人教版初中数学八年级下册第十六章《二次根式》教案设计

合集下载

(完整版)新人教版八年级数学下册第16章二次根式教案

(完整版)新人教版八年级数学下册第16章二次根式教案

课题:16.1二次根式1 课型:新授 一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质)0(0≥≥a a 和)0()(2≥=a a a 。

三、学习过程(一)自学导航(课前预习)(1)已知a x =2,那么a 是x 的______;x 是a 的______, 记为_____,a 一定是____数。

(2)4的算术平方根为2,用式子表示为=__________;正数a 的算术平方根为_______,0的算术平方根为_______;式子)0(0≥≥a a 的意义是 。

(二)合作交流(小组互助) (1)16的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t (单位:秒)与开始下落时的高度h (单位:米)满足关系式25t h =。

如果用含h 的式子表示t ,则t = ; (3)圆的面积为S ,则圆的半径是 ; (4)正方形的面积为3-b ,则边长为 。

思考:16,5h ,πs ,3-b 等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如a (0≥a )叫做二次根式,a 叫做_____________。

1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3,16-,34)0(3≥a a ,12+x2、当a 为正数时a 指a 的 ,而0的算术平方根是 ,负数 ,只有非负数a 才有算术平方根。

所以,在二次根式a 中,字母a 必须满足 ,4a 才有意义。

3、根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31( 根据计算结果,你能得出结论: ,其中0≥a ,4、由公式)0()(2≥=a a a ,我们可以得到公式a =2)(a ,利用此公式可以把任意一个非负数写成一个数的平方的形式。

八年级数学下册第十六章《二次根式》教案

八年级数学下册第十六章《二次根式》教案

做二次根式,“”称为二次根号。

例题:当x 是怎样的实数时,2+x在实数范围内有意义?解:要使2+x在实数范围有意义,必须x+2≥0,∴x≥-2.∴当x≥-2时,2+x在实数范围内有意义。

当x 是怎样的实数时,2x在实数范围内有意义?3x呢?三、课堂练习及巩固练习1 指出下列哪些是二次根式?(1)5;(2)3-;(3)321;(4)21+x;(5))2(2≥-aa;(6)ba-(a<b)。

练习2 二次根式和算术平方根有什么关系?(二次根式都是非负数的算术平方根;带有根号的算术平方根是二次根式)练习3 a 取何值时,下列根式有意义?(1)1+a;(2)112-a;(3)21-a().解:(1)由a+1≥0,得a≥-1;(2)由1-2a>0,得a<1 2;(3)由21-a()≥0,得a为任何实数.师活动、学生活动、设计意图、技术应用等)一、复习导入(1)什么是二次根式,它有哪些性质?(2)二次根式52x有意义,则x 。

当a>0 时,a表示a 的算术平方根,因此a>0;当a =0 时,a表示0的算术平方根,因此a=0;这就是说,a(a≥0)是一个非负数。

二、探究新知探究:根据算术平方根的意义填空,并说出得到结论的依据。

把上述计算结论推广到一般,并用字母表示:2=a a()(a≥0)思考:你能说说依据吗?例题:计算下列各式:215.();(2)225()探究:填空把得到的结论推广到一般,并用含字母的22224213= == =()()()()________二次根式表示:2=a a (a ≥0)思考:你能说说依据吗? 计算下列各式:(1)16 ;(2)25-()回顾我们学过的式子,如5,a,a+b,-ab,这些式子有哪些共同特征?(1)含有表示数的字母; (2)用基本运算符号连接数或表示数的字母。

用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来得到的式子叫代数式。

三、课堂练习及巩固练习1 计算(1)218() ;(2) 20();(3)2748();(4)235();(5)9;(6)24-();练习2 对于性质 ,逆向思考可得: , 请根据这一结论完成填空:(1)22=();(2)23=( ) 练习3 根据性质2=a a (a ≥0),可得255-=()你认为当a <0时,2=a ___,并说明理由:练习4 性质 和 有什么区别和联系?师活动、学生活动、设计意图、技术应用等)一、创设情境,导入新课现有一块长7.5 dm、宽5 dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8 dm2和18 dm2的正方形木板?能截出两块正方形木板的条件是什么?能用数学式子表示吗?818+能否进一步计算?这是一种什么运算?能,两个二次根式的加法运算。

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)

新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。

人教版初中数学八年级下册《二次根式》教学设计

人教版初中数学八年级下册《二次根式》教学设计

人教版初中数学八年级下册《二次根式》教学设计一. 教材分析人教版初中数学八年级下册的《二次根式》是数学课程中重要的一部分。

这部分内容主要介绍了二次根式的定义、性质和运算方法。

通过学习二次根式,学生能够更好地理解实数的概念,提高解决问题的能力。

教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。

二. 学情分析在八年级下册,学生已经学习了实数、有理数等基础知识,对数学概念和运算有一定的理解。

但部分学生可能对二次根式的概念和性质理解不深,运算能力有待提高。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.知识与技能:使学生掌握二次根式的定义、性质和运算方法,能够熟练地运用二次根式解决实际问题。

2.过程与方法:通过观察、思考、讨论等方法,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极向上的学习态度。

四. 教学重难点1.重点:二次根式的定义、性质和运算方法。

2.难点:二次根式在不同情境下的应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次根式的实际意义。

2.启发式教学法:引导学生主动思考、探讨,提高他们的逻辑思维能力。

3.小组合作学习:鼓励学生互相讨论、交流,培养团队合作精神。

六. 教学准备1.教学PPT:制作包含二次根式相关知识的教学PPT。

2.练习题:准备适量的练习题,以便在课堂上进行操练和巩固。

3.教学素材:收集与二次根式相关的实际问题,用于课堂讨论。

七. 教学过程1.导入(5分钟)利用生活实例,如计算物体体积、求解实际问题等,引入二次根式的概念。

引导学生思考:为什么需要引入二次根式?2.呈现(10分钟)呈现二次根式的定义、性质和运算方法。

通过PPT展示,使学生清晰地了解二次根式的相关知识。

3.操练(10分钟)根据呈现的知识点,让学生进行相关的运算练习。

教师及时给予指导和解答,确保学生掌握二次根式的运算方法。

人教版2019八年级(下册)数学第十六章二次根式整章教案

人教版2019八年级(下册)数学第十六章二次根式整章教案

第十六章二次根式16.1 二次根式(1)一、教学目标:认知:1、根据算术平方根的意义了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

能力:先提出问题,让学生探讨、分析问题,师生共同归纳得出概念。

情感:经过探索二次根式的重要结论,发展学生观察、发现问题的能力及研究问题的严谨性。

二、教学重难点:教学重点:理解二次根式的概念教学难点:明确二次根式有意义的条件,并运用其解决具体问题。

三、教学法:1.教法:五环节教学法2.学法:自学与小组合作学习相结合的方法四、教学具准备:教学课件五、教学过程:(一)复习引入:1、已知一个正数x,满足x2 = a,x是a的________, 记为______, a一定是_______数。

