的数量积公式求得 2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tan θ解答:解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,∴2sinθ﹣cosθ=0,∴tanθ=,故答案为:.点评:本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.15.(2014•山东)函数y=sin2x+cos2x的最小正周期为.考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法专题:三角函数的图像与性质.分析:利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期解答:解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.点评:本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.16.(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= .考点:余弦定理专题:三角函数的求值.分析:利用正弦定理列出关系式,将a,sinA,b的值代入求出sinB的值,即可确定出B的度数.解答:解:∵在△ABC中,A=,a=1,b=,∴由正弦定理=得:sinB===,∵a<b,∴A<B,∴B=或.故答案为:或点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.(2014•福建)在△ABC中,A=60°,AC=2,BC=,则AB等于.考点:余弦定理;正弦定理专题:三角函数的求值.分析:利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.解答:解:∵在△ABC中,A=60°,AC=b=2,BC=a=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,解得:c=1,则AB=c=1,故答案为:1点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.18.(2014•北京)在△ABC中,a=1,b=2,cosC=,则c= ;sinA= .考点:余弦定理专题:三角函数的求值;解三角形.分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.解答:解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.三.解答题19.(2014•广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.考点:正弦定理的应用;三角函数中的恒等变换应用专题:解三角形.分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+B)]=﹣tan(A+B)即可得出.解答:解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.20.(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.考点:余弦定理;正弦定理专题:三角函数的求值.分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.解答:解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.21.(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.考点:正弦定理;两角和与差的余弦函数专题:三角函数的求值.分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,代入a﹣c=b,得:a﹣c=c,即a=2c,∴cosA===;(Ⅱ)∵cosA=,A为三角形内角,∴sinA==,∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.22.(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性专题:三角函数的求值.分析:(1)令 2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα的值.解答:解:(1)∵函数f(x)=sin(3x+),令 2kπ﹣≤3x+≤2kπ+,k∈z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cos2α﹣sin2α)•(sinα﹣cosα),即(sinα﹣cosα)=•(cosα﹣sinα)2•(sinα+cosα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.23.(2014•江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;(2)若f()=﹣,α∈(,π),求sin(α+)的值.考点:三角函数中的恒等变换应用;函数奇偶性的性质专题:三角函数的求值.分析:(1)把x=代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.(2)利用f()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.解答:解:(1)f()=﹣(a+1)sinθ=0,∵θ∈(0,π).∴sinθ≠0,∴a+1=0,即a=﹣1∵f(x)为奇函数,∴f(0)=(a+2)cosθ=0,∴cosθ=0,θ=.(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x•(﹣sin2x)=﹣,∴f()=﹣sinα=﹣,∴sinα=,∵α∈(,π),∴cosα==﹣,∴sin(α+)=sinαcos+cosαsin=.点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.24.(2014•湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;(Ⅱ)求BE的长.考点:余弦定理的应用;正弦定理专题:解三角形.分析:(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.解答:解:(Ⅰ)设α=∠CED,在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD•DEcos∠CDE,即7=CD2+1+CD,则CD2+CD﹣6=0,解得CD=2或CD=﹣3,(舍去),在△CDE中,由正弦定理得,则sinα=,即sin∠CED=.(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,而∠AEB=,∴cos∠AEB=cos()=cos cosα+sin sinα=,在Rt△EAB中,cos∠AEB=,故BE=.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.25.已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).考点:两角和与差的正弦函数专题:三角函数的图像与性质.分析:(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).解答:解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,∴f()=Asin(+)=Asin=,∴.(2)由(1)可知:函数f(x)=3sin(x+),∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)=3[()﹣()]=3•2sinθcos=3sinθ=,∴sinθ=,∴cosθ=,∴f(﹣θ)=3sin()=3sin()3cosθ=.点评:本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.26.(2014•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.考点:余弦定理的应用专题:计算题;解三角形.分析:利用三角形的面积公式,求出sinA=,利用平方关系,求出cosA,利用余弦定理求出a的值.解答:解:∵b=3,c=1,△ABC的面积为,∴=,∴sinA=,又∵sin2A+cos2A=1∴cosA=±,由余弦定理可得a==2或2.点评:本题考查三角形的面积公式、余弦定理,考查学生的计算能力,属于中档题.。
历年(2020-2023)全国高考数学真题分类(三角函数)汇编(附答案)
历年(2020‐2023)全国高考数学真题分类(三角函数)汇编【2023年真题】1. (2023ꞏ新课标I 卷 第8题)已知1sin()3αβ-=,1cos sin 6αβ=,则cos(22)αβ+=( ) A.79B.19C. 19-D. 79-2. (2023ꞏ新课标II 卷 第7题) 已知α为锐角,1cos 4α+=,则sin 2α=( )A. 38B. 18-C. 34D. 14-+3. (2023ꞏ新课标I 卷 第15题)已知函数()cos 1(0)f x x ωω=->在区间[0,2]π有且仅有3个零点,则ω的取值范围是__________.4. (2023ꞏ新课标II 卷 第16题)已知函数()sin()f x x ωϕ=+,如图,A ,B 是直线12y =与曲线()y f x =的两个交点,若||6AB π=,则()f π= .【2022年真题】5.(2022·新高考I 卷 第6题)记函数()sin()(0)4f x x b πωω=++>的最小正周期为.T 若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则(2f π=( ) A. 1B.32C.52D. 36.(2022·新高考II 卷 第6题)若sin()cos()4παβαβαβ+++=+,则( )A. tan()1αβ+=-B. tan()1αβ+=C. tan()1αβ-=-D. tan()1αβ-=7.(2022·新高考II 卷 第9题)(多选)已知函数()sin(2)(0)f x x ϕϕπ=+<<的图象关于点2(,0)3π对称,则( ) A. ()f x 在5(0,)12π单调递减 B. ()f x 在11(,)1212ππ-有两个极值点 C. 直线76x π=是曲线()y f x =的一条对称轴D. 直线2y x =-是曲线()y f x =的一条切线【2021年真题】8.(2021·新高考I 卷 第4题)下列区间中,函数()7sin ()6f x x π=-单调递增的区间是( )A.0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫⎪⎝⎭9.(2021·新高考I 卷 第6题)若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+( )A. 65-B. 25-C.25 D.65【2020年真题】10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选)如图是函数()sin y x ωϕ=+的部分图象,则()sin x ωϕ+( )A. sin ()3x π+B. sin (2)3x π- C. cos (2)6x π+D. 5cos (2)6x π- 11.(2020·新高考I 卷 第15题、II 卷 第16题))某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC的切点,四边形DEFG 为矩形,BC DG ⊥,垂足为C ,3tan 5ODC ∠=,//BH DG ,12EF cm =,2DE cm =,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为__________2.cm参考答案1. (2023ꞏ新课标I 卷 第8题)解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,则1sin cos .2αβ=故112sin()sin cos cos sin .263αβαβαβ+=+=+= 即2221cos(22)12sin ()12().39αβαβ+=-+=-⨯=故选B.2. (2023ꞏ新课标II 卷 第7题)解:22111cos 36114sin ()sin 222816424ααα+-----=====⇒=故选:.D3. (2023ꞏ新课标I 卷 第15题)解:令()cos 10f x x ω=-=,得cos 1x ω=,又[0,2]x π∈,则[0,2]x ωωπ∈,所以426πωππ<…,得2 3.ω<… 故答案为:[2,3).4. (2023ꞏ新课标II 卷 第16题)解: 设相邻的两个交点A ,B 的横坐标为1 t ,2 t ,则21 - 6t t π=又1sin()2x ωϕ+=,522,.0,66x k k k Z k ππωϕππ+=++∈=或当时 16t πωϕ+=,256t πωϕ+=,212( - )3t t πω=,故 4.ω=函数图象过点2(,0)3π,8sin ()03πϕ+=,故8 ,.3k k Z πϕπ=-∈ 2k =时满足图片条件,故2.3πϕ=-2()sin(4.32f πππ=-=- 5.(2022·新高考I 卷 第6题)解:由题可知:22(,)3T πππω=∈,所以(2,3).ω∈ 又因为()y f x =的图像关于点3(,2)2π中心对称,所以2b =,且33()sin() 2.224f b πππω=⨯++= 所以21(34k ω=-,k Z ∈,所以5.2ω=所以5()sin() 2.24f x x π=++所以() 1.2f π=6.(2022·新高考II 卷 第6题)解:解法一:设0β=则sin cos 0αα+=,取34απ=,排除B ,D 再取0α=则sin cos 2sin βββ+=,取4πβ=,排除;A 选.C解法二:由sin()cos())]44ππαβαβαβαβ+++=++=++)cos 44ππαβαβ=++,cos )sin 44ππαβαβ+=+ 故sin()cos cos(044ππαβαβ+-+=,即sin()04παβ+-=,故sin(sin()cos()0422παβαβαβ-+=-+-=, 故sin()cos()αβαβ-=--,故tan() 1.αβ-=- 7.(2022·新高考II 卷 第9题)(多选) 解:由题意得:24(sin()033f ππϕ=+=, 所以43k πϕπ+=,即43k πϕπ=-+,k Z ∈, 又0ϕπ<<,所以2k =时,23πϕ=,故2()sin(2).3f x x π=+ 选项5:(0,)12A x π∈时,2232(,)332x πππ+∈,由sin y u =图象知()f x 在5(0,)12π单调递减; 选项11:(,1212B x ππ∈-时,252(,)322x πππ+∈,由sin y u =图象知()f x 在11(,1212ππ-有1个极值点; 选项:C 由于,故直线76x π=不是()f x 的对称轴;选项:D 令,得21cos(232x π+=-, 解得222233x k πππ+=+或242233x k πππ+=+,k Z ∈,从而得x k π=或3x k ππ=+,k Z ∈,令0k =,则是斜率为1-的直线与曲线的切点,从而切线方程为(0)2y x -=--,即.2y x =- 8.(2021·新高考I 卷 第4题) 解:由22262k x k πππππ-+-+剟,得222,33k x k k Z ππππ-++∈剟, 所以()7sin ()6f x x π=-的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦, 当0k =时,一个单调递增区间为2,33ππ⎡⎤-⎢⎥⎣⎦,可知20,,233πππ⎛⎫⎡⎤⊆- ⎪⎢⎥⎝⎭⎣⎦, 故选:.A9.(2021·新高考I 卷 第6题)解:原式22sin (sin cos 2sin cos )sin cos θθθθθθθ++=+ 22sin (sin cos )sin sin cos sin cos θθθθθθθθ+==++22222sin sin cos tan tan 422sin cos tan 1415θθθθθθθθ++-====+++, 故选:.C10.(2020·新高考I 卷 第10题 、II 卷 第11题)(多选) 解:由图象可知222()||36T ππππω==-=,故A 错误; 解得2ω=±, 点5(,1)12π-在函数图象上, 当2ω=时,522,k Z 122k ππϕπ⨯+=-+∈, 解得42,k Z 3k πϕπ=-+∈,故44sin 2sin 2sin 2333y x x x ππππ⎛⎫⎛⎫⎛⎫=-=-+-=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当2ω=-时,522,k Z 122k ππϕπ-⨯+=-+∈ 解得2,k Z 3k πϕπ=+∈,故函数解析式为sin 23y x π⎛⎫=-+ ⎪⎝⎭,又cos 2sin 2sin 26263x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫+=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选.BC11.(2020·新高考I 卷 第15题、II 卷 第16题) 解:设上面的大圆弧的半径为x ,连接OA ,过A 作AI BH ⊥交BH 于J ,交DG 于K ,交EF 于I ,过O 作OL DG ⊥于L ,记扇形OAB 的面积为S 扇形,由题中的长度关系易知45AGD ︒∠=,所以45AHO ︒∠=, 又90OAH ︒∠=,可得AOH 为等腰直角三角形,可得2OJ AJ x ==,52OL JK x ==-, 72DL DK LK DK OJ x=-=-=-,3tan 5OL ODC DL ∠==, 5352x-=,解得x =,12AOH O S S S S =+- 阴影圆扇形222131154()24222cm πππ=⨯⨯+⨯-=+,故答案为54.2π+。
