第5章导体和电介质存在时的静电场

合集下载

大学物理 导体和电介质中的静电场

大学物理  导体和电介质中的静电场

x
(1 2)S q (3 4)S q
1


2


3


4

q S

q S
0
1 4 0
2 3
ⅠⅡ Ⅲ
2 q / S
3 q / S
----电荷分布在极板内侧面
2020/1/14
由场强叠加原理有:
E1


2 2 0

3 2 0
2 2 0

3 2 0

4 2 0
2 0
q1 q2
2 0 S
E3

1 2 0

2 2 0

3 2 0

4 20/1/14
导体和电介质中的静电场
例: 点电荷 q = 4.0 × 10-10C, 处在不带电导体球壳的 中心,壳的内、外半径 分别为: R1=2.0 × 10-2m , R2=3.0 × 10-2m.
0
+ +
+
+ -
-
-q
+
+ -
+
Q
+
+
q
-+
+q
-
--q-
S
+
++
qi 0
S内
结论
空腔内有电荷q时,空腔内表面感应出等值异号 电量-q,导体外表面的电量为导体原带电量Q与感应 电量q的代数和.
2020/1/14
导体和电介质中的静电场
3. 静电平衡导体表面附近的电场强度与导体表面电荷的关系
3. 导体的静电平衡条件 导体内电荷的宏观定向运动完全停止.

静电场中的导体和电介质

静电场中的导体和电介质

第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。

(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。

从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。

用一句话说:静电平衡时导体为等势体。

二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。

S 面是任意的,∴导体内无净电荷存在。

结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质静电平衡时导体是个等势体,导体表面是等势面,大前提是整个导体都是一样的,不要因为单独说导体表面是个等势面就误以为导体表面和内部不是等势的。

(证明省略)由此公式得出:导体表面电荷密度大的地方场强大,面电荷密度小的地方场强小。

导体表面电荷分布规律①与导体形状有关②与附近有什么样的带电体有关。

定性分析来说,孤立导体面电荷密度与表面的曲率有关,但是并不是单一的函数关系。

拓展知识(尖端放电的原理以及应用;避雷针的原理)这是一个从带电体上吸取全部电荷的有效方法。

测量电量时,要在静电计上安装法拉第圆筒,并将带电体接触圆筒的内表面,就是为了吸取带电体的全部电量,使测量更准确。

库仑平方反比定律推出高斯定理,高斯定理推出静电平衡时电荷只能分布导体外表面。

所以可以由实验精确测定导体内部没有电荷,就证明了高斯定理的正确,进而就证明了库仑平方反比定律的正确。

所以说这是精确的,因为通过实验测定数据是一定会存在误差的,而通过实验测定导体内部没有电荷是不会存在误差的,所以是很精确的。

以上是库仑平方反比定律验证的发展历史。

见图2-1,导体壳内部没有电荷时,导体的电荷只是分布在外表面上,为了满足电荷守恒定理,见图2-1c,就要一边是正电荷,而另一边是负电荷,其实空腔内没有电场的说法是对于结果而言的,并不能看出本质,本质是外电场和感应电荷的电场在导体腔的内部总的场强为0。

使带电体不影响外界,则要求将带电体置于接地的金属壳或者金属网内,必须接地才能将金属壳或者金属网外表面感应电荷流入地下。

则外界不受带电体场强的作用,而本质上也是带电体的场强和内表面感应电荷的场强叠加作用使外界总场强为0。

孤立导体的电容:电容C与导体的尺寸和形状有关,与q,U无关,它的物理意义是使导体每升高单位电位所需要的电量。

电容器及其电容:对电容的理解要升高一个层次:电容是导体的一个基本属性,就好像水桶的容量一样,C=U/q。

然而导体A的附近有其他导体时,导体的电位不仅与自己的q 有关,还受到其他导体的影响。

大学物理-静电场中的导体、电容器

大学物理-静电场中的导体、电容器

孤立导体球
1 q 电势: 电势: V = 4 πε0 R 孤立导体球的电容为: 孤立导体球的电容为:
q = 4 πε0R 1 q 4 πε0 R 孤立导体的电容仅取决于导体的几何形状和大 小,与导体是否带电无关. 与导体是否带电无关.
地球的电容: 地球的电容: C = 4 π ε 0 R = 4 π× 8.85 × 10 12 × 6.4 × 10 6 F
S
+
左底
侧面