2、(1) 4的算术平方根为_______ ,用式子表示为 __________;(2) 16的算术平方根是_______,用式子表示为 __________;(3) 0 的算术平方根是_______;(4)正数a的算术平方根为_______,(5)-7_______算术平方根。

归纳:_______和_______都有算术平方根;_______没有算术平方根(二)出示学习目标:1、了解二次根式的概念,能判断一个式子是不是二次根式。

2、掌握二次根式有意义的条件。

(三)探索新知、提出问题思考:用带有根号的式子填空1、面积为3的正方形的边长是_______,面积为S的正方形的边长是_______。

2、一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为_______米。

3、一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为_______.很明显:所得的结果都表示一些正数的算术平方根。

像这样一些非负数的算术平方根的式子,我们就把它称二次根式。

一般地,我们把形如a(a≥0)的式子叫做二次根式(学生举例巩固)(四)议一议1、-1有算术平方根吗?2、0的算术平方根是多少?3、当a<0时,有意义吗?点评:1、表示非负数a 的算术平方根。

人教版初中数学八年级下册第十六章:二次根式(全章教案)

人教版初中数学八年级下册第十六章:二次根式(全章教案)

第十六章二次根式教材简析本章的内容主要包括:二次根式的概念和性质、二次根式的乘除、二次根式的加减.在中考中,本章重在考查二次根式的概念和性质以及运用二次根式的运算法则进行化简、求值.教学指导【本章重点】二次根式的性质和运算.【本章难点】灵活运用二次根式的性质及运算法则进行相关的化简与实数的简单运算.【本章思想方法】1.掌握类比思想.如:类比算术平方根的概念理解二次根式的性质,类比整式的运算法则理解二次根式的运算法则.2.掌握分类讨论思想.如:在进行二次根式的化简时,当被开方数中有字母且没有给出字母的取值范围时,应考虑对字母的取值进行分类讨论.3.体会整体思想.如:在求含有二次根式的代数式的值时,有时从整体角度考虑,将已知条件和待求值的式子进行变形后整体代入求值.课时计划16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时16.1二次根式第1课时二次根式的概念教学目标一、基本目标【知识与技能】理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.【过程与方法】经历观察、比较、总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.【情感态度与价值观】经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.二、重难点目标【教学重点】二次根式的概念,二次根式有意义的条件.【教学难点】求二次根式中字母的取值范围.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P2~P3的内容,完成下面练习.【3 min反馈】1.一个正数有两个平方根;0的平方根为0;在实数范围内,负数没有平方根.因此,在实数范围内开平方时,被开方数只能是正数或0.2.一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.3.下列式子中,不是二次根式的是(B)A.45B.-3C.a2+3D.2 3环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】下列各式中,哪些是二次根式,哪些不是二次根式?11,-5,(-7)2,313,15-16,3-x(x≤3),-x(x≥0),(a-1)2,-x2-5,(a-b)2(ab≥0).【互动探索】(引发学生思考)要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.【解答】因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数均为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数都小于0,所以不是二次根式.【互动总结】(学生总结,老师点评)判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号;(2)被开方数是非负数.【例2】当x________,x+3+1x+1在实数范围内有意义.【互动探索】(引发学生思考)二次根式有意义要满足什么条件?本题是否还要考虑其他条件?【分析】要使x+3+1x+1在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.【答案】≥-3且x≠-1【互动总结】(学生总结,老师点评)使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数为非负数,三是零次幂的底数不为零.活动2巩固练习(学生独学)1.下列式子中,是二次根式的是(A)A.-7B.3 7C.x D.x 2.使式子-(x-5)2有意义的未知数x有(B) A.0 个B.1 个C.2 个D.无数个3.当x是多少时,2x+3x+x2在实数范围内有意义?解:依题意,得⎩⎪⎨⎪⎧2x +3≥0,x ≠0,解得⎩⎪⎨⎪⎧x ≥-32,x ≠0.∴当x ≥-32且x ≠0时,2x +33+x 2在实数范围内没有意义.活动3 拓展延伸(学生对学)【例3】若实数x 、y 满足y >x -2+6-3x +3,求|y -3|-(x -y )2的值.【互动探索】要求|y -3|-(x -y )2的值,需确定出x 、y 的取值范围.根据式子y >x -2+6-3x +3,可以确定出x 、y 的取值范围.【解答】由题意,得x -2≥0且6-3x ≥0, 解得x =2,则y >3.故|y -3|-(x -y )2=y -3-y +2=2-3=-1.【互动总结】(学生总结,老师点评)利用二次根式有意义的条件求出x 的值,从而确定y 的取值范围,然后利用二次根式的性质化简代数式.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式⎩⎪⎨⎪⎧概念有意义的条件——被开方数是非负数练习设计请完成本课时对应训练!第2课时 二次根式的性质教学目标一、基本目标 【知识与技能】理解a (a ≥0)是一个非负数、(a )2=a (a ≥0)和a 2=a (a ≥0),并利用它们进行计算和化简;了解代数式的概念.【过程与方法】在明确(a )2=a (a ≥0)和a 2=a (a ≥0)的算理的过程中,感受数学的实用性;通过小组合作交流,培养学生的合作意识.【情感态度与价值观】通过二次根式的相关计算,进而解决一些实际问题,培养学生解决问题的能力. 二、重难点目标 【教学重点】 二次根式的性质. 【教学难点】运用二次根式的性质进行有关计算.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P3~P4的内容,完成下面练习. 【3 min 反馈】1.(1)当a >0时,a 表示a ;(2)当a =0时,a 表示0概括:一般地,a (a ≥0)是一个非负数.2.教材P3“探究”,根据算术平方根的意义填空: (1)(4)2=4; (2)2=2;⎝⎛⎭⎫132=13; (0)2=0. (2)一般地,(a )2=a (a ≥0). 3.教材P4“探究”,填空: (1)22=2;0.012=0.01; ⎝⎛⎭⎫232=23; 02=0.(2)一般地,a 2=a (a ≥0).教师点拨:二次根式的三个性质:(1)a (a ≥0)是一个非负数;(2)(a )2=a (a ≥0);(3)a 2=a (a ≥0).4.用基本运算符号把数或表示数的字母连结起来的式子,我们称这样的式子为代数式. 5.计算:0.019 6×22 500=21;549=73. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)( 1.5)2; (2)(25)2; (3)16; (4)(-5)2.【互动探索】(引发学生思考)一个非负数的算术平方根的平方等于什么?当二次根式的被开方数是一个完全平方数,开方时有什么规则?【解答】(1)()1.52 =1.5. (2)(25)2=22×(5)2=4×5=20. (3)16=(42)=4. (4)()-52=52=5.【互动总结】(学生总结,老师点评)一个非负数的算术平方根的平方等于这个非负数.当二次根式的被开方数是一个完全平方数时,a 2=||a =⎩⎨⎧a ()a ≥0;-a()a <0.【例2】化简下列二次根式. (1)8a 3b (a ≥0,b ≥0); (2)(-36)×169×(-9).【互动探索】(引发学生思考)根据开方的定义化简.注意:二次根式的结果是最简二次根式.【解答】(1)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab . (2)(-36)×169×(-9)=36×169×9=6×13×3=234.