2020高考数学专项复习《三角函数10道大题》(带答案)
4 2 ) 三角函数1.已知函数 f (x ) = 4 c os x s in(x +(Ⅰ)求 f (x ) 的最小正周期;) -1.6(Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值.6 42、已知函数 f (x ) = sin(2x + ) 3+ sin(2x - 3 + 2 cos 2 x - 1, x ∈ R .(Ⅰ)求函数 f (x ) 的最小正周期;(Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值.4 43、已知函数 f (x ) = tan(2x +),4(Ⅰ)求 f (x ) 的定义域与最小正周期;⎛ ⎫(II )设∈ 0, ⎪ ,若 f ( ) = 2 cos 2, 求的大小⎝ ⎭4、已知函数 f (x ) =(sin x - cos x ) sin 2x.sin x(1) 求 f (x ) 的定义域及最小正周期;(2) 求 f (x ) 的单调递减区间.5、 设函数 f (x ) = cos(2x + + sin 2x .24(I )求函数 f (x ) 的最小正周期;( II ) 设 函 数 1g (x ) 对 任 意 x ∈ R , 有g (x + 2 = g (x ) , 且 当x ∈[0, ] 时 , 2g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式.22 ) )3 + = 6、函数 f (x ) = A sin(x -称轴之间的距离为 ,2) +1(A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6(1)求函数 f (x ) 的解析式;(2)设∈(0, ) ,则 f ( ) = 2 ,求的值.2 27、设 f ( x ) = 4cos( ωx -π)sin ωx + cos 2ωx ,其中> 0.6(Ⅰ)求函数 y = f ( x ) 的值域(Ⅱ)若 y = f ( x ) 在区间⎡- 3π ,π⎤上为增函数,求 的最大值.⎣⎢ 2 2 ⎥⎦8、函数 f (x ) = 6 cos 2x + 23 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且∆ABC 为正三角形.(Ⅰ)求的值及函数 f (x ) 的值域;8 3 (Ⅱ)若 f (x 0 ) 5,且 x 0 ∈(- 10 2, ) ,求 f (x 0 1) 的值.3 39、已知 a , b , c 分别为∆ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0(1)求 A ;(2)若 a = 2 , ∆ABC 的面积为 ;求b , c .10、在 ∆ ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C .= 2,sin B = 53(Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求∆ ABC 的面积.3 2 2 ) max+ = - (x )答案1、【思路点拨】先利用和角公式展开,再利用降幂公式、化一公式转化为正弦型函数,最后求周期及闭区间上的最值.【精讲精析】(Ⅰ)因为 f (x ) = 4 cos x sin(x + 1) -1 = 4 cos x ( sin x + cos x ) -1622= 3 sin 2x + 2 cos 2 x -1 = 3 sin 2x + cos 2x = 2 s in(2x +,所以 f (x ) 的最小正周期为.62(Ⅱ)因为- ≤ x ≤ 6 4 ,所以- ≤ 2x + ≤ 6 6 3 .于是,当2x + = 6 2 ,即 x =6时, f (x ) 取得最大值 2;当2x + = - 6 6 ,即 x = - 时, f (x ) 取得最小值-1.62、【解析】 (1)2f (x )= sin (2x + )+sin(2x - )+2cos x -1 = 2 s in 2x cos + cos 2x = 2 sin(2x + )3 3 3 42函数 f (x ) 的最小正周期为T = =23 (2) - ≤ x ≤ ⇒ - ≤ 2x + ≤ ⇒ - ≤ sin(2x +4 4 4 4 4 2 4) ≤ 1 ⇔ -1 ≤ f (x ) ≤当 2x + = (x = ) 时 , 4 2 8 f (x )min = -1f (x ) = , 当 2x = - 时 , 4 4 4【点评】该试题关键在于将已知的函数表达式化为 y =A sin (x +) 的数学模型,再根据此三角模型的图像与性质进行解题即可.3、【思路点拨】1、根据正切函数的有关概念和性质;2、根据三角函数的有关公式进行变换、化简求值.k【精讲精析】(I)【解析】由2x +≠ + k , k ∈ Z , 得 x ≠ + , k ∈ Z . 4 2 8 2k为 .2所以 f (x ) 的定义域为{x ∈ R | x ≠ + 8 2, k ∈ Z } , f (x ) 的最小正周期(II)【解析】由 f ( ) = 2 cos 2, 得tan(+2) = 2 cos 2,42) ) )1 sin(+ 4 = 2(cos2 - s in 2 ), cos(+整理得4 sin + coscos - sin= 2(cos + sin )(cos - sin ). 21 1 因为∈(0, ) ,所以sin + cos ≠ 0.因此(cos - s in ) 4= ,即sin 2= .2 2由∈(0, ) ,得2∈(0, ) .所以2= ,即= .4 2 6 124、解(1): sin x ≠ 0 ⇔ x ≠ k(k ∈ Z ) 得:函数 f (x ) 的定义域为{x x ≠ k , k ∈ Z }f (x ) =(sin x - cos x ) sin 2x= (sin x - cos x ) ⨯ 2 cos xsin x= sin 2x - (1+ cos 2x ) = 2 sin(2x --14 2得: f (x ) 的最小正周期为T = = ;2(2)函数 y = sin x 的单调递增区间为[2k - , 2k + 2 2](k ∈ Z )3则2k - ≤ 2x - ≤ 2k + ⇔ k - ≤ x ≤ k +2 4 2 8 8得: f (x ) 的单调递增区间为[k - , k ),(k , k + 3](k ∈ Z )8 85、本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力.【 解 析 】1 1f (x ) = cos(2x + + sin 2 x = 1 cos 2x - 1 sin 2x + 1 (1- cos 2x )2 4 2 2 2= - sin 2x , 2 22(I )函数 f (x ) 的最小正周期T = =21 1(II )当 x ∈[0, ] 时, g (x ) = - f (x ) = sin 2x2 当 x ∈[-2 21 1 sin 2x 当 x ∈[-, - ) 时, (x +) ∈[0, )2 2 g (x ) = g (x +) = sin 2(x +) = 2 2sin 2x⎧- 1 sin 2x (x ≤ 0) - ≤ ⎪ 22 得函数 g (x ) 在[-, 0] 上的解析式为 g (x ) = ⎨ .⎪ sin 2x (-≤ x <⎩⎪ 2 22 ) ) , 0] 时, (x + ) ∈[0, ] g (x ) = g (x + ) = 1 sin 2(x + ) = - 1 2 2 2 2 2 2 23 ⎢ ⎥ 6、【解析】(1)∵函数 f ( x ) 的最大值是 3,∴ A +1 = 3,即 A = 2 .∵函数图像的相邻两条对称轴之间的距离为 ,∴最小正周期T =,∴= 2 .2故函数 f ( x ) 的解析式为 f (x ) = 2 s in(2x -) +1.61(2)∵ f ( ) = 2 s in(- 2) +1 = 2 ,即sin(- 6 ) = ,6 2∵ 0 << ,∴ - <- < ,∴- = ,故= .2 6 63 6 6 3⎛ 3 1⎫ 7、解:(1) f ( x ) = 4 2 cos x + 2 sin x ⎪⎪s in x + cos 2x ⎝ ⎭= 2 3 sin x cos x + 2 sin 2 x + cos 2 x - sin 2 x =3 sin 2x +1因-1 ≤ sin 2x ≤ 1,所以函数 y = f ( x ) 的值域为⎡1- 3,1+ 3⎤⎣⎦⎡ ⎤(2)因 y = sin x 在每个闭区间 ⎢⎣2k - 2 , 2k + 2 ⎥⎦ (k ∈ Z ) 上为增函数,故 f ( x ) = 3 sin 2x +1 (> 0) 在每个闭区间⎡ k - 4 , k + ⎤(k ∈ Z ) 上 4为增函数.⎡ 3 ⎤⎡ kk ⎤⎣⎦依题意知⎢- , ⎥ ⊆ ⎢ -, + ⎥ 对某个 k ∈ Z 成立,此时必有 k = 0 ,于是 ⎣ 2 2 ⎦ ⎣ 4 4⎦⎧- 3≥ -⎪ 2 41 1⎨⎪ ≤⎩ 2 4,解得≤ ,故的最大值为 . 6 6 8. 本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得: f (x ) = 6 cos2x+ 23 cos x - 3(> 0)=3cosωx+ 3 sin x = 2 3 s in(x + )3又由于正三角形 ABC 的高为 2 ,则 BC=42 所以,函数 f (x )的周期T = 4 ⨯ 2 = 8,即= 8,得= 4所以,函数 f (x )的值域为[-2 3,2 3] .......................... 6 分 (Ⅱ)因为 f (x 0 ) =853,由(Ⅰ)有1 - ( 4)2 57 6 53 1 c os 2A5 561f (x ) = x 08 3x 0 42 3sin( 4 + ) =3 , 即sin( 54 + ) = 35 由 x 0∈(- 10 2x 0 + ∈ (-,),得( ) , )3 34 3 2 2所以,即 x 0 3 cos( 4 + ) = =3 5 故 f (x + 1) = x 0= x 0 + + 02 3sin( = 4 x 0 + + ) 2 4 33sin[( ) ] 4 3 4x 0 2 3[sin( 4 + ) cos 3 4 + cos( 4 + ) s in3 4 = 2 3( 4⨯ 2 + 3 ⨯ 2 )5 2 5 2=12 分9..解:(1)由正弦定理得:a cos C + 3a sin C -b -c = 0 ⇔ sin A c os C - 3 sin A sin C = sin B + sin C⇔ sin A cos C + 3 sin A sin C = sin(a + C ) + sin C⇔ 3 sin A - cos A = 1 ⇔ sin( A - 30︒ ) = 12⇔ A - 30︒ = 30︒ ⇔ A = 60︒(2) S = bc sin A = ⇔ bc = 4 , 2a 2 =b 2 +c 2 - 2bc cos A ⇔ b + c = 410. 本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点.(Ⅰ)∵cos A 2 0,∴sin A = ,= >33又2 sin C .35 cos C =sin B =sin(A +C )=sin A cos C +sin C cos A =5 cos C +3整理得:tan C = 5 .(Ⅱ) 由图辅助三角形知: sin C =. 又由正弦定理知:a sin A c ,sin C故c 3 . (1)b 2c 2 a 2 2对角 A 运用余弦定理:cos A =2bc . (2) 3 解(1) (2)得: b 3 or b = 3 (舍去). ∴∆ ABC 的面积为:S = 5. 3 2。
高考数学三角函数与解三角真题训练100题含答案
高考数学三角函数与解三角真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.数学家欧拉通过研究,建立了三角函数和指数函数之间的联系,得到著名的欧拉公式i e cos isin x x x =+(i 为虚数单位),此公式被誉为“数学中的天桥”.根据欧拉公式,3i e 表示的复数在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数22()cos 3sin 1f x x x =-+的最小正周期为( ) A .2πB .πC .π2D .π43.若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称4.sin 480︒的值是( )A .12B .12-C D . 5.下列各角中与60︒角终边相同的角是( ) A .-300°B .-60°C .600°D .1 380°6.一架直升飞机在300m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60︒,则塔高为( )A .200mB .C .D .100m7.已知ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,b =1a =,23B π=,则c =( )A B .2CD .38.为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点( ) A .纵坐标不变,横坐标伸长为原来的2倍 B .纵坐标不变,横坐标缩短为原来的12倍 C .横坐标不变,纵坐标伸长为原来的2倍 D .横坐标不变,纵坐标缩短为原来的12倍9.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( )A .π12B .π12-C .5π12D .5π12-10.设sin160a ︒=,则cos340︒的值是( )A .21a - BC .D .11.已知,04πα⎛⎫∈- ⎪⎝⎭且24sin225α=-,则sin cos αα+=( )A .15B .15- C .75- D .7512.已知1tan 42πα⎛⎫+= ⎪⎝⎭,则2sin 2cos 1cos 2ααα-=+( ) A.56- B .75- C .2- D .13.已知函数2sin y x =的定义域为[,]a b ,值域为[2,1]-,则b a -的值不可能是 A .2πB .76πC .56π D .π14.已知曲线21:C y x =,曲线2:sin 2cos 2C y x x =+,则下列结论正确的是( )A .曲线1C 关于原点对称B .4x π=是曲线2C 的一条对称轴C .曲线1C 向右平移8π个单位长度,得到曲线2C D .曲线2C 向左平移4π个单位长度,得到曲线1C15.函数3sin 2x y x =的图象可能是( ).A .B .C .D .16.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()5c a b =-+,3C π=,则ABC 的面积是( )A .3B C D .17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c =,b ,则ABC 的面积最大值为( )AB .CD .18.已知sin()0,cos()0θπθπ+<->,则θ是第象限角. A .一 B .二 C .三D .四19. 若,且,42x ππ<<则cos sin x x -的值是A .B .C .D .20.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =( ) A .513B .6365C .2113D .31021. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan△ECF=A .B .C .D .22.已知θ为第四象限角,sin cos θθ+=sin cos θθ-=( )A .B .C D23.在数列{}n a 中,()*1153n n a a a n n N +==-+∈,,若该数列的前三项可作为三角形的三边长,则此三角形最小角与最大角之和为 A .150°B .135°C .120°D .90°24.将函数()π2sin +36x f x ⎛⎫= ⎪⎝⎭的图象向左平移π4个单位,再向下平移1个单位,得到函数 g ( x ) 的图象,则 g ( x ) 的解析式为 A .()π2sin +134x g x ⎛⎫=- ⎪⎝⎭ B .()π2sin 134x g x ⎛⎫=-- ⎪⎝⎭ C .()π2sin 1312x g x ⎛⎫=-+ ⎪⎝⎭D .()π2sin 1312x g x ⎛⎫=-- ⎪⎝⎭25.某船在岸边A 处向正东方向航行x 海里后到达B 处,然后向南偏西60︒方向航行3海里达到C 处,若A 与Cx 的值是( )A .3BC .D .26.一艘船航行到点B 处时,测得灯塔C 在其北偏东15°的方向,如图,随后该船以25海里/小时的速度,沿西北方向航行两小时后到达点A ,测得灯塔C 在其正东方向,此时船与灯塔C 间的距离为( )A .(253海里B .25海里C .(253海里D .(25海里27.北京大兴国际机场(如图所示)位于中国北京市大兴区和河北省廊坊市交界处,为4F 级国际机场、世界级航空枢纽、如图,天安门在北京大兴国际机场的正北方向46km处,北京首都国际机场在北京大兴国际机场北偏东16.28°方向上,在天安门北偏东47.43°的方向上,则北京大兴国际机场与北京首都国际机场的距离约为( ) (参考数据:sin16.280.28︒≈,sin47.430.74︒≈,sin31.150.52︒≈)A .65.46kmB .74.35kmC .85.09kmD .121.12km28.已知定义域为[1,1]-函数3()sin f x x x =+,则关于a 的不等式2(2)(4)0f a f a -+->的解集是( )A.(3,2)-B .2)C .D .29.某学习小组的学习实践活动是测量图示塔AB 的高度.他们选取与塔底在同一水平面内的两个测量基点C ,D ,测得3BCD π∠=,4BDC π∠=,且基点C ,D 间的距离为(30m CD =+,同时在点C 处测得塔顶A 的仰角为6π,则塔高AB 为( )A .20mB .C .40mD .30.若tan()74πα+=,则2cos 2sin 2αα+=( )A .6425B .4825C .1D .162531.