+
右底

= 0+0+0
q1 q 2
E dS = 1 (σ 2 S + σ 3 S) ∫
S
ε0
σ 2 = σ 3
σ1 σ 4 EI = EIII = = ε0 ε0
I S
II
S
III S
σ1 = σ 4
σ1 σ 2
A
σ3 σ4
B
导体的静电平衡性质
静电场中的导体与电介质
qA
qB
I
+q
R1
l
+q
R2
导体的静电平衡性质
静电场中的导体与电介质
例 2 有一外半径R1 = 10cm 和内半径R2 = 7cm 的金属球壳, 的金属球壳,在球壳内放一半径 R3 = 5cm 的同心金 8 属球, 的正电荷, 属球,若使球壳和金属球均带有 q = 10 C 的正电荷, 两球体上的电荷如何分布?球心的电势为多少? 问 两球体上的电荷如何分布?球心的电势为多少? 解 根据静电平衡的条件求电荷分布 作球形高斯面 S1 +q
r

S3
E3 dS = ∑qi ε0 = 0
i
R2

静电场中的导体与电介质

静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。

在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。

导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。

从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。

(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。

)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。

可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。

充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。

对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。

1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。

5大学物理讲稿第5章真空中的静电场

5大学物理讲稿第5章真空中的静电场

第5章 真空中的静电场§ 物质的电结构实验证明,自然界中存在两种电荷,分别称为正电荷和负电荷.它们之间存在相互作用力,同种电荷相互排斥,异种电荷相互吸引.物体所带电荷的多少称为电量,用q 或Q 表示,电量的单位取库仑(C ).实验还表明,在自然界中,存在着最小的电荷基本单元e,任何带电体所带的电量只能是这个基本单元的整数倍,即),,( 21 n ne Q电荷的这一特性称为电荷的量子性.实验测得这基本单元的电量为).()(.C C e 19191060211049602177331 近似为由于e 的量值非常小,在宏观现象中不易观察到电荷的量子性,常将电量Q 看成是可以连续变化的物理量,它在带电体上的分布也看成是连续的.由物质的电结构可知,原子中一个电子带一个单位负电荷,一个质子带一个单位正电荷,其量值就是C e 19106021 .,原子失去电子带正电,原子得到电子带负电.随着人们对物质结构的认识,1964年盖尔曼(M ·Gell-Mann )等人提出了夸克模型,认为夸克粒子是物质结构的基本单元,强子(质子、中子等)是由夸克组成的,而不同类型的夸克带有不同的电量,分别为e 31 或e 32 .截止1995年,核子的6个夸克已全部被实验发现,可靠的依据也证明了分数电荷的存在.但到目前为止还没有发现自由状态存在的夸克 .我们已经知道,在正常情况下物体不带电,呈电中性,即物体上正、负电荷的代数和为零.当物体呈带电状态时,是由于电子转移或电子重新分配的结果,在电子转移或重新分配的过程中,正、负电荷的代数和并不改变.大量实验表明,把参与相互作用的几个物体或粒子作为一个系统,若整个系统与外界没有电荷交换,则不管在系统中发生什么变化过程,整个系统电荷量的代数和将始终保持不变.这一结论称为电荷守恒定律,它是自然界中一条基本定律.实验还发现,一切宏观的、微观的,物理的、化学的、生物的等过程都遵守电荷守恒定律.§ 库仑定律实验表明,带电体之间的相互作用与带电体之间的距离和所带电量有关,也与带电体的大小、形状、电荷在带电体上的分布情形以及周围介质的性质有关.所以在通常情况下,两个带电体之间的相互作用表现出与多种因素有关的复杂情形.当带电体的线度与带电体之间的距离相比小得多时,带电体的大小、形状对所研究问题的影响可以忽略,这样的带电体称为点电荷.显然,点电荷的概念与质点、刚体等概念一样,是对实际情况的抽象,是一种理想化的物理模型.一个带电体能否看成点电荷,必须根据具体情况来决定.一般的带电体不能看成点电荷,但总可以把它看成是许多点电荷的集合体,从而能由点电荷所遵从的规律出发,得出我们所要寻找的结论.本节我们讨论真空中点电荷间的相互作用.两点电荷之间的相互作用是库仑—1806)通过扭称实验于1785年总结出来的,其内容为:真空中两静止点电荷之间的相互作用力的大小与它们所带电量的乘积成正比 ,与它们之间距离的平方成反比;作用力的方向沿着两电荷的连线,同号电荷相斥(为正),异号电荷相吸(为负),这一结论称为库仑定律.其数学表达式为 r r q q k F ˆ221( ) k 为比例系数,在SI 单位制中,实验测得其数值为2222C m N C m N 991091098755188.k为使由库仑定律导出的其它公式具有较简单的形式,通常将库仑定律中的比例系数写为41 k ( ) 其中ε0为真空的电容率(或真空中的介电常数),于是库仑定律又可写为r r q q F ˆ20214 图(a)表示两个同号电荷的作用力是排斥力;图(b)表示两个异号电荷的作用力是吸引力.值得指出的是,库仑定律只适用于描述两个相对于观察者为静止的点电荷之的相互作用,这种静止电荷的作用力称为静电力(或库仑力).空气对电荷之间的作用影响较小,可看成是真空.例题 三个点电荷21q q 、和 Q 所处的位置如图 所示,它们所带的电量分别为C q q 6211002 . ,C Q 61004 ..求21q q 和对Q 的作用力.解:本问题一般是先利用库仑定律求出21q q 、分别对 Q 的作用力 F 和F ',然后求出它们的合力.由本问题的对称性可知 F 和 F '的 y 分量大小相等,方向相反,因而互相抵消.Q 所受21q q 、之合力方向沿 x轴正向.