【互动总结】(学生总结,老师点评)(1)若被开方数中含有负因数,则应先化成正因数;(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(式),即化为最简二次根式.活动2 巩固练习(学生独学) 1.下列各式正确的是( D ) A .(-4)×(-9)=-4×-9 B .16+94=16×94C .449=4×49D .4×9=4×92.计算:(1)(9)2; (2)-(3)2; (3)64; (4)a 2+2a +1. 解:(1)9. (2)-3. (3)8. (4)a 2+2a +1=()a +12=||a +1.当a ≥-1时,原式=a +1;当a <-1时,原式=-a-1.3.已知实数a 、b 在数轴上的位置如图所示,化简:(a +1)2+2(b -1)2-|a -b |.解:从数轴上a 、b 的位置关系,可知-2<a <-1,1<b <2,且b >a ,故a +1<0,b -1>0,a -b <0,原式=|a +1|+2|b -1|-|a -b |=-(a +1)+2(b -1)+(a -b )=b -3.活动3 拓展延伸(学生对学)【例3】 已知a 、b 、c 是△ABC 的三边长,化简(a +b +c )2-(b +c -a )2+(c -b -a )2. 【互动探索】根据三角形的三边关系,得出b +c >a ,b +a >c .根据二次根式的性质得出含有绝对值的式子,然后去绝对值符号合并即可.【解答】∵a 、b 、c 是△ABC 的三边长,∴b +c >a ,b +a >c ,∴原式=|a +b +c |-|b +c -a |+|c -b -a |=a +b +c -(b +c -a )+(b +a -c )=a +b +c -b -c +a +b +a -c =3a +b -c .【互动总结】(学生总结,老师点评)解答本题的关键是根据三角形的三边关系得出不等关系,进行变换后,结合二次根式的性质进行化简.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的性质⎩⎪⎨⎪⎧a ≥0(a ≥0)(a )2=a (a ≥0)a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0)a (a <0)练习设计请完成本课时对应训练!16.2二次根式的乘除第1课时二次根式的乘法教学目标一、基本目标【知识与技能】理解a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0),并利用它们进行计算和化简.【过程与方法】经历“探索——发现——猜想——验证”的过程,引导学生体会合情推理与演绎推理的相互依赖、相互补充的关系;培养学生用规范的数学语言进行表达的习惯和能力.【情感态度与价值观】鼓励学生积极参与数学活动,激发学生的好奇心和求知欲,体验数学活动中的探索和创新,感受数学的严谨性.二、重难点目标【教学重点】二次根式的乘法运算法则.【教学难点】运用二次根式的乘法运算法则进行简单的运算.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P6~P7的内容,完成下面练习.【3 min反馈】1.教材P6“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)4×9=6,4×9=6;(2)16×25=20,16×25=20;(3)25×36=30,25×36=30.a≥0,b≥0.规律:一般地,二次根式的乘法法则是a·b=ab()2.把a·b=ab反过来,就得到ab=a·b,利用它可以进行二次根式的化简.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)3×5; (2)13×27; (3)9×27; (4)12× 6. 【互动探索】(引发学生思考)利用二次根式的乘法运算法则进行计算. 【解答】(1)3×5=15. (2)13×27=13×27=9=3. (3)9×27=9×27=92×3=9 3. (4)12×6=12×6= 3. 【互动总结】(学生总结,老师点评)利用二次根式的乘法运算法则进行计算时,注意被开方数必须是非负数.【例2】化简:(1)9×16; (2)16×81; (3)81×100; (4)4a 2b 3; (5)54.【互动探索】(引发学生思考)利用二次根式积的算术平方根的性质进行化简时,需要注意什么?【解答】(1)9×16=9×16=3×4=12. (2)16×81=16×81=4×9=36. (3)81×100=81×100=9×10=90. (4)4a 2b 3=4·a 2·b 3=2·a ·b 2·b =2ab b . (5)54=9×6=32×6=3 6.【互动总结】(学生总结,老师点评)积的算术平方根是二次根式乘法法则的逆用,注意被开方数必须是非负数.活动2 巩固练习(学生独学)1.等式x +1·x -1=x 2-1成立的条件是( A ) A .x ≥1 B .x ≥-1 C .-1≤x ≤1 D .x ≥1或x ≤-12.计算: (1)12×3; (2)23×315; (3)23×3512×5936. 解:(1)6. (2)310. (3)18.3.判断下列各式是否正确,不正确的请予以改正: (1)(-4)×(-9)=-4×-9; (2)41225×25=4×1225×25=4×1225×25=412=8 3. 解:(1)不正确.改正:(-4)×(-9)=4×9=36=6. (2)不正确. 改正:41225×25=11225×25=11225×25=112=47. 活动3 拓展延伸(学生对学) 【例3】比较大小:(1)35与53; (2)-413与-511.【互动探索】由于根号外的因数不为1,可以将根号外的因数移到根号内,再比较被开方数的大小.【解答】(1)35=9×5=45, 53=25×3=75. 因为45<75,所以35<5 3. (2)-413=-16×13=-208, -511=-25×11=-275.因为208<275,所以-208>-275,所以-413>-511.【互动总结】(学生总结,老师点评)要比较两个二次根式的大小,可以先运用二次根式的乘法运算法则,将根号外的数移到根号内,再比较被开方数的大小.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应训练!第2课时二次根式的除法教学目标一、基本目标【知识与技能】1.理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及利用它们进行运算;2.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【情感态度与价值观】在经历二次根式除法运算法则的过程中,获得成就感,建立学习数学的信心和兴趣.二、重难点目标【教学重点】最简二次根式的概念,二次根式的除法运算法则.【教学难点】二次根式商的算术平方根的运用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P8~P10的内容,完成下面练习.【3 min反馈】(一)二次根式的除法1.教材P8“探究”,计算下列各式,观察计算结果,你能发现什么规律?(1)49=23,49=23;(2)1625=45,1625=45;(3)3649=67,3649=67.规律:一般地,二次根式的除法法则是ab=ab()a≥0,b>0.2.把ab=ab反过来,就得到ab=ab()a≥0,b>0,利用它可以进行二次根式的化简.(二)最简二次根式1.观察教材P8~P9例4、例5、例6中各小题的最后结果,比如22,310,2aa等,可以发现这些式子有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.2.在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)123;(2)32÷18;(3)14÷116;(4)648.【互动探索】(引发学生思考)利用二次根式的除法运算法则进行计算.【解答】(1)原式=123=4=2 .(2)原式=32÷18=32×8=3×4=2 3.(3)原式=14÷116=14×16=4=2.(4)原式=648=8=2 2.【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则进行计算时,注意被开方数必须是非负数,结果必须是最简二次根式.【例2】化简:(1)364;(2)64b29a2;(3)35;(4)22-1.【互动探索】(引发学生思考)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简.【解答】(1)原式=364=38.(2)原式=64b29a2=8b3a.(3)原式=35=3×55×5=155.(4)原式=2×()2+1()2-1()2+1=2+22-1=2+ 2. 【互动总结】(学生总结,老师点评)利用二次根式的除法运算法则和商的算术平方根的性质将二次根式进行化简时,注意将结果化为最简二次根式.活动2 巩固练习(学生独学) 1.计算113÷213÷125的结果是( A ) A .27 5B .27C . 2D .272.如果xy(y >0)是二次根式,那么化为最简二次根式是( C ) A .xy(y >0) B .xy (y >0) C .xyy(y >0) D .