已知sin α+cos αα△(0,π),则tan α=( )A .-1 BC D .132.要得到函数2sin 2y x =的图象,只需将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度33.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫ ⎪⎝⎭,,将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象,则( ) A .g (x )为偶函数B .g (x )的一个单调递增区间为51212ππ⎡⎤-⎢⎥⎣⎦,C .g (x )为奇函数D .函数g (x )在02π⎡⎤⎢⎥⎣⎦,上有两个零点34.在ABC 中,如果4sin 2cos 1,2sin 4cos A B B A +=+=C ∠的大小为( ) A .30B .150︒C .30或150︒D .60︒或120︒35.已知()2cos f x x =,[],x m n ∈,则“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件36.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,点P 是ABC 的重心,且AP =若2b =,(()cos 24sin 1A B C ++=,则=a ( )A .B .C .D .37.把函数y= sin 3x π⎛⎫+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移3π个单位,所得图象对应的函数为( )A .y=sin 23x π⎛⎫- ⎪⎝⎭B .y=sin2xC .y=sin 126x π⎛⎫- ⎪⎝⎭D .y=sin 12x38.将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图象.再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数()h x 的图象,则下列叙述正确的是( )A .当6πθ=时,,012π⎛⎫⎪⎝⎭为函数()h x 图象的对称中心B .当6πθ=时,若0,4x π⎡⎤∈⎢⎥⎣⎦,则函数()h xC .当2πθ=时,函数()g x 与()h x 的图象关于x 轴对称D .当2πθ=时,函数()()g x h x -的最小值为039.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45︒方向,距离的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北(045)θθ︒<<︒方向的C 处,且4cos .5θ=已知A ,C 之间的距离为10海里,则该货船的速度大小为( )A ./小时B ./小时C ./小时D ./小时40.中,角的对边分别为,且满足,则A .B .C .D .41.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭A .BCD . 42.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移2π个单位长度 B .向右平移2π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度43.把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象与y 轴距最近的称轴方程为 A .x 3π=B .x -6π= C .x -24π= D .11x 24π=44.已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)△(54π,32π)B .(0,4π)△(54π,32π)C .(2π,34π)△(74π,2π)D .(2π,34π)△(π,32π)45.已知点()00,P x y 是圆22:124390C x y x y ++++=上的一点,记点P 到x 轴距离为1d ,到原点O 的距离为2d ,则当212d d +取最小值时,x y =( ) A .167B .187C .227D .24746.函数()f x 的图象如图所示,则()f x 的解析式可能为( )A .3π()2cos(2)110f x x =+- B .3π()1cos(2)10f x x =-+C .π()1sin 25f x x ⎛⎫=+- ⎪⎝⎭D .π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭47.把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数()y f x =的图象,对于函数()y f x =有以下四个判断:(1)该函数的解析式为2sin 26y x π⎛⎫=+ ⎪⎝⎭;(2)该函数图象关于点,03π⎛⎫⎪⎝⎭对称;(3)该函数在06,π⎡⎤⎢⎥⎣⎦上是增函数;(4)若函数()y f x a =+在0,2π⎡⎤⎢⎥⎣⎦a =其中正确的判断有( ) A .1个 B .2个C .3个D .4个二、填空题48.已知角α与180α︒-的顶点均在原点,始边均在x 轴的非负半轴上,终边相同,且450720α︒<<︒,则α=__________.(用角度表示)49.已知cos 4a π⎛⎫+ ⎪⎝⎭=13,0<α<2π,则sin 4a π⎛⎫+ ⎪⎝⎭=________.50.已知 tan 02παα⎫=<<⎪⎝⎭,则α=___________. 51.用“五点法”画2sin(2)3y x π=+在一个周期内的简图时,所描的五个点分别是(,0)6π-,(,2)12π,(,0)3π,7(,2)12π-,_______.52.如果角θ始边为x 轴的正半轴,终边经过点(,那么tan θ=______. 53.计算:10cos3π=________.54.在ABC 中,已知22,3BC AC B π==,那么ABC 的面积是______. 55.已知函数()2sin cos 4f x x x π⎛⎫=+ ⎪⎝⎭,给出以下四个命题:△函数()f x 的最小正周期为2π;△函数()f x 的图象的一个对称中心是82π⎛- ⎝⎭;△函数()f x 在,04π⎛⎫- ⎪⎝⎭上为减函数;△若()()12f x f x =,则()1211Z 4x x k k ππ+=+∈或()1222Z x x k k π-=∈.其中真命题的序号是__________.(请写出所有真命题的序号) 56.已知()()4sin cos cos sin 5αβαβαα---=,β是第三象限角,则sin 4πβ⎛⎫+ ⎪⎝⎭的值___________.57.已知sincos22θθ+=cos2θ=______. 58.如果1cos 5α=-,且α是第三象限的角,那么cos 2πα⎛⎫+= ⎪⎝⎭______.59.函数tan()34y x ππ=+的对称中心是__________.60.若18090α-︒<<-︒,且()1cos 753α︒+=,则()cos 15α︒-=__________.61.已知1sin cos 2αα+=-,则tan cot αα+=__________62.已知1tan 3α= ,则sin 2α= ________.63.已知角α的终边经过点(3,4)P ,则tan α=____________ 64.y cos 25sin x x =+的最小值为________________.65.若角α的终边经过点()P y ,且sin (0)y y α=≠,则cos α=______.66.设a >0,角α的终边经过点P (﹣3a ,4a ),那么sinα+2cosα的值等于______. 67.已知tan 2α,则3sin 2cos 5sin 4cos αααα-=+__________.68.函数sin 22y x x =的图象可由函数sin 22y x x =的图象至少向右平移_______个长度单位得到.69.已知函数()sin2f x x x =,给出下列四个结论:△函数()f x 的最小正周期是π;△函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是减函数;△函数()f x 的图像关于点,03π⎛⎫⎪⎝⎭对称;△函数()f x 的图像可由函数2sin2y x =的图像向左平移3π个单位得到;其中正确结论是_________________.70.设f(x)=kx -|sin x | (x >0,k >0),若f(x)恰有2个零点,记较大的零点为t ,则2(1)sin 2t tt+= ____71.计算:23456coscoscos cos cos cos 777777ππππππ+++++=__________.72.若2tan 3α=-,则sin(2)4πα+=____________.73.已知3ππ4αβ⎛⎫∈ ⎪⎝⎭,,,()4cos 5αβ+=,π5cos 413α⎛⎫-=- ⎪⎝⎭,所以πcos 4β⎛⎫+= ⎪⎝⎭_____74.已知集合{}22(,)(cos )(sin )4,0P x y x y θθθπ=-+-=≤≤∣.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:△“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为; △在集合P 中任取一点M ,则M 到原点的距离的最大值为4;△阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则||3CD =+△白色“水滴”图形的面积是116π 其中正确的有___________.75.设0a ≥____________.76.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过点(0,B ,且在ππ,183⎛⎫ ⎪⎝⎭上单调,同时()f x 的图像向左平移π个单位长度后与原来的图像重合,当124π2π,,33x x ⎛⎫∈-- ⎪⎝⎭,且12x x ≠时,()()12f x f x =,则()12f x x +=__________.77.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角4B π=且4sin 4sin sin 4sin a A c C ac B b B +=+,则ABC 的面积的最大值为_____________.三、解答题78.设函数()sin(2)2sin cos 3f x x x x π=++.(1)求函数()f x 的单调递增区间; (2)若[,]123x ππ∈-,求函数()f x 的最大值和最小值. 79.若角α的终边与60︒角的终边关于直线y x =对称,且360360α-︒<<︒,求角α的值. 80.已知函数()()21cos ,1sin2.2f x xg x x ==+(1)设0x x =是函数()y f x =的图象的一条对称轴,求()02g x 的值; (2)求函数()()(),0,4h x f x g x x π⎡⎤=+∈⎢⎥⎣⎦的值域.81.已知()()()()()3sin 3cos 2sin 2cos sin f παππαααπαπα⎛⎫---+ ⎪⎝⎭=----. (1)化简()f α; (2)若313πα=-,求()f α的值. 82.如图,一艘船以32.2nmile/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东20°方向上,30min 后航行到B 处,在B 处看灯塔S 在船的北偏东60°方向上,求灯塔S 到B 处的距离(精确到0.1nmile ,参考数据:sin 200.342︒≈,sin 400.643︒≈).83.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC且sin cos 0a C A =. (1)求a ;(2)若b c +=ABC 的面积.84.已知函数()()()sin 0,f x x ωϕωϕπ=+><图象经过点,112π⎛⎫- ⎪⎝⎭,7,112π⎛⎫⎪⎝⎭,且在区间7,1212ππ⎛⎫ ⎪⎝⎭上单调递增. (1)求函数()f x 的解析式;(2)当,6x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.85.若向量(3sin ,sin )a x x ωω=,(cos sin )b x x ωω=,,其中0>ω.记函数1()2f x a b =⋅-,若函数()f x 的图象上相邻两个对称轴之间的距离是2π. (1)求()f x 的表达式;(2)设ABC 三内角A 、B 、C 的对应边分别为a 、b 、c ,若3a b +=,c =()1f C =,求ABC 的面积.86.已知ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,)cos sin 0a c B b C --=. (1)求角C 的大小;(2)若2c =,AB 边上的中线CD ABC 的周长. 87.如图4,在平面四边形中,,(1)求的值;(2)求的长88.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若1cos 3A =,3c b =,且△ABC 的面积ABCS=(1)求边,b c ;(2)求边a 并判断△ABC 的形状.89.已知函数2()cos cos 1f x x x x =+. (1)求函数()f x 的单调递增区间;(2)若5()6f θ=,2(,)33ππθ∈,求sin 2θ的值. 90.如图,某圆形海域上有四个小岛,小岛A 与小岛B 相距为5nmile ,小岛A 与小岛C相距为,小岛B 与小岛C 相距为2nmile ,CAD ∠为钝角,且sin CAD ∠=(1)求小岛A ,B ,C 围成的三角形的面积; (2)求小岛A 与小岛D 之间的距离.91.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222a c b ac +-=. (1)求B ;(2)若cos sin a C c A b +=,b =a .92.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若cos b A c= (1)证明:ABC ∆是直角三角形: (2)BM 平分角B 交AC 于点M ,且1BM=,6c =,求cos ABM ∠.93.为迎接冬奥会,石家庄准备进行城市绿化升级,在矩形街心广场ABCD 中,如图,其中400m AB =,300m BC =,现将在其内部挖掘一个三角形空地DPQ 进行盆景造型设计,其中点P 在BC 边上,点Q 在AB 边上,要求3PDQ π∠=.(1)若100m AQ CP ==,判断DPQ 是否符合要求,并说明理由; (2)设CDP θ∠=,写出DPQ 面积的S 关于θ的表达式,并求S 的最小值.94.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,sin A =B 2A =,b 4=. (1)求a 的值;(2)若D 为BC 中点,求AD 的长.95.已知函数()cos cos )f x x x x =+,x ∈R .(1)求函数()f x 的单调递增区间;(2)设0t >,关于x 的函数()2tx g x f ⎛⎫= ⎪⎝⎭在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-,求实数t 的取值范围.96.函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式; (2)求()f x 的单调递增区间; (3)先将()f x 的图象向右平移3π个单位长度,再将图象上所有点的纵坐标扩大到原来的2倍得到函数()g x 的图象,求()g x 在区间[]2ππ,上的值域.97.已知函数()2cos 2cos 1f x x x x =+-. (1)求6f π⎛⎫⎪⎝⎭的值及()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.参考答案:1.B 【解析】 【分析】由题可知3i e 对应在复平面的点为()cos3,sin3,由32ππ<<可判断cos3和sin3的正负,进而得到答案. 【详解】由题,3i e cos3isin3=+,其对应点为()cos3,sin3, 因为32ππ<<知,cos30<,sin30>,所以点()cos3,sin3在第二象限, 故选:B 2.B 【解析】 【分析】先利用余弦的二倍角公式化简()f x ,再利用余弦函数的周期公式即可求解. 【详解】因为()()22222()cos 3sin 1cos sin 12sin f x x x x x x =-+=-+-cos2cos22cos2x x x =+=,所以最小正周期2ππ2T ==, 故选:B. 3.C 【解析】 【分析】根据角θ与角θ-的终边关于x 轴对称即可得解. 【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C 4.C【解析】结合诱导公式化简即可 【详解】()sin 480sin 360120sin120︒=︒+︒=︒=故选:C 【点睛】本题考查三角函数值的化简,属于基础题 5.A 【解析】 【详解】与60︒角终边相同的角为:60360k,k Z ︒+︒∈. 当k 1=-时,即为-300°. 故选A. 6.A 【解析】 【分析】由题设,画平面示意图,利用三角形内边角关系,列方程求塔高即可. 【详解】如图,O 、A 分别为塔底、塔顶,C 为飞机位置,△300,30,60OB BCA BCO =∠=︒∠=︒, 若设OA x =,则300AB x =-,有tan tan AB OBBCA BCO =∠∠,=200x =.故选:A. 7.B 【解析】 【分析】由余弦定理列方程即可求解. 【详解】由余弦定理得222cos 2a c b B ac +-=,即211722c c+--=,整理得260c c +-=,解得2c =.故选:B. 8.C 【解析】 【分析】根据坐标变换求解即可得答案. 【详解】为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点的横坐标不变,纵坐标伸长为原来的2倍. 