由库仑定律得1q 对Q 的作用力大小为N 290403010041002109984226692101...... r Q q F N 2305040290....cos F F x 所以Q 所受21q q 、之合力大小为N 46023022..cos ' F F F F f x x x作业(P120):§ 电场和电场强度一、静电场关于电荷之间如何进行相互作用,历史上曾经有过两种不同的观点.一种观点认为这种相互作用不需要媒质,也不需要时间,而是直接从一个带电体作用到另一个带电体上的.即电荷之间的的相互作用是一种“超距作用”.这种作用方式可表示为电荷电荷另一种观点认为,任一电荷都在自己的周围空间产生电场,并通过电场对其它电荷施加作用力,这种作用方式可表示为电荷电场电荷大量事实证明,电场的观点是正确的.电场是一种客观存在的特殊物质,与由分子、原子组成的物质一样,它也具有能量、质量和动量.二、电场强度不同的带电体系具有不同的电场,同一电荷体系的电场在空间具有一定的分布.为了定量的描述电场中各点电场的性质,引入一新的物理量——电场强度. 电场的一个重要性质,就是对置于其中的电荷施加作用力.为此,在电场中引入电量为0q 的试探电荷来研究电场的性质.所谓试探电荷是这样一种电荷,首先它所带的电量要非常小,一致由于它的引入使原电场发生的改变可以忽略;其次它的几何尺寸亦必须非常小,一致可以看作点电荷.实验证明,在给定的场点处,试探电荷0q 所受的电场力F 与0q 之比为一常矢量,与0q 的大小无关;不同的场点,比值不同.可见比值F/0q 揭示了电场的性质,所以我们可将这一比值定义为电场强度,简称电场,用E 表示,即q F E 上式说明,静电场中任意一点的电场强度其大小等于单位试探电荷在该点所受到的电场力,其方向与正电荷在该点的受力方向相同.通常E 是空间坐标的函数.若E 的大小和方向均与空间坐标无关,这种电场称为匀强电场.在SI 单位制中.电场强度的单位为牛顿/库仑(N ·C -1),或伏特/米(V ·m -1)三、叠加原理和电场强度的计算1. 单个点电荷产生的电场考虑真空中的静电场是由电量为 q 的点电荷产生的,试探电荷0q 在其中的P 点所受的电场力可由库仑定律式()得r rq q F ˆ2004 式中r 是点P 相对于点电荷的位置矢量,r 是这位置矢量的大小,由电场强度的定义式()则得P 点处的电场强度为r rq r r q q F E 3020044 ˆ 上式表示,点电荷在空间任一点P 所产生的电场强度E 的大小,决定于这个点电荷的电量和点P 到该点电荷的距离.电场强度E 的方向与这个点电荷的符号有关,q 为正,电场强度E 的方向与位置矢量r 的方向相同;q 为负,电场强度E 的方向与位置矢量r 的方向相反.电场强度在空间呈球对称分布.2. 场强的叠加原理 多个点电荷的电场强度考虑空间存在n 个点电荷.实验证明,在它们的电场中任一点P 处,试探电荷0q 所受的电场力F 等于各点电荷分别单独存在时0q 所受电场力的矢量和,并利用电场强度的定义得:i q F E i E E F F 0/定义上式表明,在点电荷系的电场中,任意一点的电场强度等于每个点电荷单独存在时在该点所产生的电场强度的矢量和,这一结论称为场强的叠加原理.i i ii r r q E 3041进一步可表示为 3. 任意带电体产生的电场任意带电体的电荷可以看成是很多极小的电荷元dq 的集合,每一个电荷元dq 在空间任意一点P 所产生的电场强度,与点电荷在同一点产生的电场强度相同.整个带电体在P 点产生的电场强度就等于带电体上所有电荷元在P 点场强的矢量和.如果点P 相对于电荷元dq 的位置矢量为r ,则电荷元dq 在P 点产生的电场强度,进而整个带电体在P 点产生的电场强度为:r r dq E r r dq E d 30304141求积分 ).().().(135411254111541303030线分布面分布体分布r rdl r r dS r r dV E 应该注意,式— 都为矢量式.实际应用中多用标量式(投影式) ,如E 沿X 轴的投影式为cos 204r dq dE E x x 式中 表示r 与X 轴的夹角.例题 如图所示,有两个电量相等而符号相反的点电荷 + q 和 - q,相距l . 求在两点电荷的中垂面上任一点P 的电场强度.解:以l 的中点为原点建立坐标系,如图设点P 到点O 的距离为r .电荷 + q 和- q在点P 产生的电场强度分别用 E E 和表示 ,它们的大小相等为441220/l r q E E它们的方向如图所示.点P 的电场强度E 为 E E 和的矢量和,即 E E E E 的x 分量为23220x x x x 441cos cos /)/(l r ql E E E E EE 的y 分量为0sin sin y y y E E E E E所以,点P 的电场强度大小为负方向方向沿X l r ql E E x 23220441/)/(当l r 时,这样一对电量相等、符号相反的点电荷所组成的系统,称为电偶极子.从负电荷到正电荷所引的有向线段 l 称为电偶极子的轴 .电量q 与电偶极子的轴 l 的乘积,定义为电偶极子的电矩,用表示,即l q p由于l r ,故有323224r l r /)/(,所以在电偶极子轴的中垂面上任意一点的电场强度可表示为304rp E 电偶极子是一个很重要的物理模型,在研究电介质极化,电磁波的发射和吸收等问题中都要用到该模型.例题 有一均匀带电细直棒,长为L,所带总电量为q .直棒外一点P 到直棒的距离为a ,求点P 的电场强度.解:如图所示,设直棒两端至点P 的连线与x 轴正向间的夹角分别为21 和,考虑棒上x 处的元段dx ,其带电量dx Lq dx dq ,它在P 点产生的电场强度大小为204d ldx E 其中 l 是微元dx 到P 点的距离, d E 的方向如图所示.计算其沿x 轴和y 轴的分量分别积分得:cos 204l dx dE E x x )sin (sin 1204 aLq2104d a cos )cos (cos sin 21004421 aLq d a E y 讨论 1) 对于半无限长均匀带电细棒( 2121220,//,或)则有a E x 04 ;aE y 04 2) 对于无限长均匀带电细棒( 210,)则有aE E y x 020 , 作业(P120):,§ 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线. 为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度EdS dN 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。