以上都不对3.化简: (1)483; (2)0.7; (3)23-1; (4)6-56+5. 解:(1)4. (2)7010. (3)3+1. (4)11-230. 活动3 拓展延伸(学生对学) 【例3】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.【互动探索】等式形式符合商的算术平方根公式→确定x 的取值范围→化简所求式子【解答】由题意,得⎩⎪⎨⎪⎧ 9-x ≥0,x -6>0,即⎩⎪⎨⎪⎧x ≤9,x >6,∴6<x ≤9.∵x 为偶数,∴x =8, ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4(x +1)=(1+x )(x -4). ∴当x =8时,原式=4×9=6.【互动总结】(学生总结,老师点评)根据商的算术平方根的性质化简时,分子中被开方数是非负数,分母中被开方数是正数.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应训练!16.3二次根式的加减第1课时二次根式的加减教学目标一、基本目标【知识与技能】通过合并被开方数相同的二次根式,会进行二次根式的加法与减法运算.【过程与方法】在分析问题的过程中,渗透对二次根式加减法的理解,再总结经验,用它来指导二次根式的计算和化简.【情感态度与价值观】鼓励学生积极参与数学活动,体会合作学习的先进性.二、重难点目标【教学重点】会将二次根式化为最简二次根式,掌握二次根式加减法的运算.【教学难点】运用二次根式的加减运算解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P13的内容,完成下面练习.【3 min反馈】1.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.2.计算下列各式.(1)22+32;(2)28-38+58;(3)7+27+9×7;(4)33-23+ 2.解:(1)原式=(2+3)2=5 2.(2)原式=(2-3+5)8=48=8 2.(3)原式=7+27+37=(1+2+3)7=67.(4) 原式=(3-2)3+2=3+ 2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算: (1)27+13+12; (2)32+48-8+3; (3)3⎝⎛⎭⎫22-63+ 1.5-223;(4)()6-222+()23-1()23+1.【互动探索】(引发学生思考)运用二次根式的加减法法则及乘法公式进行计算,在计算时要注意哪些问题?【解答】(1)27+13+12=33+33+23=1633. (2)32+48-8+3=32+43-22+3=2+5 3. (3)3⎝⎛⎭⎫22-63+ 1.5-223=26-2+62-223=326-53 2.(4)()6-222+()23-1()23+1=6-412+8+()12-1=25-8 3.【互动总结】(学生总结,老师点评)计算二次根式的加减法时,先把二次根式化为最简二次根式,再合并同类二次根式.计算二次根式的混合运算时,注意运算顺序.【例2】已知a -5-2+b -5+2=0,求a 2+b 2+7的值.【互动探索】(引发学生思考)根据算术平方根的非负性,可得a =5+2,b = 5-2,然后再代入求值即可.【解答】由题意,得a -5-2=0,b -5+2=0,解得a =5+2,b =5-2,a 2+b 2+7=5+4+45+5+4-45+7=5.【互动总结】(学生总结,老师点评)此题主要考查了二次根式的加减,关键是掌握算术平方根具有非负性.活动2 巩固练习(学生独学) 1.计算32-2的值是( D ) A .2 B .3 C . 2D .2 22.若最简二次根式3a -8与17-2a 可以合并,则a =5. 3.计算: (1)348-913+312; (2)(48+20)+(12-5). 解:(1)=15 3. (2)63+ 5. 活动3 拓展延伸(学生对学)【例3】已知4x 2+y 2-4x -6y +10=0,求23x 9x +y 2x y 3-x 21x -5x yx的值. 【互动探索】先将已知等式进行变形,把它配成完全平方式,得(2x -1)2+(y -3)2=0,即可求出x 、y 的值.再根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.【解答】∵4x 2+y 2-4x -6y +10=4x 2-4x +1+y 2-6y +9=(2x -1)2+(y -3)2=0,∴x =12,y =3. 原式=23x 9x +y 2x y3-x 21x+5x y x=2x x +xy -x x +5xy =x x +6xy . 当x =12,y =3时,原式=12×12+632=24+3 6. 【互动总结】(学生总结,老师点评)化简求值时一般是先化简为最简二次根式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.环节3 课堂小结,当堂达标 (学生总结,老师点评)二次根式的加减法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.练习设计请完成本课时对应训练!第2课时 二次根式的混合运算教学目标一、基本目标 【知识与技能】掌握含有二次根式的混合运算和含有二次根式的乘法公式的应用. 【过程与方法】复习整式运算知识并将该知识应用于含有二次根式的混合运算. 【情感态度与价值观】理解知识间的类比,进一步体会数学学习方法的重要性. 二、重难点目标 【教学重点】熟练地进行二次根式的混合运算,进一步提高运算能力. 【教学难点】正确地运用二次根式混合运算法则及运算律进行运算,并把结果化简.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P14的内容,完成下面练习. 【3 min 反馈】1.二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.2.在二次根式的运算中,多项式乘法法则和乘法公式仍然适用. 3.计算: (1)13×27; (2)35; (3)80-45; (4)(25-2)2. 解:(1)3. (2)155. (3) 5. (4)22-410. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)12223×9145÷35; (2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.【互动探索】(引发学生思考)如何进行二次根式的混合运算? 【解答】(1)原式=12×9×83×145×53=12×9×229= 2. (2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5. (3)原式=2-3+23=2-1-233.【互动总结】(学生总结,老师点评)二次根式的混合运算顺序与整式的混合运算顺序一样,即先乘方,再乘除,最后加减,有括号的先算括号里面的.【例2】计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).【互动探索】(引发学生思考)(1)利用平方差公式进行计算即可;(2)先利用完全平方公式和平方差公式进行计算即可;(3)利用乘法分配律进行计算即可.【解答】(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+6 2.(2)原式=2-22+1+22×(3-2)=2-22+1+22=3. (3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 【互动总结】(学生总结,老师点评)利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.活动2 巩固练习(学生独学) 1.下列计算:①(2)2=2;② (-2)2=2;③(-23)2=12;④(2+3)( 2-3)=-1.其中正确的有( D )A .1个B .2个C .3个D .4个2.如果(2+2)2=a +b 2(a ,b 为有理数),则a = 6,b = 4. 3.计算: (1)(6+8)×3; (2)(46-32)÷22; (3)(5+6)(3-5); (4)(10+7)(10-7).解:(1)32+2 6.(2)23-32.(3)13-3 5.(4)3.活动3拓展延伸(学生对学)【例3】先化简,再求值:1x+y+1y+yx x+y,其中x=5+12,y=5-12.【互动探索】化简式子→代入x、y的值进行计算【解答】1x+y+1y+yx(x+y)=xyxy(x+y)+x(x+y)xy(x+y)+y2xy(x+y)=xy+x(x+y)+y2xy(x+y)=(x+y)2xy(x+y)=x+y xy.当x=5+12,y=5-12时,x+y=5,xy=1,所以原式= 5.【互动总结】(学生总结,老师点评)求代数式的值,如果直接代入计算比较繁琐,可以根据式子特点,整体代入进行计算.环节3课堂小结,当堂达标(学生总结,老师点评)二次根式的混合运算同整式的混合运算顺序相同,乘法公式和乘法法则同样适用.练习设计请完成本课时对应训练!。