故选:C 9.B 【解析】 【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】△37515360-=-︒-︒︒,△π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B 10.B 【解析】根据题中条件,先由诱导公式,得到sin 20a ︒=,再根据诱导公式化简所求式子即可. 【详解】因为sin160a ︒=,所以()sin 18020sin 20a ︒-︒=︒=,而()()cos340cos 36020cos 20cos 20︒=︒-︒=-︒=︒= 故选:B. 11.A 【解析】 【分析】由题意得242sin cos 25αα∴=-,由,04πα⎛⎫∈- ⎪⎝⎭,可得sin cos αα+=,代入即可求值得解. 【详解】 24sin 225α=-, 242sin cos 25αα∴=-, ,04πα⎛⎫∈- ⎪⎝⎭,cos sin 0αα∴+>,1sin cos 5αα∴+=. 故选:A 【点睛】本题考查同角三角函数关系式,常用公式2(sin cos )12sin cos 1sin 2x x x x x +=+=+,属于基础题. 12.A 【解析】 【分析】利用两角差的正切公式求出tan tan 44ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,再利用二倍角公式以及同角三角函数的基本关系即可求解. 【详解】△1tan 42πα⎛⎫+= ⎪⎝⎭,△1tan tan 11442tan tan 1443111tan tan 244ππαππααππα⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭=+-===- ⎪⎢⎥⎛⎫⎝⎭⎣⎦+⨯++ ⎪⎝⎭, 则222sin 2cos 2sin cos cos 2tan 11cos 22cos 2αααααααα---==+ 1115tan 2326α=-=--=-.故选:A 【点睛】本题以三角正切函数值为依托,考查了正切的两角差公式和倍角公式的运用,此题以考生最熟悉的知识呈现,面向考生,试题注重基础,针对性强,同时考查了考生的运算求解能力及逻辑推理能力,属于基础题. 13.A 【解析】 【详解】试题分析:因为函数的最大值取不到2,所以b a T -<,即02b a π<-<.故A 正确. 考点:三角函数的图像,值域. 14.C 【解析】 【分析】利用辅助角公式将函数化简,再根据余弦函数、正弦函数的性质判断即可; 【详解】解:曲线21:C y x x ==关于y 轴对称,故A 错误;曲线2:sin 2cos 224C y x x x π⎛⎫=+=+ ⎪⎝⎭,令242x k πππ+=+,解得82k x ππ=+,Z k ∈,即曲线2C 的对称轴方程为82k x ππ=+,Z k ∈,则4x π=不是曲线2C 的一条对称轴,故B 错误;曲线1:222C y x x π⎛⎫==+ ⎪⎝⎭向右平移8π个单位长度得到24i 28n 2y x x πππ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即得到曲线2C ,故C 正确.将曲线2C 向左平移4π个单位长度得到42242i 4n 24y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦++,故D 错误;故选:C 15.D 【解析】 【分析】首先判断函数的奇偶性,排除选项,再根据特殊区间,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <判断选项.【详解】3xy =是偶函数,sin 2y x =是奇函数,()3sin 2xf x x =是奇函数,函数图象关于原点对称,故排除A,B02f ⎛⎫= ⎪⎝⎭π ,当(,)2x ππ∈时,30x y =>,sin 20y x =<3sin 20xy x ∴=<,排除C.故选D . 【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项. 16.C 【解析】 【分析】先根据题意以及余弦定理求出ab ,再根据三角形面积公式即可求解. 【详解】解:2222()525c a b a ab b =-+=-++, 即22225a b c ab +-=-,由余弦定理得:222251cos 3222a b c ab ab ab π+--===, 解得:5ab =,则ABC的面积为:11sin 522ab C =⨯=故选:C. 17.B 【解析】 【分析】根据题意,先由余弦定理,得到28cos 8b A b +=,求出sin A积公式,得到1sin 2ABCSbc A ==,根据三角形的性质,确定b 的范围,进而可求出三角形面积的最值. 【详解】因为b =,2c =,所以222221482cos 248b c b a b A bc b b++-+===,所以sin A =因此1sin 2ABCSbc A == 由三角形性质可得:a b c b a c +>⎧⎨-<⎩,即22b b +>⎨⎪<⎪⎩,解得:44b -<+又44-<+因此当224b =,即b =ABC的面积最大,为ABCS ==. 故选:B. 【点睛】本题主要考查求三角形面积的最值问题,熟记余弦定理,以及三角形面积公式即可,属于常考题型. 18.B 【解析】 【详解】试题分析:由sin()sin 0sin 0θπθθ+=-⇒,cos()cos 0cos 0θπθθ-=->⇒<,由sin 0{cos 0θθ><可知θ是第二象限角,选B.考点:诱导公式及三角函数在各个象限的符号. 19.C 【解析】 【详解】 试题分析:42x ππ<<,cos sin x x ∴<,cos sin 0x x ∴-<,()22213cos sin cos sin 2sin cos 1284x x x x x x -=+-⋅=-⨯=,cos sin x x ∴-=C 正确. 考点:1同角三角函数基本关系式;2正弦函数余弦函数比较大小问题. 20.C 【解析】 【分析】根据同角的三角函数关系式中的平方和关系,结合两角和的正弦公式、正弦定理进行求解即可. 【详解】因为A ,C 是ABC ∆的内角,所以,(0,)A C π∈. 因为4cos 5A =,5cos 13C=,所以3sin 5A ==,12sin 13C ===,因此有:3541263sin sin()sin()sin cos cos sin 51351365B AC A C A C A C π=--=+=+=⨯+⨯=,由正弦定理可知:121363sin sin 13565a b b b A B =⇒=⇒=. 故选:C 【点睛】本题考查了正弦定理的应用,考查了同角的三角函数关系式、两角和的正弦公式的应用,考查了数学运算能力.21.D 【解析】 【详解】 略 22.B 【解析】 【分析】将sin cos θθ+=2sin cos θθ,再求出()2sin cos θθ-,即可得到sin cos θθ-,最后根据θ的范围,即可得解;【详解】解:因为sin cos θθ+=()2sin co 1s 5θθ+=,所以221sin 2sin cos cos 5θθθθ++=,所以42sin cos 5θθ=-,所以()2229sin cos sin 2sin cos cos 5θθθθθθ-=-+=,所以sin cos θθ-=θ为第四象限角,所以sin 0θ<,cos 0θ>,所以sin cos θθ-= 故选:B 23.C 【解析】根据数列的递推关系求出前三项即为三角形边长,根据余弦定理求出从小到大第二大的角,即可求得最大角与最小角之和. 【详解】由题:数列{}n a 中,()*1153n n a a a n n N +==-+∈,,所以12357,8a a a ===,,作为三角形三边长, 由余弦定理:边长为7的边所对角的余弦值为25644912582+-=⨯⨯,角的大小为60°,所以最大角与最小角之和为120°. 故选:C 【点睛】此题考查根据递推关系求数列中的项,根据余弦定理求三角形的角的大小,涉及三角形三内角和的关系进行转化. 24.A 【解析】 【分析】根据函数图象的平移变换,即可求解. 【详解】将函数()π2sin()36x f x +=的图象向左平移 π4个单位,得到函数()πππ2sin +2sin 312634x x f x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭=,再向下平移1个单位,得到函数()π2sin +134x g x ⎛⎫=- ⎪⎝⎭的图象,则解析式为()π2sin +134x g x ⎛⎫=- ⎪⎝⎭.故选:A . 25.D 【解析】 【分析】根据题意画出图形,在ABC 中利用余弦定理建立方程求解即得. 【详解】如图,ABC 中,依题意,30ABC ∠=,,3AC AB x BC ===,由余弦定理2222cos AC AB BC AB BC ABC =+-⋅∠得,222323cos30x x =+-⋅,即260x -+=,解得x =x =所以x 的值是 故选:D 26.D 【解析】 【分析】根据三角形ABC 的边和角,利用正弦定理,即可求解. 【详解】由题意可知,60ABC ∠=︒,45A ∠=︒,75C ∠=︒,50AB =海里,由正弦定理可得sin sin AB ACC ABC=∠,所以(25AC =海里. 故选:D 27.A 【解析】 【分析】由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒,然后在ABC 中利用正弦定理求解即可 【详解】如图所示,由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒, 由正弦定理可得sin sin BC ACA B =,即46sin132.57sin31.15BC =︒︒, 解得4646sin132.570.7465.46sin31.150..52BC =⋅︒≈⨯≈︒.故选:A28.C 【解析】 【分析】根据已知中的函数解析式,先分析函数的奇偶性和单调性,进而根据函数的性质和定义域,将不等式2(2)(4)0f a f a -+->化为2(2)(4)f a f a ->-,解不等式组即可求解. 【详解】解:因为函数3y x =和函数sin y x =均为奇函数,且在[1,1]-上均为增函数, 所以函数3()sin f x x x =+是奇函数,且在[1,1]-为增函数, 由2(2)(4)0f a f a -+->, 得2(2)(4)f a f a ->-, 所以2224121141a a a a ⎧->-⎪-≤-≤⎨⎪-≤-≤⎩,解得2a <≤2a ∈(. 故选:C. 29.A 【解析】 【分析】设,AB x =则BC =,利用正弦定理即得解. 【详解】解:设,AB x =则BC . 由题得53412CBD ππππ∠=--=.51sinsin()12642πππ=+==在△BCD20x ∴=. 所以塔高20m. 故选:A 30.A 【解析】 【分析】先计算出tan α的值,然后构造齐次式,将分子分母同除以2cos α即可计算出结果. 【详解】因为tan()74πα+=,所以tan 171tan A A +=-,所以3tan 4α=,又222222314cos 4sin cos 14tan 644cos 2sin 2sin cos tan 125314ααααααααα+⨯+++====++⎛⎫+ ⎪⎝⎭,所以264cos 2sin 225αα+=. 故选:A. 【点睛】本题考查两角和的正切公式与同角三角函数的基本关系的综合应用,难度一般.已知tan α,求解22sin cos m n αα+的值,可变形为求解222222sin cos tan sin cos tan 1m n m nαααααα++=++的结果;求解sin cos sin cos n n n n a b c d αααα++的值,可变形为求解tan tan n n a b c dαα++的结果.31.D 【解析】 【详解】 由sin α+cos α=得(sin α+cos α)2=1+2sin αcos α=2,即2sin αcos α=1,又因为α△(0,π),则当cos α=0时,sin α=1,不符合题意,所以cos α≠0,所以==1,解得tan α=1,故选D. 32.D 【解析】 【详解】分析:利用诱导公式,()y Asin x ωϕ=+的图象变换规律,得到答案详解:222sin 236y sin x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦要得到函数22y sin x =的图象,只需要将函数223y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度即可故选D点睛:本题考查了三角函数图像的性质,根据图像的平移来确定结果,掌握由sin y x =图像到()y Asin x ωϕ=+图像的变换过程. 33.B【分析】先根据函数的部分图象和性质求出f (x )解析式,再根据图象的变换规律求得g (x ),最后根据余弦函数性质得出结论. 【详解】因为函数f (x )=A cos (ωx +φ)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫⎪⎝⎭,, 所以A =3,46T π=-(12π-)4π=;所以T =π所以ω=2;所以f (x )=3cos (2x +φ); 又因为f (12π-)=3cos[(2×(12π-)+φ]=3,所以6π-+φ=K π;△0<φ<π; △φ6π=,△f (x )=3cos (2x 6π+); 因为将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象, 所以g (x )=3cos[2(x 6π-)6π+]=3cos (2x 6π-);是非奇非偶函数;令﹣π+2k π≤2x 6π-≤2k π,所以512π-+k π≤x ≤k π12+π,k △z ; 当k =0时,g (x )的一个单调递增区间为:51212ππ⎡⎤-⎢⎥⎣⎦,;令2x 6π-=k π2π+, 解得x 23k ππ=+,k △z , △函数g (x )在[0,2π]上只有一个零点. 故选:B .本题主要考查由三角函数部分图象求解析式,图象变换以及三角函数的性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 34.A 【解析】 【分析】对4sin 2cos 1,2sin 4cos A B B A +=+=再相加得出30C ︒=或150︒,再由三角函数的性质验证150C ︒=,即可得出答案. 【详解】4sin 2cos 1,2sin 4cos A B B A +=+=2216sin 16sin cos 4cos 1A A B B ∴++=△224sin 16sin cos 16cos 27B B A A ∴++=△△+△得2016sin()28A B ++=即1sin()sin()sin 2A B C C π+=-==()0,180C ︒︒∈ 30C ︒∴=或150︒当150C ︒=时,则030,030A B ︒︒︒︒<<<<12sin 212B ∴<⨯=,4cos 4A <2sin 4cos 5B A ∴+<5∴<150C ︒∴=不满足题意故选:A 【点睛】本题主要考查了两角和的正弦公式,平方关系,三角函数的性质,属于中档题. 35.A 【解析】 【分析】由三角函数的性质可知()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为π,结合充分、必要条件的定义即可判定. 【详解】由于()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为半个周期,即π,所以若存在[]12,,x x m n ∈使得()()124f x f x -=,则必有πn m -≥,但反之不成立,比如2π2,33m n π=-=时,4=>π3n m π-,但()f x 在[],m n 上的最大值为2,最小值为1-,[]12,,x x m n ∈时()()12f x f x -的最大值为3,不可能等于4,△“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的充分不必要条件, 故选:A. 【点睛】本题考查充分不必要条件的判定,涉及三角函数的性质,属基础题,关键是认真审题,理解存在性命题的意义,掌握三角函数的性质和充分、必要条件的意义. 36.C 【解析】 【分析】利用三角恒等变换的应用化简已知恒等式可得(22sin 4sin 0A A -+=,解方程即可求出sin A ,进而求出角A ,由三角形的重心的性质可得()13AP AB AC =+,两边同时平方结合平面向量的数量积的运算即可得到24cos 240c c A +⋅-=,分类讨论求出边c ,进而求出结果. 【详解】因为(()cos 24sin 1A B C ++=,所以(212sin 4sin 1A A -+=,因此(22sin 4sin 0A A -+=,解得sin A =或sin 2A =, 又因为()0,A π∈,则(]sin 0,1A ∈,所以sin A =,因此3A π=或23A π=,又因为点P 是ABC 的重心,所以()13AP AB AC =+,因此()22212cos 9AP AB AC AB AC A =++⋅⋅, 即()22212cos 9AP AB AC AB AC A =++⋅⋅,又因为AP =2b =,所以()228144cos 99c c A =++⋅,即24cos 240c c A +⋅-=,当3A π=时,22240c c +-=,因为0c >,所以4c =,此时214162242a =+-⨯⨯⨯,所以a =当23A π=时,22240c c --=,因为0c >,所以6c =,此时214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,所以a =综上:a =a = 故选:C. 37.A 【解析】 【分析】直接利用三角函数图象的“伸缩变换”与“平移变换”法则求解即可. 【详解】把函数3y sin x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到23y sin x π⎛⎫=+ ⎪⎝⎭的图象,再将23y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位,所得图象对应的函数为22333y sin x sin x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选A.