电场中的导体和电介质

电场中的导体和电介质

二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。




根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9





R


q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V

第章静电场中的导体和电介质PPT课件

第章静电场中的导体和电介质PPT课件

q2
EA
1 2 o
2 2 o
3 2 o
4 2 o
0
EB
1 2 O
2 2 O
3 2 o
4 2 o
0
1
23
4
由电荷守恒:
1S 2 S q1
A
B
3S 4S q2
1
4
q1 q2 2S
2
3
q1 q2 2S
20
1
4
q1 q2 2S
q1
2
3
q1 q2 2S
1
2
上述结果表明:平板相背的两面带电等
R3 R2
R3
RR11
qq1 1
RR33
问题:电势表
达式能直接写
R2 R1
q1
4 or
2
dr
R3
(q q1 )
4 or 2
dr
出来吗?
q1
4 o
1 R1
1 R2
q q1
4 o R3
V1 V2
同理,球壳的电势为:
V2
E dl
R3
R3
(q
4
q1 ) or 2
dr
q q1
2.内屏蔽
+
+
壳外表面上的电荷分布与腔内带电体的位置无关,只 取于导体外表面的形状。
若将空腔接地,则空腔外表面上的感应电荷被大地电荷 中和,腔外电场消失,腔内电荷不会对空腔外产生影响。即 接地空腔对内部电场起到了屏蔽作用,这是静电屏蔽的另外 一种——内屏蔽。
高压设备用金属导体壳接地做保护。 14
五、利用静电平衡条件和性质作定量计算
例1:半径为R和r的球形导体(R>r),用很长的细导线连 接起来,使两球带电Q、q,求两球表面的电荷面密度。

物理-导体电介质存在时静电场的计算

物理-导体电介质存在时静电场的计算

2 0
其余 电荷 在S面元处内、外侧产生场强为 E2则有:
E1 E2 0, (内侧)
E1
E2
0
n,
(外侧)
由此解得:
E2
2 0
n
一、有导体存在时静电场的计算
其余所有电荷在S面元处的场强,大小等于面元自己激发 的场强,方向在导体内侧与面元场相反,在导体外侧与面
元场同向。
电荷S受到的电场力 E2
q0内
(介质中的高斯定理)
介质方程
二、极化电介质中的静电场计算
利用介质中的高斯定理求电场、极化电荷分布:
条件:电荷及介质的分布具有一定对称性
球对称、柱对称 、镜面对称
自由电荷分布
D dS
S
q0内
( S )
D 0 r E
P 0( r 1)E
P
n
q S dS
二、极化电介质中的静电场计算
Qi const.
i
一、有导体存在时静电场的计算
例1 在无限大的带电平面的场中,平行放置一无限大金
属平板,求:金属板两侧面电荷面密度。
解: 设金属板面电荷密度 1, 2
由对称性和电量守恒 1 2
-1 +2
由场叠加原理及导体体内任一点P场强
为零的事实:
1 2 0 20 20 20
R2 Q r1
3. 两介质交界处的极化电荷
R1 R0
解:1. 场的分布
r2
r<R 0
导体内部
R 0<r<R1 E2
E1 0 P1
Qr
4 0 r1r 3
0
二、极化电介质中的静电场计算
RPrP>321<Rr2<R00E24rr12E14314Q 44r0Qr0Q0Qr30rrr1r2rrrP233r3 0