人教版八年级数学下册 第十六章 二次根式 教学设计及教学反思

人教版八年级数学下册 第十六章 二次根式  教学设计及教学反思

第十六章二次根式16.1二次根式第1课时学习目标【知识与技能】是一个非负数.【过程与方法】通过新旧知识的联系,培养学生观察、演绎能力,发展学生的归纳概括能力.【情感态度】通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法,进而体验成功的喜悦,并通过合作学习增进终身学习的信念.教学重难点0的基本性质【教学难点】经历知识产生的过程,探索新知识.课前准备无教学过程一、情境导入,初步认识问题(1)一个长方形的围栏,长是宽的3倍,面积为39m2,则它的宽为_______m;(2)面积为S的正方形的边长为_______;(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2,如果用含h的式子表示t,则t=.______【教学说明】设置上述问题的目的是让学生感受到研究二次根式是实际的需要,二次根式与实际生活联系紧密.教师提出问题后,让学生独立思考,然后相互交流,获得对二次根式的感性认识.二、思考探究,获取新知思考的式子,这些式子有什么特点?【教学说明】教师提出问题,同学生一道分析,体会这些式子的特征,从而引出二次根式的定义.二次根式:一般地,a≥0)形式的式子称为二次根式,其中”称为二次根号.针对上述定义,教师可强调以下几点:(1a必须是大于等于0的数或式子,否则它就没有意义了;(2,是一个整数,但4仍应称为一个二次根式;(3)当a≥0表示a的算术平方根,而一个非负数的算术平方根必然也是非负0(a≥0)三、典例精析,掌握新知例1 下列各式中,一定是二次根式的有_______分析:判断二次根式应关注两点:(1;(2)被开方数必须是非负数.因而在所给出四个式子中,只有②③中的式子同时符合两个要求,故应填②③.例2 当x为何值时,下列各式在实数范围内有意义.解:(1)中,由x-2≥0,得x≥2;(2)中,由得2≤x≤3;(3)中,由2x-1>0,得x>1/2.【教学说明】对于例3,教师应引导学生分析题目特征,抓住解决问题的突破口,选择中a≥0及a≥0的双重非负性特征.四、运用新知,深化理解1.填空题:(1)形如_______的式子叫二次根式;(2)负数算术平方根________(填“有”或者“没有”)2.当a是怎样的实数时,下列各式在实数范围内有意义:【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.五、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识,你获得哪些解决二次根式问题的方法?你还有哪些问题?请与同伴交流.【教学说明】学生相互交流,回顾知识,反思问题,共同发展提高.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.教师创设情境,给出实例.学生积极主动探索,教师引导与启发,师生互动.体现教师的组织者、引导者与合作者地位.2.注意知识之间的衔接,在温故知新的过程中引导出新知,讲练结合旨在巩固学生对新知的理解.16.1二次根式第2课时学习目标【知识与技能】≥0)2a(a≥0),并利理解并掌握二次根式的性质,正确区分=a(a用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.教学重难点【教学重点】2a=a(a≥0)2a(a≥0)及其应用.【教学难点】用探究的方法探索2a=a(a≥02a(a≥0)的结论.课前准备无教学过程一、情境导入,初步认识试一试:请根据算术平方根填空,猜一猜:通过对上述问题的思考,你能猜想出2a(a≥0)的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:2a=a(a≥0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1a≥0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.(a≥0).最后,教师给出代数式的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1 计算:(1)2;(2)( 2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上1~3题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(2)进行化简.然后再根据x>2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.∵x>2,∴x-2>0,1-2x<0.3.(1)原式=5-5+1=1(2)原式=7+49×2/7=7+14=21(2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.16.2 二次根式的乘除第1课时学习目标【知识与技能】a≥0,b≥0)a≥0,b≥0),并能运用它们进行化简计算.【过程与方法】经历探索二次根式乘法法则的过程,发展观察、归纳猜想、验证等能力.【情感态度】培养学生主动探索知识的能力以及分析问题和解决问题的能力,增强学好数学的信心. 教学重难点【教学重点】a≥0,b≥0)(a≥0,b≥0).【教学难点】a≥0,b≥0).课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你发现什么规律?问题2用你发现的规律填空,并用计算器进行验算.【教学说明】问题1通过被开方数都是完全平方数,让学生容易获取结果,发现规律.通过问题2的验证加深对规律的认识,为本节学习作好铺垫.上述两个问题均应由学生自主完成,相互交流,感受新知.二、思考探究,获取新知选几名学生口述所发现的规律,然后师生共同归纳:一般地,对二次根式的乘法规定:.【教学说明】对上述二次根式的乘法公式,教学时应引导学生关注其后面的附加条件a≥0,b≥0.三、典例精析,掌握新知【教学说明】让学生自主探究,独立完成,加深对二次根式乘法运算和化简方法的理解.教师巡视,对有困难的同学适时给予指导,最后可选派四名学生上黑板完成解答,师生共同评析,巩固所学新知识.【教学说明】在学生探索本题解答过程中,教师可补充说明,在本章中,如果没有特别说明,所有的字母都表示正数.四、运用新知,深化理解4.一个矩形的长和宽分别是10cm和22cm,求这个矩形的面积.5.一个底面为30cm×30cm的长方体容器中装满了水.现将一部分水倒入一个底面为正方形,高为10cm的铁桶中.当铁桶装满水时,容器内水面下降了20cm.铁桶的底面边长是多少厘米?【教学说明】学生自主完成,教师巡视,对学生解题过程中出现的问题及时予以指正,帮助学生加深理解,对优秀者应予以表扬鼓舞,让学生体验成功的快乐.【答案】1.A2.(1)原式五、师生互动,课堂小结通过这节课的学习你有哪些收获和体会?谈谈你的想法,并与同伴相互交流.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.学生积极主动探索,教师引导启发,按照由特殊到一般的规律,降低学生理解的难度.2.二次根式乘法法则的形成过程中,由学生大胆猜测,经过思考、分析、讨论的过程,让学生在交流中体会成功.3.前面的讲练能帮助学生理解二次根式乘法法则,培养学生利用概念解题的能力.16.2 二次根式的乘除第2课时学习目标【知识与技能】a≥0,b>0(a≥0,b>0),能用它们进行化简计算,能将二次根式化为最简二次根式.【过程与方法】通过具体实例的探究活动,发现二次根式除法的规律,归纳出二次根式除法法则及其逆向等式,能用它们进行化简计算.【情感态度】让学生在独立思考的基础上,积极参与数学问题的讨论,勇于发表自己的观点,增强合作交流意识和能力.教学重难点【教学重点】a≥0,b>0(a≥0,b>0)的理解和应用.【教学难点】探索二次根式的除法法则.课前准备无教学过程一、情境导入,初步认识问题1 计算下列各式,观察计算结果,你能发现其中的规律吗?问题2 用你发现的规律填空,并用计算器进行验算:【教学说明】让学生自主探究,感受二次根式除法运算中所蕴含的规律性特征,获得二次根式相除的感性认识,导入新课.二、思考探究,获取新知想一想通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你.师生共同回顾思考,总结出二次根式a≥0,b>0a≥0,b>0)【教学说明】在师生共同探索出上述二次根式的除法公式后,教师应引导学的类似错误.三、典例精析,掌握新知【教学说明】教师给出例题后,让学生独立作业,同时分别选派四名同学上黑板演算.教师巡视,对学生演算过程中的失误及时予以指正,最后师生共同评析,让学生加深对二次根式除法的理解和掌握,并保留每道题的最后结果.议一议观察上述各题的最后结果,它们有什么特点?在学生相互交流过程中可感受到所有结果中的二次根式有如下两个特征:(1)被开方数中不含分母(或分母中不含二次根式);(2)被开方数中不含能开得尽方的因数或因式.