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.38.C 【解析】 【分析】利用图象的变换规律,可求出函数()g x 与()h x 的的解析式, 再由三角函数的性质逐项判断即可. 【详解】将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍, 纵坐标不变,得到函数()sin 2g x x =的图象,再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数 ()sin()h x x θ=+的图象 ,当6πθ=时,()sin(2),3h x x π=+ 当12x π=时,()sin(2)112123h πππ=⨯+=,则12x π=为函数()h x 图象的对称轴,故 A 错误;当6πθ=时,()sin(2)3h x x π=+,若0,,4x π⎡⎤∈⎢⎥⎣⎦52,,336x πππ⎡⎤+∈⎢⎥⎣⎦则1sin(2),132x π⎡⎤+∈⎢⎥⎣⎦故()h x 的最大值为 1,故B 错误; 当2πθ=时,函数()sin 2g x x =与()sin 2h x x =-的图象关于x 轴对称,故C 正确; 当2πθ=时,()()2sin 2g x h x x -=最小值为 -2 , 故D 错误. 故选:C. 39.A 【解析】 【分析】根据所给条件求出cos BAC ∠,再借助余弦定理即可作答. 【详解】因4cos 5θ=,则3sin 5θ=,由题意得45BAC θ∠=︒-, 即()43cos cos 4555BAC θ⎛⎫∠=︒-=+= ⎪⎝⎭, 在ABC中,AB =10AC =,由余弦定理2222BC AB AC AB ACcos BAC =+-⋅∠得:即22210210340BC =+-⋅=,解得BC = 设船速为x,则12x =x =所以货船的速度大小为/小时. 故选:A 40.C 【解析】 【详解】 设,则,则,故选C.考点:正弦定理与余弦定理. 41.A 【解析】 【详解】2222221sin tan 14sin 1sin cos tan 1514αααααα====+++,由于角为第三象限角,故sin α=πcos sin 2αα⎛⎫-== ⎪⎝⎭. 42.C 【解析】 【分析】先将函数()f x 的化为正弦型函数,在将函数()f x 的解析式表示为()()sin 23f x x πϕ⎡⎤=++⎢⎥⎣⎦,并结合ϕ的符号与绝对值确定平移的方向与长度.【详解】由诱导公式可得()cos 2sin 2sin 232343f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因此,只需在将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度,即可得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,故选C .【点睛】在考查两个三角函数平移的过程中,需注意以下两个问题; △两个函数的名称一定要一致;△左右平移法则中的“左加右减”指的是在自变量x 上变化了多少. 43.B 【解析】 【分析】先求出把函数()f x 的图象向左平移4π个单位后所得图象对应的解析式,然后求出该图象对应函数的对称轴,最后结合四个选项进行判断即可. 【详解】把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象对应的解析式为sin 2?cos 2433y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由2,k Z 3x k ππ+=∈,得对称轴方程为,k Z 62k x ππ=-+∈.当0k =时,可得对称轴为6x π=-,此时对称轴离y 轴距最近. 故选B . 【点睛】本题考查三角函数图象的平移变换以及函数图象对称轴的求法,对于图象的平移变换,解题时要注意平移只是对自变量x 而言的,同时要注意平移的单位的大小;在求图象的对称轴方程时,将4x π+看作一个整体进行求解,属于基础题.44.C【解析】 【分析】由点P 的横坐标大于0且纵坐标小于0解三角不等式求解α的范围. 【详解】△点P (sinα+cosα,tanα)在第四象限,△00sin cos tan ><ααα+⎧⎨⎩, 由sinα+cosα=(α4π+), 得2kπ<α4<π+2kπ+π,k△Z ,即2kπ4π-<α<2kπ34π+π,k△Z . 由tanα<0,得kπ2π+<α<kπ+π,k△Z . △α△(2π,34π)△(74π,2π).故选C . 【点睛】本题考查了三角函数的符号,考查了三角不等式的解法,是基础题. 45.D 【解析】 【分析】利用圆的参数方程,表示出212d d +并求最值,利用三角函数求出0x y . 【详解】22:124390C x y x y ++++=化为标准方程:22(6)(2)1x y +++=,点()00,P x y 是圆上一点,不妨设006sin 2cos x ty t =-+⎧⎨=-+⎩(t 为参数),则22212(6sin )(2cos )(2cos )d d t t t +=-++-+--+(12sin 5cos )43t t =-++)43t ϕ=++ 13sin()43t ϕ=-++其中5tan 12ϕ= 当2t πϕ+=时,212sin()1,t d d ϕ+=+可取得最小值30此时001266sin 6cos 221352cos 2sin 7213x t y t ϕϕ-+-+-+====-+-+-+ 故选:D 【点睛】关键点点睛:根据圆的方程,可设点()00,P x y 满足006sin 2cos x t y t=-+⎧⎨=-+⎩,代入212d d +化简求最值,是解决本题的关键,属于中档题. 46.D 【解析】 【分析】由函数图象知,,A T B ,利用周期公式即可解得ω,又πf ⎛⎫= ⎪⎝⎭7020,解得ϕ,即可得出函数()f x 的解析式. 【详解】设函数()()sin f x A x B ωϕ=++,则 由图可知,A B =-=11,πππT =-=7420104,解得πT =, 所以2π=πT ω=,解得2=ω,将点π,⎛⎫⎪⎝⎭7020代入函数()()sin 21f x x ϕ=-++中,即7π7π()sin 2102020f ϕ⎛⎫=-⨯++= ⎪⎝⎭,解得ππ,k k Z ϕ=-∈25当0k =时,π5ϕ=-. ()f x 的解析式为:π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭.故选:D.47.B 【解析】 【分析】利用正弦型函数的图象变换规律求得函数()y f x =的解析式,然后利用正弦函数的基本性质可得出结论. 【详解】把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,可得sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再把纵坐标伸长到原来的2倍(横坐标不变)后得到函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象,对于函数()2sin 23x y f x π=⎛⎫=+ ⎪⎝⎭,故(1)错误;由于当3x π=时,()0f x =,故该函数图象关于点,03π⎛⎫⎪⎝⎭对称,故(2)正确;在06,π⎡⎤⎢⎥⎣⎦上,22,333x πππ⎡⎤+∈⎢⎥⎣⎦,故函数()y f x =该函数在0,2π⎡⎤⎢⎥⎣⎦上不是增函数,故(3)错误;在0,2π⎡⎤⎢⎥⎣⎦上,42,333x πππ⎡⎤+∈⎢⎥⎣⎦,故当4233x ππ+=时,函数()y f x a =+在06,π⎡⎤⎢⎥⎣⎦上取得最小值为a =a ∴=4)正确,故选:B. 【点睛】本题主要考查正弦型三角函数图象变换,同时也考查了正弦型函数基本性质的判断,考查推理能力,属于中等题. 48.630° 【解析】 【分析】根据题目条件得到(180)360,k Z k αα=-+⋅︒︒∈,求出()2190,k k Z α=+⋅︒∈,列出不等式组,求出3,630k α==︒. 【详解】由题意得,(180)360,k Z k αα=-+⋅︒︒∈, 即()2190,k k Z α=+⋅︒∈,。
三角函数高三计算题解析
三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。
高考数学三角函数大题专项练习
1.(本小题满分1 2分)在锐角△A BC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知23,sin sin .4b ac A C ==且 (I )求角B 的大小。
(II )求函数()sin()sin (0)f x f x B x x π=-+≤<的最大值和最小值。
2.(本小题满分12分)在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且A c a sin 23= (Ⅰ)确定角C 的大小:(Ⅱ)若c =7,且△ABC 的面积为233,求a +b 的值。
16.(本小题满分12分)3.已知函数()cos cos 33f x x x ππ⎛⎫⎛⎫=+-⎪ ⎪⎝⎭⎝⎭,()11sin 224g x x =-.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()()()h x f x g x =-的最大值,并求使()h x 取得最大值的x 的集合.4.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,向量12(1sin ,), (cos 2, 2sin )7p A q A A =-=,且//p q . (Ⅰ)求sin A 的值; (Ⅱ)若2,b =ABC ∆的面积为3,求a .5.(本小题满分10分)设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,41cos =C . (Ⅰ)求ABC ∆的周长;16.(本小题满分12分)设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,已知11,2,c o s 4a b C === (I ) 求ABC ∆的周长; (II )求c o s ()A C -的值。
6.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°.(Ⅰ)若cos(B +C )=-1114,求cos C 的值;(Ⅱ)若a =5,→AC ·→CB =5,求△ABC 的面积.7.(本小题满分l0分)在∆ABC 中,角A 、B 、C 的对边长分别是a 、b 、c ,若.0cos )2(cos =++B c a C b (I)求内角B 的大小;(Ⅱ)若b=2,求∆ABC 面积的最大值. 8.(本小题满分12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知B =60°,cos(B +C )=-1114.(Ⅰ)求cos C 的值;(Ⅱ)若a =5,求△ABC 的面积.9.(本题满分12分)已知函数()sin()(0,0,||,)2f x A x A x R πωϕωϕ=+>><∈的图象的一部分如下图所示. (I )求函数()f x 的解析式;(II )求函数()(2)y f x f x =++的最大值与最小值.y 1 1 2 -2-1 -1 0 2 3 4 5 67x。
高三数学三角函数练习大题经典22套
三角函数(三)1、在△ABC 中,AC=3,sinC=2sinA.(1)求AB 的值。
(2)求sin(2A -4π)的值。
2、设△ABC 的内角A 、B 、C 所以的边长分别为a,b,c ,3cos cos 5a Bb A C -=,(1)tan cot A B 的值。
(2)tan()A B -的最大值。
3、在△ABC中,5cos13B=-,4cos5C=.(I)sin A的值;(II)设△ABC的面积S△ABC=332,求BC的长。
4、设△ABC的内角A、B、C的对边分别为,,a b c,且A=60°,c=3b。
求(I)ac的值;(II)cot cotB C+的值.三角函数(四)1、在△ABC 中ambmc 分别为角A 、B 、C 的对的边长,a = ,tantan 422A B C++=,2sin sin cos 2AB C =。
求A 、B 及a 、c .2、在△ABC 中,内角A 、B 、C 对边的边长分别为,,a b c ,已知2,3c C π==(I )若S △ABC ,a b .(II )若sin sin()2sin 2C B A A +-=,求△ABC 的面积。
3、设锐角△ABC的内角A、B、C的对边分别为,,a b c,2sina b A=.(I)求角B的大小;(II)求cos sinA C+的取值范围。
4、在△ABC中,1tan4A=,3tan5B=,(I)求角C的大小;(II)若△ABC三角函数(五)1、已知△ABC的内角A、B及其对边,a b满足cot cot,a b a A b B+=+求内角C.2、△ABC中,D为BC上的一点,BD=33,5sin13B=,3cos5ADC∠=,求AD.3、在△ABC 中,角A 、B 、C 所对的边分别为,,a b c ,已知1cos 24C =-. (I )求sin C 的值;(2)当2,2sin sin a A C ==时,求b c 及的长。
高考数学三角函数典型例题
三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C .即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21. ∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,那么t ∈]1,0(.那么m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值.依题意得,-2+4k +1=5,∴k =23. 3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A . I.试判断△ABC 的形状;II.假设△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin2sinππ+=+=+-C C C C C2242πππ==+∴C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A, (1)求B C cos ,cos 的值; (2)假设227=⋅BC BA ,求边AC 的长。 【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .在ABC ∆中,A B >,且A tan 及B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值; (Ⅱ)假设AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-=.由(Ⅰ)知,1)tan(tan =+-=B A C ,∵C 为三角形的内角,∴sin C =∵tan 3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴2BC ==6 .在ABC ∆中,内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,b=2,由余弦定理,得:4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴a c≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)假设b =2,求△ABC 面积的最大值.【解析】:(1) 由余弦定理:cosB=142sin 2A C ++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为3158 .)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()fα(II)假设α是第三象限角,且31cos 25πα⎛⎫-=⎪⎝⎭,求()f α的值。 【解析】10.函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度, 就得到3sin(2)62y x π=++的图象。11.⎪⎪⎭⎫ ⎝⎛-=23,23a,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)假设函数)(x g y =及)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x ++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。(2)∵函数)(x g y =及)(x f y =关于直线1=x 对称 ∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x 时,23)(max =x g12.cos 2sin αα=-,求以下各式的值; (1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+(2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值及最小正周期; (II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.向量)1,32(cos --=αm ,)1,(sin α=n ,m 及n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 及n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα (Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α 2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此, 127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个及水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=。试探究图中B,D 间距离及另外哪两点距离相等,然后求B,D 的距离(计算结果准确到,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°,又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin , 即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为。16.函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象及x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】: (1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进展测量,50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=, 2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯18.51cos sin =+θθ,),2(ππθ∈,求〔1〕sin cos θθ-〔2〕33sincos θθ-〔3〕44sin cos θθ+【解析】:〔1〕3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+=19.函数)sin(ϕω+=x A y 〔0>A , 0ω>,πϕ<||〕的一段图象如下图,〔1〕求函数的解析式;〔2〕求这个函数的单调递增区间。