6静电场中的导体和电介质

6静电场中的导体和电介质

V表面 常量

2. 导体上电荷分布 1)静电平衡时,导体内无净电荷,电荷只分布在导体 外表面上。 证明: (1)导体内无空腔 .p
E内 ds 0 q内 0
(2)导体内有空腔,腔内无其它带电体
可以看成已经达到静电平衡的实心导体,从中 挖出空腔,由于没有挖去净电荷,不会影响电 荷分布,也不影响电场分布。内表面无净电荷。
r
D1 E1 R1 2 r1 2 1r1 r R1 r1 r : E1 21r1 E1 2 r2 E 2 1r1 同理:r r2 R2 : E2 22 r2
R2

r R2 V d r1 dr2 ln ln 21r1 22 r2 21 R1 22 r R r

q
§6—7 静电场中的电介质 电介质 绝缘体(不导电) 1.电介质的电结构 带负电的电子→束缚电子 每个分子 带正电的原子核 正负重心不重合 两类电介质: 正负重心重合 E 2.电极化现象 E外 0 1)有极分子 2)无极分子
所有负电荷负重心 所有正电荷正重心
有极分子 p p 0 无极分子
q q A B
(3)内球与地相接,设内球带电q’:
R1
q q VA dr dr 2 2 R 4 r R2 4 r o o q 1 1 q q 1 ( ) 0 可解出 q 4o R R1 4o R2 q q 1 VB 4o R2
R
o
R
q
q
4 R 4
o
dq
q
o
2R
0
q q R 2R
q 4o R

《电学》课件-第5章静电场中的电介质

《电学》课件-第5章静电场中的电介质

ε πQ
=4 0
RB dr
r RA
2
Q
B
ε ++Q +
R+ 1+A
+
0 + ++
R2
=
Q
4π ε0
(
1 RA
1) RB
ε Q
C = UA U B
=

R AR B
R 0 B
RA
讨论: 1. 电容计算之步骤:
E
UA UB
C
2. 电容器之电容和电容器之结构,几何
形状、尺寸有关。
3. 电容器是构成各种电子电路的重要器 件,也是电力工业中的一个重要设备。它的作 用有整流、隔直、延时、滤波、分频及提高
q
U外
=
q1 q
4pe0 r2
外球的电势改变为:
ΔU = U外
U2
=
r1q
4pe0
r2 2
=
(r1 2r2 ) q
4pe0
r2 2
2r2q
4pe0
r2 2
2. 点电荷q =4.0×10-10C,处在导体球 壳的中心,壳的内外半径分别为R1=2.0cm 和R2=3.0cm ,求:
(1)导体球壳的电势; (2)离球心r =1.0cm处的电势;
d
ε = ε0 εr
称ε为介电常数,或电容率。
有介质时电容器的电容不仅和电容器的 结构,几何形状、尺寸有关,还和极板间介 质的介电常数有关。
电介质的相对电容率和击穿场强
电介质
相对电容率 击穿场强
真空 空气 纯水 云母
1 1.00059
80 3.7~7.5

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案
解:(1)并联
因为并联后每个电容器两端的电势差相等,且不能超过每个电容器的耐压值,所以耐压值取较小值。
(2) 串联 因为串联后每个电容器所带的电量都等于等效电容器的电量,根据公式,则
分别计算两电容器可带电量的最大值,取其中较小值作为q。
5-18 C1、C2两个电容器,分别标明为"200pF 500V"和"300pF 900V",把它们串联起来后,等值电容多大?如果两端加上1000V的电压,是否会击穿?
(2)取坐标如图所示,设Q点到原点的距离为y,在距原点O为l处取长dl 的线元,则相应的电荷元为,以dq作为电荷元,则它在Q点的电势为:
能从电势致。
5-14 已知半径为R的均匀带电球体,带电q ,处于真空中。
(1)用高斯定理求空间电场强度的分布;
****(要用到的不定积分公式
)****************
若棒为无限长时,则上式变为:
结果与无限长带电直线的场强相同
5-3 一半径为R的半细圆环,均匀地分布+Q电荷。求环心的电场强度大小和方向。
解:在圆周上任取电荷元,它的场强大小为 由于电荷相对于y轴对称,知合场强应沿y方向,故
5-5 电场强度的环流表示什么物理意义?表示静电场具有怎样的性质?
答:电场强度的环流说明静电力是保守力,静电场是保守力场。表示静电场的电场线不能闭合。如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点 沿环路切向,得,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。
5-6 在高斯定理中,对高斯面的形状有无特殊要求? 在应用高斯定理求场强时,对高斯面的形状有无特殊要求?如何选取合适的高斯面?高斯定理表示静电场具有怎么的性质?