我们把具有上述两个条件的二次根式,叫做最简二次根式.小练习:1.下列二次根式中,是最简二次根式的有_______(填序号).【教学说明】感受二次根式乘除在数学问题和实际生活中的应用,体会二次根式的乘除法在二次根式的化简中的重要作用.四、运用新知,深化理解【教学说明】让学生自主完成,加深对已学知识的复习,并检查对新学知识的掌握情况,对学生的困惑,教师应及时予以指导,并进行必要的反思.五、师生互动,课堂小结师生共同回顾:a≥0,b>0a≥0,b>0)及其应用;(1【教学说明】教师应让学生自由交流,总结本节课的知识要点,同时进行自我反思,提高认知,加深对所学知识的理解.课后作业1.布置作业:从教材“习题16.2”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,复习二次根式的乘积,旨在类比学习二次根式的除法,培养学生继续探究的兴趣.2.二次根式除法的学习过程,按照由特殊到一般的规律,由学生经历思考、讨论、分析的过程,让学生大胆猜测,使学生在交流中体会成功.16.3 二次根式的加减第1课时学习目标【知识与技能】会进行二次根式的加减运算,利用二次根式的加减法解决生活实际问题.【过程与方法】经历由实际问题引入数学问题的过程,提高学生的抽象概括能力,进而掌握二次根式的加减运算方法.【情感态度】培养学生认真观察、思考的习惯,锻炼严谨细致、一丝不苟的科学精神.教学重难点【教学重点】二次根式的加减法运算方法.【教学难点】二次根式的加减法的实际应用.课前准备无教学过程一、情境导入,初步认识问题现有一块长7.5dm,宽5dm的木板,能否采用如图所示的方式,在这块木板上截出两个面积分别是8dm2和18dm2的正方形木板?【教学说明】可借助多媒体(或幻灯片)展示木板,尝试截取两个正方形木块,并引导学生思考.解决问题的关键在哪里?如何解决?激发学生的学习兴趣和求知欲望.二、思考探究,获取新知让学生相互讨论,共同探究,寻求解决问题的方案.与此同时,教师可设置如下问题帮助学生进行理解和分析:1.两个正方形木块的边长分别是多少?2.最大正方形木板的边长与原长方形木板的宽5dm的大小如何?3.两个正方形木板的边长之和与长方形木板的长7.5dm的大小关系如何?你认为用什么办法来得出结论的?4.谈谈你获得结论的过程中的想法,你有哪些新的认识?在学生充分交流,二次根式的和,我们可以这样来计算:【教学说明】本环节教师要放手让学生自主探究,自主发现问题,并尝试解决问题,并能总结规律,形成认知.同时,教师应关注学生的完成情况,能否正确进行二次根式的化简,能否运用分配律将二次根式合并.【归纳结论】二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.三、典例精析,掌握新知【教学说明】以上两例,应让学生先独立完成,并分别选派两名中等成绩同学上黑板进行演算.教师巡视,了解全班学生的掌握情况,并对有困难的同学及时予以点拨,帮助他们加深对新知的理解.最后,师生共同评析黑板上的作业,教师还可适时将巡视中发现的问题展示给全班同学,达到理解新知的目的.例3 如图,实验中学计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池,设计者需要考虑有关的周长,如果小喷水池的面积为8m2,花坛的绿化面积为10m2,则花坛的外周与小喷水池的周长一共是多少米?分析:利用正方形的面积公式求出边长,再根据周长公式即可得解..【教学说明】本例展示了二次根式的加减在实际问题中的应用,在实际教学过程中,教师应引导学生进行合理分析,理清解题思路与步骤,再让学生自主完成解答过程.最后教师可以给出示范性解题过程,也可以用幻灯片展示学生的优秀作业及有代表性问题作业,让学生通过观察与反思,加深对知识的理解.四、运用新知,深化理解1.下列计算是否正确?为什么?5.先化简,再求值:【教学说明】学生自主完成上面前3个题,教师巡视,后两个题稍难,教师适当予以点拨.【答案】1.(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.2.①和④;五、师生互动,课堂小结师生共同回顾本节主要知识点及需要注意的问题.(1)知识要点:二次根式加减的一般思路,①不是最简二次根式的,应化成最简二次根式;②相同的二次根式一定要进行合并.(2)需注意的问题:①应能将化简的二次根式化简后再进行计算,不要出是最后结果的类似错误;②相同的二次根式合并时,只需把它们的系数相加减,根式不变,不相同的二次根式不能进行加减,防止出现=(3-2))的错误.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.创设情境,给出实例.由学生主动参与,经过思考、讨论、分析的过程,老师加以启发和引导,类比得出二次根式的加减运算法则.2.三个例题,旨在帮助学生理解二次根式的加减运算.尤其是例2,要按照两个步骤进行计算,培养了学生利用概念、法则进行计算和化简的严谨态度和科学精神,此外,例3还展示了二次根式的加减在实际问题中的应用.16.3 二次根式的加减第2课时学习目标【知识与技能】1.会进行二次根式的乘、除、加、减混合运算;2.能用多项式的乘法公式进行二次根式的化简计算.【过程与方法】通过具体问题进一步体会有理数运算、二次根式的运算以及整式的运算之间的联系,掌握二次根式混合运算方法.【情感态度】通过多项式乘除法则及乘法公式在二次根式运算中的应用,体验迁移、化归思想,使学生进一步形成符号感,提高数学应用意识.教学重难点【教学重点】二次根式的混合运算.【教学难点】多项式的乘除法则及乘法公式在二次根式运算中的应用方法.课前准备无教学过程一、情境导入,初步认识问题我们知道:(x+y)·xy=x·xy+y·xy=x2y+xy2,(2x2y+3xy2)÷xy=2x2y÷xy+3xy2÷xy=2x+3y,(x+y)(x-y)=x2-y2及(x+y)2=x2+2xy+y2,……试问:如果上述各式中的x,y分别代表着一个二次根式,我们会有哪些新的收获呢?【教学说明】引入上述关于多项式的乘除算式及乘法公式,进而提出新的问题的目的在于暗示二次根式的运算与多项式的运算之间的联系,激发学生的求知欲望和探究意识. 二、思考探究,获取新知探究1由(x+y)·z=x·z+y·z=xz+yz,你能求出的值吗?你是怎样做的?探究2由,你能求出的值吗?由此你有何发现?类似地,请解决以下几个小题.【教学说明】让全班同学共同参与探究,相互交流,在类比的过程中尝试给出问题的答案.教师巡视,予以点拨,肯定学生的成绩,并引导学生完善对二次根式混合运算的初步认识,最后师生共同给出问题的结果.【归纳结论】1.二次根式的混合运算与整式的运算方法完全相同,即先算乘方,再算乘除,最后算加减,有括号先算括号.2.在二次根式的运算中,多项式的乘法法则和乘法公式仍然适用.三、典例精析,掌握新知例1 计算下列各题:分析:对算式的结构进行观察分析,运用二次根式加、减、乘、除的法则进行运算,需注意乘法公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2的灵活运用.解:(1)原式=()÷=(÷÷;例2 已知,,求下列代数式的值.(1)x2+2xy+y2;(2)x2-y2.分析:由条件易知x-y=2,而需求代数式中的(1)可化为(x+y)2,(2)可化为(x+y)(x-y),因而整体代入更简洁些,当然直接代入求值也是可行的,只不过要复杂多了.解:∵,,∴x-y=2.(1)原式=(x+y)2=()2=12;(2)原式=(x+y)·(x-y)×【教学说明】第1题可让学生自主完成,并选派三名代表上黑板进行演算.教师巡视,了解学生对二次根式混合运算的掌握情况,及时予以帮助,帮助学生更好地掌握新知识.最后全班同学分析三位代表的解答过程及结果,深化理解.第2题仍可让学生先自主探究,如果大部分学生选用直接代入求值时,教师仍应肯定他们的成绩,但需展示本例的最佳解题思路,达到融会贯通的目的.四、运用新知,深化理解3.(1)若,,求a2b-ab2的值;(2)若-1,求x2+2x+2011的值.【教学说明】第1、2两题可让学生自主完成,然后相互交流,教师根据反馈情况,及时查漏补缺,优化课堂教学.第3题即可让学生尝试解决,也可由师生共同分析,形成解题思路后再由学生自主完善解题过程.3.(1)由,a·b=1得a2b-ab2=ab(a-b)=1×;(2)∵,∴,两边平方,得x2+2x+1=2.∴x2+2x=1.故x2+2x+2011=1+2011=2012.五、师生互动,课堂小结通过这节课的学习,你有哪些收获?你还有哪些疑惑?谈谈你的看法,并与同伴交流.【教学说明】教师以设问的形式和学生一道回顾本节主要知识及所涉及到的解题方法、技巧和数学思想方法,既是对知识的一次梳理,也是一次必要的提炼升华,完善认知.课后作业1.布置作业:从教材“习题16.3”中选取.2.完成练习册中本课时练习.教学反思1.情境引入,复习整式运算的知识,旨在迁移到利用乘法公式进行含二次根式式子的运算,培养学生继续探究的兴趣.2.例题的设计,旨在帮助学生理解乘法公式在二次根式运算中的应用.。