(完整版)高考三角函数经典解答题及答案
(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。
解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。
由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。
2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。
(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。
解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。
又sinA≠0,因此 cosB=1/3。
3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。
(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。
解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。
高考数学真题09 三角函数的图象与性质问题(学生版)
专题09 三角函数的图象与性质问题【高考真题】1.(2022·北京)已知函数f (x )=cos 2x -sin 2x ,则( )A .f (x )在(-π2,-π6)上单调递减B .f (x )在(-π4,π12)上单调递增C .f (x )在(0,π3)上单调递减D .f (x )在(π4,7π12)上单调递增2.(2022·浙江) 为了得到函数y =2sin3x 的图象,只要把函数y =2sin ⎝⎛⎭⎫3x +π5图象上所有的点( ) A .向左平移π5个单位长度 B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度3.(2022·全国甲文) 将函数f (x )=sin(ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y轴对称,则ω的最小值是( )A .16B .14C .13D .124.(2022·全国乙理) 记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=32,x =π9为f (x ) 的零点,则ω的最小值为____________.5.(2022·新高考Ⅰ)记函数f (x )=sin(ωx +π4)+b (ω>0),的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点(3π2,2)中心对称,则f (π2)=( )A .1B .32C .52D .36.(2022·全国甲理)设函数f (x )=sin(ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A .[53,136)B .[53,196)C .(136,83]D .(136,196]【知识总结】1.三种三角函数的图象和性质2.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换y =sin x ―――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0) 倍纵坐标不变y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 【同类问题】题型一 三角函数的性质1.(2017·山东)函数y =3sin 2x +cos 2x 的最小正周期为( )A .π2B .2π3 C .π D .2π2.函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A .π2B .πC .3π2D .2π3.(2018·全国Ⅰ)函数f (x )=tan x1+tan 2x的最小正周期为( )A .π4B .π2C .πD .2π4.已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A .⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤2k π-π3,2k π+2π3(k ∈Z ) C .⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+5π6(k ∈Z ) 5.(2018·全国Ⅰ)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.已知函数f (x )=sin ωx +3cos ωx (ω>0),f (π6)+f (π2)=0,且f (x )在区间(π6,π2)上递减,则ω=( )A .3B .2C .6D .57.(2019·全国Ⅰ)函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. 8.(2017·全国Ⅰ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 9.(2013·全国Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. 10.已知ω>0,函数f (x )=sin ωx cos ωx +3cos 2ωx -32的最小正周期为π,则下列结论正确的是( ) A .函数f (x )的图象关于直线x =π3对称B .函数f (x )在区间⎣⎡⎦⎤π12,7π12上单调递增C .将函数f (x )的图象向右平移π6个单位长度可得函数g (x )=cos2x 的图象D .当x ∈⎣⎡⎦⎤0,π2时,函数f (x )的最大值为1,最小值为-32题型二 三角函数的图象变换11.(2021·全国乙)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 12.(2016·四川)为了得到函数y =sin ⎝⎛⎭⎫2x -π3的图象,只需把函数y =sin2x 的图象上所有的点( ) A .向左平行移动π3个单位长度 B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度13.(2017·全国Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 214.(2018·天津)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤3π4,5π4上单调递增 B .在区间⎣⎡⎦⎤3π4,π上单调递减 C .在区间⎣⎡⎦⎤5π4,3π2上单调递增 D .在区间⎣⎡⎦⎤3π2,2π上单调递减 15.函数y =3sin 2x -cos 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,得到函数g (x )的图象,若函数g (x ) 为偶函数,则φ的值为( )A .π12B .π6C .π4D .π315.将函数f (x )=tan ⎝⎛⎭⎫ωx +π3(0<ω<10)的图象向右平移π6个单位长度后与函数f (x )的图象重合,则ω=( ) A .9 B .6 C .4 D .817.若函数f (x )=cos ⎝⎛⎭⎫2x -π6,为了得到函数g (x )=sin2x 的图象,则只需将f (x )的图象( ) A .向右平移π6个单位长度 B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度18.(2019·天津)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,且f (x )的最小正周期为π,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g ⎝⎛⎭⎫π4=2,则f ⎝⎛⎭⎫3π8=( )A .-2B .-2C .2D .219.(2016·全国)若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )20.将函数f (x )的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象.已知函数g (x )的部分图象如图所示,则函数A .最小正周期为23π,最大值为2 B .最小正周期为π,图象关于点⎝⎛⎭⎫π6,0中心对称 C .最小正周期为23π,图象关于直线x =π6对称 D .最小正周期为π,在区间⎣⎡⎦⎤π6,π3上单调递减 题型三 关于ω的取值范围21.已知函数()sin (0)f x x ωω=>在3[,]44ππ-上单调递增,则ω的取值范围是( )A .[2,)+∞B .(0,2]C .2[,)3+∞D .2(0,]322.将函数()cos()(0)4f x x πωω=+>的图象向右平移4π个单位长度后得到函数()g x 的图象,若()g x 在5(,)44ππ上单调递减,则ω的最大值为( ) A .14 B .34 C .12D .1 23.函数()sin()(0)6f x x πωω=+>图象向右平移4π个单位后所得函数图象与函数()f x 的图象关于x 轴对称,则ω最小值为( )A .2B .3C .4D .624.已知函数()3sin()f x x ωϕ=+,(0,0)2πωϕ><<,()03f π-=,2()()3f x f x π-=,且函数()f x 在区间(,)124ππ上单调,则ω的最大值为( ) A .274 B .214 C .154 D .9425.已知函数()sin()f x x ωϕ=+,0ω>,若()19f π=,(449)0f π=,()f x 在(,)93ππ上单调递减,那么ω的取值个数是( )A .2019B .2020C .2021D .202226.已知函数()sin()(0)6f x x πωω=->,若函数()f x 在区间(0,)π上有且只有两个零点,则ω的取值范围为( )A .713(,)66B .713(,]66C .611(,)56D .611(,]5627.已知函数()2sin()sin()(0)63f x x x ππωωω=-+>,若函数3()()2g x f x =+在[0,]2π上有且只有三个零点,则ω的取值范围为( ) A .[2,11)3 B .11(2,)3 C .710[,)33 D .710(,)3328.已知函数()3sin cos (0)f x x x ωωω=+>在区间[,]43ππ-上恰有一个最大值点和最小值点,则实数ω的 取值范围为( )A .8[,7)3B .8[,4)3C .20[4,)3D .20(,7)329.已知函数1()sin (sin cos )(0)2f x x x x ωωωω=+->在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( )A .711(,)88B .711(,]88C .79(,]88D .79(,)8830.已知函数3()sin()sin()(0)21472xxf x ωππωω=+->在[0,)π上恰有6个零点,则ω的取值范围是 ( ) A .4148(,]77B .3441(,]77C .4148[,)77D .3441[,)77。
高考数学真题 三角函数的概念、同角三角函数的基本关系式和诱导公式
专题四 三角函数与解三角形4.1 三角函数的概念、同角三角函数的基本关系式和诱导公式考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京文,7,5分)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB⏜ B.CD ⏜ C.EF ⏜ D.GH ⏜ 答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式.若点P 在AB⏜或CD ⏜(不包含端点A,D)上,则角α在第一象限,此时tan α-sin α=tan α(1-cos α)>0,与tan α<sin α矛盾,故排除A,B.若点P 在GH ⏜(不包含端点G)上,则角α在第三象限,此时tan α>0,cos α<0,与tan α<cos α矛盾,故排除D,故选C.2.(2014课标Ⅰ文,2,5分)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0答案 C 由tan α>0得α是第一或第三象限角,若α是第三象限角,则A,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2×(12)2-1=-12<0,D 错.故选C.评析 本题考查三角函数值的符号,判定时可运用基本知识、恒等变形及特殊值等多种方法,具有一定的灵活性.3.(2014大纲全国文,2,5分)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45答案 D 由三角函数的定义知cos α=√(-4)2+32=-45.故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( )A.-45B.-35C.35D.45答案 B 解法一:由三角函数定义知,tan θ=2,则cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.解法二:由三角函数定义知,tan θ=2,即sin θ=2cos θ,则sin 2θ=4cos 2θ.从而有cos 2θ=15.故cos 2θ=2cos 2θ-1=-35.5.(2015福建文,6,5分)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-512答案 D ∵sin α=-513,α为第四象限角, ∴cos α=√1-sin 2α=1213,∴tan α=sinαcosα=-512.故选D. 6.(2014课标Ⅰ理,8,5分)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2B.3α+β=π2C.2α-β=π2D.2α+β=π2答案 C 由tan α=1+sinβcosβ得sinαcosα=1+sinβcosβ,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2-α),所以sin(α-β)=sin (π2-α),又因为α∈(0,π2),β∈(0,π2),所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.7.(2014大纲全国理,3,5分)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 答案 C ∵b=cos 55°=sin 35°>sin 33°=a,∴b>a. 又∵c=tan 35°=sin35°cos35°>sin 35°=cos 55°=b,∴c>b.∴c>b>a.故选C.8.(2013浙江理,6,5分)已知α∈R,sin α+2cos α=√102,则tan 2α=( )A.43B.34C.-34D.-43答案 C (sin α+2cos α)2=52,展开得3cos 2α+4sin αcos α=32,再由二倍角公式得32cos 2α+2sin 2α=0,故tan 2α=sin2αcos2α=-322=-34,选C.评析 本题考查同角三角函数的基本关系式和三角恒等变换,考查转化与化归思想,考查学生灵活应用公式的能力和运算求解能力.三角函数求值问题关键在于观察角与角之间的关系和三角函数名之间的关系. 9.(2013大纲全国文,2,5分)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213 B.-513 C.513 D.1213答案 A ∵α是第二象限角,∴cos α<0. ∴cos α=-√1-sin 2α=-1213.故选A. 评析 本题考查三角函数值在各象限的符号,同角三角函数关系,属容易题. 10.(2013广东文,4,5分)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15 C.15 D.25答案 C ∵sin (5π2+α)=sin (π2+α)=cos α,∴cos α=15.故选C. 11.(2016课标Ⅲ,5,5分)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1 D.1625答案 A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×34916+1=6425,故选A.思路分析 利用二倍角公式将所求式子展开,再将其看成分母为1的式子,并用sin 2α+cos 2α代替1,然后分子、分母同除以cos 2α,得到关于tan α的式子,由此即可代值求解.12.(2011江西文,14,5分)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 答案 -8解析 P(4,y)是角θ终边上一点,由三角函数的定义知sin θ=√,又sin θ=-2√55,∴√=-2√55,解得y=-8.评析 本题主要考查任意角三角函数的定义,考查运算求解能力,由题意得√=-2√55是本题求解的关键.13.(2016四川文,11,5分)sin 750°= . 答案12解析 sin 750°=sin(720°+30°)=sin 30°=12. 解后反思 利用诱导公式把大角化为小角. 评析 本题考查了三角函数的诱导公式.14.(2013课标Ⅱ理,15,5分)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 答案 -√105解析 tan θ=tan [(θ+π4)-π4]=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1得109cos 2θ=1,∴cos 2θ=910,又易知cos θ<0,∴cos θ=-310√10,∴sin θ=√1010,故sin θ+cos θ=-√105.。