大学物理简明教程 第5章 静电场

大学物理简明教程   第5章 静电场

E
q
力矩总是使电矩 p 转向 E 的方向,以达到稳定状态
M p E 可见:p E 力矩最大; p // E 力矩最小。
20
§5.2 电通量 高斯定理 一、电场线
为形象描绘静电场而引入的一组空间曲线。
EA
EB
A
B
S
E
1.图示方法 电场线的切线方向表示场强方向 电场线的密度则表示场强的大小
总场强:
n E
i 1
qi
qi 40 ri r 2 i0
场强在坐标轴上的投影
Ex Eix , E y Eiy , i i E E x i E y j Ez k
Ez Eiz
i
12
3.连续带电体的电场
dE dq 4 0 r 2 r0
EB
结论:
1 p 4 0 r 3 1 E p ; E 3 注意:坐标原点的选择 r
15
例: 真空中有一均匀带电直线长为L,总电量为q,试 计算距直线距离为a的P点的场强.已知P点和直线两端 的连线与直线之间的夹角分别为 1和 2,如图所示. 解: 步骤:
dE
1.建立坐标,选电荷元 dq=dx 2.确定 dE 的大小和方向 1 dx dE 4 0 r 2 3. 将 dE投影到坐标轴上
dEx dE cos(1800 )
dE y
y P
dE x
a
1
0
r x

dx
2
x
dEy dE sin
16
4. 选择适当的积分变量 r、 、x三变量选 一个积分变量 选 作为积分变量, 因此
a2 r2 sin2

大学物理静电场中的导体和电介质

大学物理静电场中的导体和电介质

03
在静电场中,导体和电介质的 性质和行为表现出显著的差异 ,因此了解它们的特性是学习 大学物理静电场的重要基础。
学习目标
01
掌握导体和电介质的定义、性质和分类。
02
理解静电场中导体和电介质的电场分布和电荷分布。
03
掌握导体和电介质在静电场中的行为和相互作用, 以及它们在电路中的作用。
02
导体
导体的定义与性质
感应电荷的产生是由于导体内 部自由电荷受到电场力的作用 而重新分布,这种效应称为静 电感应现象。
静电感应现象在生产和生活中 的应用十分广泛,如静电除尘、 静电喷涂等。
导体的静电平衡状态
当导体放入静电场中并达到稳定状态时,导体内部的自由电荷不再发生定向移动, 此时导体的状态称为静电平衡状态。
在静电平衡状态下,感应电荷在导体内、外表面产生附加电场,该电场与外界电场 相抵消,使得导体内部的总电场为零。
应用
了解电场强度在电介质中 的分布和变化规律,有助 于理解电子设备和器件的 工作原理。
电介质的电位移矢量
01
02
03
04
定义
电位移矢量是指描述电场中电 荷分布情况的物理量。
特点
在静电场中,电位移矢量与电 场强度之间存在线性关系,可
以用介电常数表示。
计算
根据电位移矢量的定义和电场 强度的计算公式,可以计算出
定义
导体是指能够让电流通过的物质。在 静电场中,导体内部自由电荷会受到 电场力的作用而发生移动,从而形成 电流。
性质
导体具有导电性,其导电能力与温度 、光照、化学状态等因素有关。金属 导体是电导率最高的物质之一,而绝 缘体则几乎不导电。
导体的静电感应现象
当导体放入静电场中时,导体 表面会产生感应电荷,感应电 荷的分布与外界电场有关。

静电场中的导体和电介质

静电场中的导体和电介质

平行板电容器的电容,与极板的面积成正比,与极板 间的距离成反比。
圆柱形电容器的电容
两柱面间的场强大小 E Q 2 0 Lr 方向沿着径向 两柱面间的电势差
U A U B Edr Q 2 0 L ln R2 R1
R2
Q 2 0 Lr
R1
dr
柱形电容器的电容
dWe we dV
取半径为r,厚为dr的球壳, 电场总能量为: 其体积元为: 2
8r
2
dr
dV 4r dr
2
Q We dWe 8