人教版八年级数学下册第16章二次根式(教案)一

人教版八年级数学下册第16章二次根式(教案)一
-二次根式的估算:估算二次根式的值需要学生具备一定的数感和近似计算能力,这对于一些学生来说是一个边长为\(\sqrt{4}\)的正方形和一个边长为\(\sqrt{-4}\)的虚构图形,通过比较正方形的实际存在来说明二次根式非负性的重要性。
-教学难点2举例:对比\(\sqrt{8}\)和\(\sqrt{6}\),解释为什么\(\sqrt{8}\)可以化简为\(2\sqrt{2}\),因为8是2的平方的倍数,而6则不是任何整数的平方的倍数,因此不能化简。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的概念。二次根式是形如√a(a≥0)的表达式,它是表示非负数平方根的一种数学表达方式,对于解决实际问题和某些数学问题具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次根式在几何中的应用,例如计算非整数边长的正方形面积。
三、教学难点与重点
1.教学重点
-二次根式的概念:强调根号下的数必须是非负数,以及二次根式的书写规范。
-二次根式的性质:掌握二次根式的非负性、乘除法运算法则,如\(\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}\)。
-二次根式的化简:学会将二次根式化简至最简形式,如\(\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}\)。
3.增强学生数学建模素养,培养学生运用二次根式解决实际问题的能力,如对二次根式的估算,使学生能够将数学知识应用于生活实际。
4.培养学生直观想象能力,通过二次根式的图形表示,使学生能够形象地理解二次根式的概念及其运算规律,提高数学思维品质。
5.培养学生数学抽象素养,使学生能够从具体的二次根式实例中抽象出一般性规律,形成数学的一般概念。