高考数学真题三年专题三角函数解三角形
三年专题 三角函数1.【2022年全国甲卷】将函数f(x)=sin (ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14 C .13D .122.【2022年全国甲卷】设函数f(x)=sin (ωx +π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( ) A .[53,136)B .[53,196)C .(136,83] D .(136,196]3.【2022年全国乙卷】函数f (x )=cosx +(x +1)sinx +1在区间[0,2π]的最小值、最大值分别为( ) A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数f(x)=sin(ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f(π2)=( ) A .1B .32C .52D .35.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos (α+π4)sinβ,则( ) A .tan(α−β)=1 B .tan(α+β)=1 C .tan(α−β)=−1 D .tan(α+β)=−16.【2021年甲卷文科】若c o s 0,,t a n 222s i n παααα⎛⎫∈=⎪-⎝⎭,则t a n α=( )A 15B 5C 3D 37.【2021年乙卷文科】函数()s i n c o s33x x f x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πc o s c o s1212-=( )A .12B 3C .2D 29.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数s i n 4yx π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7s i n212xπ⎛⎫- ⎪⎝⎭B .s i n 212x π⎛⎫+⎪⎝⎭C .7s i n 212xπ⎛⎫-⎪⎝⎭D .s i n 212xπ⎛⎫+⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7s i n 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若t a n 2θ=-,则()s i n 1s i n 2s i n c o s θθθθ+=+( )A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000k m (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400k m 的球,其上点A 的纬度是指O A 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1c o s )S r πα=-(单位:2k m ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()c o s π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3c o s 28c o s 5αα-=,则s i n α=( )A 3B .23C .13D 915.【2020年新课标2卷理科】若α为第四象限角,则( ) A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πs i n s i n =31θθ⎛⎫++ ⎪⎝⎭,则πs i n =6θ⎛⎫+ ⎪⎝⎭( )A .12B 3C .23D 218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A B .C .D .19.【2022年新高考2卷】已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线20.【2020年新高考1卷(山东卷)】下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πs i n (3x+)B .πs i n (2)3x - C .πc o s (26x+)D .5πc o s (2)6x -21.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.22.【2021年甲卷文科】已知函数()()2c o s f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.23.【2021年甲卷理科】已知函数()2c o s ()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.24.【2020年新课标2卷文科】若2s i n3x =-,则c o s 2x=__________.25.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//B H D G,EF =12 cm ,DE=2 cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为________cm 2.三年专题 解三角形1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,A B 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在A B上,CD ⊥AB .“会圆术”给出A B 的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB =60°时,s =( )A .11−3√32B .11−4√32C .9−3√32D .9−4√322.【2021年甲卷文科】在A B C 中,已知120B =︒,A C=2A B=,则B C=( )A .1B C D .33.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线A C 上,D E 和F G 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,E G 称为“表距”,G C 和E H 都称为“表目距”,G C 与E H的差称为“表目距的差”则海岛的高A B=( )A .⨯+表高表距表目距的差表高 B .⨯-表高表距表目距的差表高 C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距4.【2020年新课标3卷理科】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .235.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.6.【2021年乙卷文科】记A B C的内角A ,B ,C 的对边分别为a ,b ,c ,60B=︒,223a c a c+=,则b=________.7.【2020年新课标1卷理科】如图,在三棱锥P–ABC的平面展开图中,AC=1,A B A D==AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.8.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)= sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c29.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)= sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a =5,cosA =2531, 由(1)得b 2+c 2=50,由余弦定理可得a 2=b 2+c 2−2bccosA , 则50−5031bc =25, 所以bc =312,故(b +c )2=b 2+c 2+2bc =50+31=81, 所以b +c =9,所以△ABC 的周长为a +b +c =14.10.【2022年新高考1卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cosA1+sinA =sin2B1+cos2B . (1)若C =2π3,求B ;(2)求a 2+b 2c 2的最小值.11.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .12.【2021年新高考1卷】记A B C是内角A ,B ,C 的对边分别为a ,b ,c .已知2ba c=,点D 在边A C 上,s i n s i n B D A B C a C∠=.(1)证明:B D b=;(2)若2A DD C=,求c o s A B C ∠.13.【2021年新高考2卷】在A B C中,角A 、B 、C 所对的边长分别为a 、b 、c ,1ba =+,2c a =+..(1)若2s i n 3s i n C A=,求A B C的面积;(2)是否存在正整数a ,使得A B C为钝角三角形?若存在,求出a 的值;若不存在,说明理由.14.【2020年新课标1卷文科】A B C的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b A B C的面积;(2)若sin AC =2,求C .15.【2020年新课标2卷理科】A B C中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ; (2)若BC =3,求A B C周长的最大值.16.【2020年新课标2卷文科】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25c o s ()c o s 24A A π++=.(1)求A ;(2)若3bc -=,证明:△ABC 是直角三角形.17.【2020年新高考1卷(山东卷)】在①a c =s i n3c A =,③=c这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在A B C,它的内角,,A B C 的对边分别为,,a b c ,且sinA B=,6Cπ=,________?注:如果选择多个条件分别解答,按第一个解答计分.。
高考数学三角函数练习与答案
D. α-β=π6
【练习 2】若锐角φ满足 sinφ-cosφ= 2,则函数
2
=cos2(x+φ)的单调递减区间为
A.[2kπ-5π ,2kπ + π ](k∈Z)
12
12
B.[kπ-5π
12
,kπ
+
π ](k∈Z)
12
C.[2kπ+ π
12
,2kπ
+
7π](k∈Z)
12
D.[kπ+ π ,kπ + 7π](k∈Z)
∵N(2, 2 )是函数 y=Asin(ωx+φ)的图象的一个最高点 ∴A= 2 . ∵N 到相邻最低点的图象曲线与 x 轴相交于 A、 B,B 点坐标为( 6,0)
∴ 7 =|x B-xN|=4,∴T=16.
4
又∵T=
2
,∴ω=
2 T
=
8
∵xN= xA xB
2
∴xA=2xN-xB=-2 ∴A(-2,0) ∴y= 2 sin (x+2)
3 【练习 1】若 cosa= 3 且为第四象限角,tana 则的值等于( )
【练习 2】
二、看图求解析式
【练习 1】函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分
图象如图所示,则函数 f(x)的解析式为( )
A. ㌳䁠 ꀀ sin㌳䁠
B. ㌳䁠 ꀀ sin㌳ 䁠
C. ㌳䁠 ꀀ sin㌳䁠 h
四、三角函数的三角恋
【练习 1】设 sin 2α=-sin α,α∈ π ,π ,则 tan 2α的值是
.
【练习 2】若
[ , ],sin 2 42
三角函数中ω的范围与最值问题【七大题型】(举一反三)(原卷版)—2025年新高考数学一轮复习
三角函数中ω的范围与最值问题专练【七大题型】【题型1 与三角函数的单调性有关的ω的范围与最值问题】 (2)【题型2 与三角函数的对称性有关的ω的范围与最值问题】 (2)【题型3 与三角函数的最值有关的ω的范围与最值问题】 (3)【题型4 与三角函数的周期有关的ω的范围与最值问题】 (4)【题型5 与三角函数的零点有关的ω的范围与最值问题】 (4)【题型6 与三角函数的极值有关的ω的范围与最值问题】 (5)【题型7 ω的范围与最值问题:性质的综合问题】 (5)1、三角函数中ω的范围与最值问题三角函数的图象与性质是高考的重要内容,在三角函数的图象与性质中,ω的求解是近几年高考的一个重点、热点内容,试题主要以选择题、填空题的形式呈现,但因其求法复杂,涉及的知识点多,历来是我们复习中的难点,学生在复习中要加强训练,灵活求解.【知识点1 三角函数中有关ω的范围与最值问题的类型】1.三角函数中ω的范围与最值的求解一般要利用其性质,此类问题主要有以下几个类型:(1)三角函数的单调性与ω的关系;(2)三角函数的对称性与ω的关系;(3)三角函数的最值与ω的关系;(4)三角函数的周期性与ω的关系;(5)三角函数的零点与ω的关系;(6)三角函数的极值与ω的关系.【知识点2 三角函数中ω的范围与最值问题的解题策略】1.利用三角函数的单调性求ω的解题思路对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.2.利用三角函数的对称性求ω的解题策略三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”间的“水平间隔”为,这就说明,我们可根据三角函数的对称性来研究其周期性,解决问题的关键在于运用整体代换的思想,建立关于ω的不等式组,进而可以研究“ω”的取值范围.3.利用三角函数的最值求ω的解题策略若已知三角函数的最值,则利用三角函数的最值与对称轴或周期的关系,可以列出关于ω的不等式(组),进而求出ω的值或取值范围.4.利用三角函数的周期性求ω的解题策略若已知三角函数的周期性,则利用三角函数的周期与对称轴、最值的关系,列出关于ω的不等式(组),进而求出ω的值或取值范围.【题型1 与三角函数的单调性有关的ω的范围与最值问题】【例1】(2024·重庆·二模)若函数f(x)=sin(2x―φ)(0≤φ<π)在φ的最小值为()A.π12B.π6C.π4D.π3【变式1-1】(2024·湖北鄂州·一模)已知函数y=sin(ωx+φ)(ω>0,φ∈(0,2π))的一条对称轴为x=―π6,且f(x)在πω的最大值为()A.53B.2C.83D.103【变式1-2】(2024·全国·模拟预测)已知函数f(x)=sin(ωx+φ)(ω>0),若直线x=π4为函数f(x)图象的为函数f(x)图象的一个对称中心,且f(x)ω的最大值为()A.917B.1817C.1217D.2417【变式1-3】(2024·广东湛江·一模)已知函数f(x)=sinωxω>0)ω的取值范围是()A.[2,5]B.[1,14]C.[9,10]D.[10,11]【题型2 与三角函数的对称性有关的ω的范围与最值问题】【例2】(2023·广西·模拟预测)若函数f (x )=2sin (ωx +φ)(ω>0,|φ|<π2)满足f (2x )=―2x ,且f (0)=―1,则ω的最小值为( )A .1B .2C .3D .4【变式2-1】(2024·内蒙古呼和浩特·一模)已知函数f (x )=sin ωx >0)在区间[0,π]上有且仅有两条对称轴,则ω的取值范围是( )A B C D【变式2-2】(2023·云南大理·一模)函数f (x )=sin (ωx +φ)(ω>0,0<φ<π),若不等式f (x )≤|对∀x ∈R 恒成立,且f (x )的图像关于x =π8对称,则ω的最小值为( )A .1B .2C .3D .4【变式2-3】(2024·全国·模拟预测)已知函数f(x)=sin (ωx +φ)(ω>0)其图象关于直线x =―π36对称,且f (x )的一个零点是x =772π,则ω的最小值为( )A .2B .12C .4D .8【题型3 与三角函数的最值有关的ω的范围与最值问题】【例3】(2023·四川泸州·一模)已知函数f (x )=2sin ωx >0)在π上单调,则ω的取值范围是( )A .B .1,C D【变式3-1】(2024·浙江温州·一模)若函数f (x )=2sin ωx ―(ω>0),x ∈0,[―,则ω的取值范围是( )A BC D【变式3-2】(2024·四川绵阳·模拟预测)已知函数f (x )=4cos ωx >0),f (x )在区间0,值恰为―ω,则所有满足条件的ω的积属于区间( )A .(1,4]B .[4,7]C .(7,13)D .[13,+∞)【变式3-3】(2023·新疆乌鲁木齐·一模)已知函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)的图象过点(0,1),且在区间(π,2π)内不存在最值,则ω的取值范围是( )A .BC .