R2
R1
dr 1 Q2 ( R2 R1 ) 2 r 2 4R2 R1
Q C U
4 0 R
★电量按半径比例进行重新分配
2 1 Q Q 2 Q 3 3 F 2 2 4π 0 R 18π 0 R
二. 电容器及其电容 常见的电容器: 平行板电容器----两块导体薄板; 圆柱形电容器----导体薄柱面; 球形电容器----导体薄球面; 当电容器的两极板分别带有等值异号电荷Q时,电荷Q与 两极板A、B间的电势差 (UA-UB) 的比值定义为电容器的 电容:
外 内
E内 ? S
★电荷只分布在外表面,内表面上处处无电荷
内表=0
E内=0
2、 若导体壳包围的空间(腔)有电荷:

q S ★内表面带电总量为-q,内表面上各处 电荷面密度取决于腔内电荷的分布

q内表 q
E内 0
3、静电屏蔽
S
A
Q
B
E内 0
在电子仪器中,用金属网罩把电路包起来,使其 不受外界带电体的干扰。 传送微弱电信号的导线,外表用金属丝编成的网 包起来,这种的导线叫屏蔽线。

有导体和电介质存在时的静电场

有导体和电介质存在时的静电场

③ 由极板电量和两极板电势差计算电容
C
Q U
此时您正浏览在第37页,共72页。
1、平行板电容器的电容
设两板相对表面积为S,两板间距为d,两板间为真空。 ① 设两板相对表面分别带+Q和-Q的电荷,求场强
+ -
③ 计算电容
忽略边缘效应,认为两板间场强均匀。
QA
S
B
d
E
0
Q
0S
② 根据场强求电势差
U AB
导体空腔内若无带电体,则导 体空腔必有下列性质:
+面S
① 内表面上无净电荷,所有静电 荷均分布在外表面
+
+ 证明:作高斯面S仅包围内表面
+ + ++
F
S
E
dS
1
0
qint
静电平衡,导体内部 E=0
qint 0
此时您正浏览在第24页,共72页。
++
+
+
+ +
+
+
+
- +--q+2+
qint 0有两种情况:
(2)将B板接地,求电荷分布
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
此时您正浏览在第11页,共72页。
1 A 2 3 B 4
EI E II EIII
I
II Ⅲ
分析:可利用静电平衡条件(Eint =0, ES⊥表面)、电荷守恒和静 电场的基本规律(场强叠加原理、
高斯定律等)进行求解。
r R3
此时您正浏览在第18页,共72页。

第5章 电介质

第5章 电介质

第5章 静电场中的导体和电介质一、基本要求1. 理解静电场中导体静电平衡的条件及电荷分布的规律。

2. 理解电容的定义及其物理意义。

3. 了解电解质的极化现象及其微观机理。

4. 了解电介质中的高斯定理及环路定理;了解各向同性介质中D 与E 的关系与区别。

5. 理解电场能量密度的概念,会计算一些简单情况的对称情况下电场中贮存的能量。

二、内容提要1. 导体的静电平衡条件 导体在电场中达到静电平衡时必须满足: (1)导体内部的场强处处为零;(2)导体表面的场强处处与导体表面垂直。

2. 静电平衡时导体上的电荷分布 其主要规律是电荷只分布在导体的表面,体内静电荷为零。

3. 静电平衡时导体的电势分布规律 导体为等势体,其表面为等势面。

4. 电容 描述导体或导体组(电容器)容纳电荷能力的物理量。

导体所带电量与其电势之比称为孤立导体的电容,即UQ C =电容器两极板中任一极板所带电量与两极板间的电势差之比称为电容器的电容,即ba ab U U QU Q C -==5. 电位移矢量D电位移矢量是描述电场性质的辅助量。

在各向同性介质中,它与场强成正比,即E E D r εεε==06. 介质中的高斯定理 穿过任一封闭曲面的D 通量等于该曲面所包围的自由电荷的代数和,即∑⎰⎰=⋅iSq S D d7. 介质中的环路定理 介质中的场强沿任一闭合回路的线积分等于零,即0=⋅⎰Ll E d这说明,有介质时的静电场仍然是保守场。

8. 静电场中的能量 静电场中所贮存的能量。

单位体积中的电场中所贮存的能量称为电场能量的密度,它在数值上等于场强与电位移矢量标积的一半,即E D w e ⋅=21于是,体积为V 的电场空间所贮存的电能⎰⎰⎰⎰==V V D W d 21dw 2ε电容器所贮存的电能QU U C C Q W 21)(212122===练习题5-2 两个半径相同的金属球,一为空心,一为实心。

把两者各自孤立时的电容值加以比较,则:(A ) 空心球电容值大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
D = ε 0ε r E = εE
ε r :电介质的相对介电常量 ε = ε 0ε r :电介质的介电常量