∪D .∪【题型4 与三角函数的周期有关的ω的范围与最值问题】【例4】(2023·四川绵阳·模拟预测)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=x =π9为f (x )的一个零点,则ω的最小值为( )A .32B .3C .6D .152【变式4-1】(2024·全国·模拟预测)已知函数f (x )=sin (2πωx )(ω>0)在区间(0,2)上单调,且在区间[0,18]上有5个零点,则ω的取值范围为( )A BC D 【变式4-2】(2024·全国·模拟预测)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=―12,且x =π2为f (x )的一条对称轴,则ω的最小值为( )A .23B .43C .83D .103【变式4-3】(23-24高二下·江苏南京·期末)已知函数f (x )=sin (ωx +φ)ω>0,|φ|<=f (x )在区间[0,2]上恰有8个零点,则ω的取值范围是( )A πB .4πC .4π,D 【题型5 与三角函数的零点有关的ω的范围与最值问题】【例5】(2023·全国·一模)已知函数f (x )=sin ωx +>0)π上恰有3个零点,则ω的取值范围是( )A ∪4,B ∪C .[113,143)∪(5,173)D ,5∪【变式5-1】(2023·吉林长春·一模)将函数f(x)=cos x 图象上所有点的横坐标变为原来的1ω(ω>0),纵坐标不变,所得图象在区间―π12ω的取值范围为( )【变式5-2】(2024·全国·模拟预测)已知函数f(x)=sinωx+>0)π上至少有两个零点,则实数ω的取值范围是()A+∞B+∞C∪+∞D∪+∞【变式5-3】(2024·四川雅安·一模)已知函数f(x)=2cos(ωx+φ)(ω>0且―π2<φ<π2),设T为函数f(x)的最小正周期,=―1,若f(x)在区间[0,1]有且只有三个零点,则ω的取值范围是()A B236πC D【题型6 与三角函数的极值有关的ω的范围与最值问题】【例6】(2023·四川成都·二模)将函数f(x)=>0)的图象上所有点的横坐标缩短到原来的14,纵坐标不变,得到函数g(x)的图象.若g(x)在3个极值点,则ω的取值范围为()A B,4C.D,7【变式6-1】(2023·河南开封·模拟预测)已知将函数f(x)=ωx2―>0)的图象向右平移π2ω个单位长度,得到函数g(x)的图象,若g(x)在(0,π)上有3个极值点,则ω的取值范围为()A+∞B,4C D【变式6-2】(2024·陕西渭南·一模)已知函数f(x)=sinωx>0)在区间[0,π]上有且仅有4个极值点,给出下列四个结论:①f(x)在区间(0,π)上有且仅有3个不同的零点;②f(x)的最小正周期可能是π2;③ω④f(x).其中正确结论的个数为()A.1B.2C.3D.4【变式6-3】(2024·全国·模拟预测)将函数f(x)=sin x的图像向左平移5π6个单位长度后得到函数g(x)的图像,再将g(x)的图像上各点的纵坐标不变、横坐标变为原来的1ω(ω>0)倍,得到函数ℎ(x)的图像,且ℎ(x)在区间(0,π)上恰有两个极值点、两个零点,则ω的取值范围为()【题型7 ω的范围与最值问题:性质的综合问题】【例7】(2024·湖北武汉·模拟预测)若函数f (x )=3cos (ωx +φ)ω<0,―π2<φ<π,在区间―π6φ的取值范围是( )A B .―π2,―C D .【变式7-1】(2024·全国·模拟预测)已知函数f (x )=sin (2ωx ―φ)(ω>0)满足对任意的x ∈R ,均有f (x )≥f+x =x ,且f (x )ω的最大值为( )A .14B .12C .34D .45【变式7-2】(2024·天津·模拟预测)已知f (x )=sin ωx +π3+φω>0,|φ|<g (x )=sin(ωx +φ),则下列结论错误的个数为( )①φ=π6;②若g (x )的最小正周期为3π,则ω=23;③若g (x )在区间(0,π)上有且仅有3个最值点,则ω④若=ω的最小值为.A .1个B .2个C .3个D .4个【变式7-3】(2023·河南·模拟预测)已知函数f (x )=sin (ωx +φ)ω>0,0<φ<=f x且f ―π4―x +f ―π4+x =0,f (x )ω的最大值为( )A .1B .3C .5D .367一、单选题1.(2024·四川成都·模拟预测)若函数f(x)=sin (ωx)(ω>0)在0,ω的取值范围为( )A .B .(0,2)C .D .(0,2]2.(2024·重庆开州·模拟预测)已知函数f (x )=2sin ωx(ω>0),则“32<ω<3”是“f (x )的图象在区间―π6上只有一个极值点”的()A.充分条件B.必要条件C.充要条件D.非充分非必要条件3.(2024·湖北武汉·模拟预测)设ω>0,已知函数f(x)=sin3ωx2ωx(0,π)上恰有6个零点,则ω取值范围为()A B C D4.(2024·河北·模拟预测)已知函数f(x)=sin(ωx+φ)(ω>0),若f(0)=f=π,则ω的最小值为()A.3B.1C.67D.235.(2024·四川·模拟预测)已知函数f(x)=sinωx+ω>0)在区间1个零点,且当x∈―2π3f(x)单调递增,则ω的取值范围是()A B C,1D6.(2024·四川内江·三模)设函数f(x)=2sinωx>0),若存在x1,x2∈―π6x1≠x2,使得f(x1)=f(x2)=ω的取值范围是()A.(0,12]B.[10,+∞)C.[10,12]D.(6,10]7.(2024·河南南阳·模拟预测)若函数f(x)=cos(ωx+φ)ω>0,|φ|≤中心对称,且x=―π3是f(x)的极值点,f(x)在区间0,ω的最大值为()A.8B.7C.274D.2548.(2024·陕西安康·模拟预测)已知函数f(x)=cosωxω>0),π上单调递减,且f(x)在区间(0,π)上只有1个零点,则ω的取值范围是()A.B C D二、多选题9.(2024·浙江·模拟预测)已知函数f(x)=cosωx+ω>0),则()A.当ω=2时,f x x=π2对称B.当ω=2时,f(x)在C.当x=π6为f(x)的一个零点时,ω的最小值为1D.当f(x)在―π3ω的最大值为110.(2024·浙江温州·三模)已知函数f(x)=sin(ωx+φ)(ω>0),x∈,π的值域是[a,b],则下列命题正确的是()A.若b―a=2,φ=π6,则ω不存在最大值B.若b―a=2,φ=π6,则ω的最小值是73C.若b―a=ω的最小值是43D.若b―a=32,则ω的最小值是4311.(2023·浙江·三模)已知函数f(x)=cosωx>0),则下列判断正确的是()A.若f(x)=f(π―x),则ω的最小值为32B.若将f(x)的图象向右平移π2个单位得到奇函数,则ω的最小值为32C.若f(x)π单调递减,则0<ω≤34D.若f(x)π上只有1个零点,则0<ω<54三、填空题12.(2024·陕西安康·模拟预测)已知函数f(x)=cos2ωx>0)π上是单调的,则ω的最大值为.13.(2024·陕西西安·模拟预测)若函数f(x)=2cosωx―1(ω>0)在(0,π)上恰有两个零点,则ω的取值范围为.14.(2024·黑龙江哈尔滨·模拟预测)已知函数f(x)=2sinωxω>0),若∃x1,x2∈[0,π],使得f(x1) f(x2)=―4,则ω的最小值为.四、解答题15.(2023·河北承德·模拟预测)已知ω>1,函数f(x)=cosωx―(1)当ω=2时,求f(x)的单调递增区间;(2)若f(x)ω的取值范围.16.(23-24高一下·湖北恩施·期末)已知函数f(x)=2sinωx+>0).(1)若x+x=0,求ω的最小值;(2)若f(x)在区间0,[1,2],求ω的取值范围.17.(2024·全国·模拟预测)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|≤(1)若f(x)的图象经过点,0,,2,且点B恰好是f(x)的图象中距离点A最近的最高点,试求f(x)的解析式;(2)若f(0)=―1,且f(x)π上单调,在ω的取值范围.18.(2024·全国·模拟预测)已知函数f(x)=3sin(ωx+φ)ω>0,|φ|<(1)当φ=π时,函数f(x)ω的取值范围.6(2)若f(x)的图象关于直线x=π对称且f=0,是否存在实数ω,使得f(x)4求出ω的值;若不存在,说明理由.19.(2023·山西·模拟预测)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0)的图象是由y=2sinωx 个单位长度得到的.象向右平移π6(1)若f(x)的最小正周期为π,求f(x)y轴距离最近的对称轴方程;(2)若f(x)ω的取值范围.。
高考数学三角函数大题
三角函数大题真 题 感 悟【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【2016,17】的内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,的面积为,求的周长.【2013,17】如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =,求P A ;(2)若∠APB =150°,求tan ∠PBA . 23sin a AABC ∆C B A ,,c b a ,,c A b B a C =+)cos cos (cos 2C 7=c ABC ∆233ABC ∆12【2012,17】已知,,分别为△ABC 三个内角A ,B ,C 的对边,.(1)求A ;(2)若,△ABC,.[微题型1] 三角形基本量的求解【例2-1】 (2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c . (1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B.a b c cos sin 0a C C b c --=2a =b c[微题型2] 求解三角形中的最值问题【例2-2】 (2016·淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.[微题型3] 解三角形与三角函数的综合问题【例2-3】 (2016·四川成都诊断二)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA →·BC →的值.【训练2】(2016·浙江卷)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(1)证明:A=2B;(2)若△ABC的面积S=a24,求角A的大小.1.(2016·北京卷)在△ABC中,a2+c2=b2+2ac.(1)求角B的大小;(2)求2cos A+cos C的最大值.2.在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.3.(2015·山东卷)设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.4、(陕西高考)ABC 的内角,,A B C 的对边分别为,,a b c (1)若,,a b c 成等差数列,证明:()sin sin 2sin A C A C +=+ (2)若,,a b c 成等比数列,求cos B 的最小值【2017,17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长【解析】(1)面积.且,, ,由正弦定理得,由得. (2)由(1)得,,, , 又,,,,由余弦定理得 ①由正弦定理得,, ② 由①②得周长为【2016,17】的内角的对边分别为,已知.(Ⅰ)求;(Ⅱ)若,的面积为,求的周长. 【解析】⑴ ,由正弦定理得:,∵,,∴∴,,∵,∴⑵ 由余弦定理得:,,,∴,∴,∴周长为【2013,17】如图,在△ABC 中,∠ABC =90°,ABBC =1,P 为△ABC 内一点,∠BPC =90°.23sin a A∵ABC △23sin a S A =1sin 2S bc A =∴21sin 3sin 2a bc A A =∴223sin 2a bc A =∵223sin sin sin sin 2A B C A =sin 0A ≠2sin sin 3B C =2sin sin 3B C =1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=∵()0πA ∈,∴60A =︒sin A =1cos 2A =2229a b c bc =+-=sin sin a b B A =⋅sin sin a c C A =⋅∴22sin sin 8sin a bc B C A=⋅=b c +=∴3a b c ++=ABC △3+ABC ∆C B A ,,c b a ,,c A b B a C =+)cos cos (cos 2C 7=c ABC ∆233ABC ∆()2cos cos cos C a B b A c+=()2cos sin cos sin cos sin C A B B A C ⋅+⋅=()2cos sin sin C A B C ⋅+=πA B C ++=()0πA B C ∈、、,()sin sin 0A B C +=>2cos 1C =1cos 2C =()0πC ∈,π3C =2222cos c a b ab C =+-⋅221722a b ab =+-⋅()237a b ab +-=1sin 2S ab C =⋅==6ab =()2187a b +-=5a b +=ABC △5a b c ++=(1)若PB =,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°. 在△PBA 中,由余弦定理得P A 2=,故P A =. (2)设∠PBA =α,由已知得PB =sin α,在△PBA 中,由正弦定理得,α=4sinα,所以tan α=,即tan ∠PBA =.【2012,17】已知,,分别为△ABC 三个内角A ,B ,C 的对边,.(1)求A ;(2)若,△ABC ,. 【解析】(1)根据正弦定理,得,,,因为,所以, 即,(1)由三角形内角和定理,得, 代入(1)式得, 化简得, 因为,所以,即, 而,,从而,解得.(2)若,△ABC1)得,则,化简得, 1211732cos 30424+-︒=2sin sin(30)αα=︒-44a b c cos sin 0a C C b c --=2a =b c R CcB b A a 2sin sin sin ===A R a sin 2=B R b sin 2=C R c sin 2=cos sin 0a C C b c --=0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R 0sin sin sin sin 3cos sin =--+C B C A C A C A C A C A B sin cos cos sin )sin(sin +=+=0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A C C A C A sin sin cos sin sin 3=-0sin ≠C 1cos sin 3=-A A 21)6sin(=-πA π<<A 06566πππ<-<-A 66ππ=-A 3π=A 2a =3π=A ⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ⎩⎨⎧=+=8422c b bc从而解得,.2=b 2=c。
高考数学专题《三角函数的图象与性质》习题含答案解析
专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数典型例题
1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;
(Ⅱ)求cos sin A C +的取值范围.
2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .
(Ⅰ)求角B 的大小;
(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.
3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin =++C B A . I.试判断△ABC 的形状;
II.若△ABC 的周长为16,求面积的最大值.
4 .在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量
(
2s i n 3m B =,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。 (I)求锐角B 的大小;
(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。
5.已知ABC ∆的内角A . B .C 所对边分别为a 、b 、c ,设向量)2
cos
),cos(1(B A B A -+-=, )2cos ,85(B A n -=,且8
9=⋅n . (Ⅰ)求B A tan tan ⋅的值;
(Ⅱ)求2
22sin c b a C ab -+的最大值.
5.设函数).2sin 3,(cos ),1,cos 2(,)(m x x x x f +==⋅=b a b a 其中向量
(1)求函数],0[)(π的最小正周期和在x f 上的单调递增区间;
(2)当m x f x 求实数恒成立时,4)(4,]6,
0[<<-∈π的取值范围。
7.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦
,. (1)求)(x f 的最大值和最小值;
(2)2)(<-m x f 在ππ42
x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.
8.在锐角ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,且(tanA -tanB)=1+tanA·tan B .
(1)若a 2-ab =c 2-b 2,求A . B .C 的大小;
(2)已知向量m =(sinA ,cosA),n =(cosB ,sinB),求|3m -2n
|的取值范围.。