∫∫ D ⋅ dS
s
为电位移通量
2. 有介质时的高斯定理 1)表达式: 表达式: 表达式
∫∫ D ⋅ d S = ∑ q
s i
0i
自由电荷代数和
2)文字表述: 文字表述: 文字表述 静电场中电位移矢量的通量等于闭合面内包 围的自由电荷的代数和
第5章 导体和电介质存在时的静电场 *§1 静电场中的导体 *§2 电容器及电容 静电场中的电介质(dielectric) §3 静电场中的电介质 §4静电场的能量 静电场的能量 *§5几种电介质材料的介绍 几种电介质材料的介绍
1
静电场中的电介质(定性掌握) §3 静电场中的电介质(定性掌握) 一、电介质的微观图象 二、电介质的极化 三、有介质时的高斯定理
6
1.定义: 1.定义: 定义 电介质表面出现极化电荷的现象叫电介质 的极化(polarization) (polarization)。 的极化(polarization)。 2.极化的分类 极化的分类: 2.极化的分类: 转向极化---------有极分子 转向极化-----有极分子 位移极化------无极分子。 ------无极分子 位移极化------无极分子。 3.电介质的击穿 3.电介质的击穿 1)定义:当外电场很强时,电介质分子中的 1)定义:当外电场很强时, 定义 正负电荷就可能被拉开而变成自由移动的 电荷,从而破坏了电介质的绝缘性能, 电荷,从而破坏了电介质的绝缘性能,使 之变成导体,此现象叫电介质的击穿。 之变成导体,此现象叫电介质的击穿。 2)击穿场强 介电强度): 击穿场强( ):一种电介质材料 2)击穿场强(介电强度):一种电介质材料 ■ 所能承受的不被击穿的最大电场强度。 所能承受的不被击穿的最大电场强度。 7
4.电介质内部的场强 电介质内部的场强
E = E0 + E′
E0
E′
⊕ ⊕ ⊕ ⊕
E0 自由电荷产生的场 E ′ 束缚电荷产生的场
E

8
三、有介质时的高斯定理 (Gauss Theorem) 1.电位移矢量 电位移矢量 真空中的高斯定理: 真空中的高斯定理: 1 ∫∫ E ⋅ dS = ∑ q 0
3
有极分子(polar molecule) 电介质
p = ql
无极分子(non-polar molecule) 电介质
p=0
± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 有极分子电介质
4
无极分子电介质

电介质的极化: 二、电介质的极化: 无电场时 热运动 紊乱 热运动---紊乱 电中性
§4 静电场的能量 一、静电场的能量密度 二、静电场的能量
12
一、静电场的能量密度 1.定义: 1.定义: 定义 静电场中,单位体积内具有的能量。 静电场中,单位体积内具有的能量。 2.公式 公式: 2.公式:
1 we = D • E 2
各向同性的电介质: 1)各向同性的电介质:
1 2 we = ε r ε 0 E ■ 2
2
一、电介质的微观图象 1.定义:导电性极差的物质 定义: 定义 理想的电介质:完全不能导电(绝缘体), 理想的电介质:完全不能导电(绝缘体), 内部无自由移动的电荷。 内部无自由移动的电荷。 2.分类: 分类: 分类
H+ O-H+ C-H+ H+
=
±
H+ H+
-q
=
+q
CH4
H2O
无极分子
有极分子 ■
± ± ±
± ± ±
± ± ±
± ± ±
± ± ±
有电场时

5
± ± ± ± ± ± ± ± 有电场时 ± ± ± ± ± ± ±
F′ + - + - + E'
- -+ - ++ - +- +- +- +E = E0 + E'
+ F + + E0 + + + E0
+ F
F’
E'
-E0+
+ + +
E0
无极分子
-
E = E0 + E'
有极分子
E0
结论:外电场作用的总效果是使电介质边缘出 结论:外电场作用的总效果是使电介质边缘出 电荷分布。 现电荷分布。 束缚在每个分子中, 称呼:由于这些电荷仍束缚在每个分子中 称呼:由于这些电荷仍束缚在每个分子中,所 以称之为束缚电荷 极化电荷(bound charge)。■ 束缚电荷或 以称之为束缚电荷或极化电荷 时的高斯定理: 有电介质时的高斯定理:
∫∫ E ⋅ dS = ε (∑ q + ∑ q′)
1
0 s 0
q0 q ′
∫∫ ε
s
0
E ⋅ dS − ∑ q ′ = ∑ q0
引入新的物理量----电位移矢量 引入新的物理量----电位移矢量 ---对于各向同性的电介质, 对于各向同性的电介质,有:
13
2)真空中
1 2 we = ε 0 E 2
二、静电场的能量
W = ∫ we dV = ∫
V
V
1 D • EdV 2
1)各向同性的电介质: 各向同性的电介质:
W =∫
V
1 ε r ε 0 E 2 dV 2

14
2)真空中
W =∫
V
1 2 ε 0 E dV 2

15
相关文档
最新文档