人教版八年级下册第十六章二次根式16.3二次根式的加减教案

人教版八年级下册第十六章二次根式16.3二次根式的加减教案
-通过投影或黑板,记录并讨论各小组的发现和结论。
7.总结回顾(用时5分钟)
-点评学生在活动中的表现,强调二次根式加减法的核心知识点。
-回答学生疑问,巩固本节课的学习内容。
五、教学反思
今天我们在课堂上学习了二次根式的加减法,整体来看,学生对这部分知识的掌握情况还是不错的。但在教学过程中,我也注意到了一些问题。
5.培养学生问题解决能力,使学生能够运用所学知识分析并解决生活中的二次根式问题,增强数学实践素养。
三、教学难点与重点
1.教学重点
本节课的核心内容如下:
(1)掌握二次根式的加减法运算法则,能够熟练进行相关运算。
(2)了解同类二次根式的概念,并能够判断和合并同类二次根式。
(3)运用二次根式的加减法解决实际问题,提高数学应用能力。
最后,我觉得在课堂教学过程中,要更加注重因材施教,关注每一个学生的学习情况。对于学习有困难的学生,要给予更多的关心和指导,帮助他们克服困难,提高学习兴趣。
-难点2:面对不同根式的二次根式,如√3与√2,需要引导学生如何通过乘以适当的因数将其化为同类,例如:√3 × √2与√2 × √2,从而完成加减运算。
-难点3:在解决实际问题时,如计算不规则图形的面积,学生需要从问题中提取关键信息,建立数学模型,并运用二次根式的加减法求解。
教学过程中,教师应针对这些难点,采取适当的策略和方法,如使用直观图形、举例说明、分步骤引导等,帮助学生理解并掌握这些难点内容,确保学生能够透彻理解并运用所学知识。
4.掌握同类二次根式的概念,能够判断并合并同类二次根式。
具体内容包括:
(1)例题讲解:讲解二次根式加减法运算的步骤及注意事项。
(2)课堂练习:让学生独立完成教材16.3节的练习题,巩固所学知识。

【人教版】初中数学八下数学第16章《二次根式》全章教学案(含解析)

【人教版】初中数学八下数学第16章《二次根式》全章教学案(含解析)

第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握·=(a≥0,b≥0),=·(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.16.1二次根式2课时16.2二次根式的乘除2课时16.3二次根式的加减2课时单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念思路一[过渡语](针对导入二)让我们一起来看下面的问题:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0. [设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.2.例题讲解[过渡语]二次根式的定义怎样理解?让我们一起来学习几个例题.下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3×,-表示-×,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.师生共同回顾本节课所学主要内容:知识要点关键点注意事项二次根式的概念形如≥0(a≥0)的式子叫做二次根式,其中被开方数是a被开方数也可以是含有字母的单项式、多项式、分式等二次根式有意义的条件被开方数必须是非负数求解二次根式中字母的取值范围,要注意根号下的式子整体不小于零1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014·南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数.(2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数.(3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数.(4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015·遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x时,+在实数范围内有意义.6.(2015·攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=·,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a·2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3 cm,宽取2 cm.2.解:(1)当a-1≥0,即a≥1时,有意义.(2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义.(4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2×(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2×(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质. [设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一1.二次根式的性质1:()2=a(a≥0)[过渡语]我们先来探究性质1:()2=a(a≥0).提问:你能解释下列式子的含义吗?()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2.是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22×()2=4×5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4×3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2.二次根式的性质2:=a(a≥0)[过渡语]我们再来探究一下性质2:=a(a≥0).提问:你能解释下列式子的含义吗?,,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=.(2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2×()2=25×2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22×()2=44,(3)2=32×()2=45,又∵44<45,且2>0,3>0,∴2<3.师生共同回顾本节课所学主要内容:知识要点关键点注意事项()2=a(a≥0)任何非负数的算术平方根的平方,其结果仍然是它本身被开方数a是非负数=|a|= 任何实数的平方的算术平方根是它的绝对值底数a可以是任何实数代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3.+的值是.解析:+=2+2=4.故填4.4.(1)当x时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9.(2)(2)2=22×()2=12.(3)=(-2)2×=2.(4)(-)2=(-1)2×()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015·杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n3+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数m的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1).(2)宽:3;长:5.8.解:(1)=.(2)(3)2=32×()2=18.(3)=(-2)2×=.(4)-=-=-3π.(5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3.(2)(3)2=32×()2=9×2=18.2.解:(1)=0.3.(2)=.(3)-=-π.(4)=10-1=.。

最新人教版数学八年级下册第十六章---二次根式教案(全章)

最新人教版数学八年级下册第十六章---二次根式教案(全章)

第十六章—二次根式一、二次根式1.概念:一般的,形如√a(a≥0)的式子叫做二次根式。

二次根式应满足两个条件,即含有二次根号且被开方数大于或等于0.注意:二次根式√a的被开方数a可以是数,也可以是式子,单笔与满足a≥0。

2.性质:性质:2|a|.例题:1.当x是怎样的实数时,√x−2在实数范围内有意义?2.当a是怎样的实数时,下列各式在实数范围内有意义?(1)√a−1(2)√2a+3;(3)√−a(4)√5−a3.计算(1)(√)2(2)(2√)2(3)(4)2(4)(2)2(5)22(6)21.0(7)26(8)23二、二次根式的乘除1.二次根式的乘法(1)法则:√ab =√a.√b(a≥0, b≥0)注意:a,b可以是一个具体的数,也可以是含字母的代数式。

(2)拓展:二次根式的乘法法则可以推广到多个二次根式相乘,即√a.√b.√c =√abc(a≥0, b≥0,c≥0)。

(3)误区警示:二次根式相乘的结果要化简成最简的二次根式或整式。

(4)最简二次根式:A.定义:一般的,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式叫最简二次根式。

B.识别一个二次根式是否是最简二次根式,主要依据两点:○1被开方数中的因数是整数,因式是整式;○2被开方数中不含能开的尽方的因数或因式。

例题:1.计算.(1)3×5(2)√1×√(3)√×√73(4)√16×81(5)√4a2b3(6)√×√(7)√3×√12(8)√4×√6(9)√5×√6(10)√288 ×√172 (11)√3 ×√6 (12)18×21(13)25×51 (14)16×41 (15)18×91 2.化简.(1)√8 (2)√12 (3)√18(4)√20 (5)√24 (6)√28(7)√32 (8)√36 (9)√40(10)√42 (11)√44 (12)√(13)√48 (14)√50 (15)√90(16)√108 (17)√112 (18)√120(19)√(20)√ (21)√(22)√160 (23)√225 (24)√180(25)√200 (26)√144 (27)√2.二次根式的除法 (1)法则:b aba(a ≥0, b ≥0),相反√a b =√a √b (a ≥0, b ≥0)也成立。

人教版八年级数学下册第16章 《二次根式》全章教学设计

人教版八年级数学下册第16章 《二次根式》全章教学设计

第16章《二次根式》全章教学设计第1课时二次根式的概念1.能用二次根式表示实际问题中的数量及数量关系,体会研究二次根式的必要性;(难点)2.能根据算术平方根的意义了解二次根式的概念及性质,会求二次根式中被开方数中字母的取值范围.(重点)一、情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为________,面积为S的正方形的边长为________.(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为________m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=______.问题2:上面得到的式子3,S,65,h5分别表示什么意义?它们有什么共同特征?二、合作探究探究点一:二次根式的定义下列各式中,哪些是二次根式,哪些不是二次根式?(1)11;(2)-5;(3)(-7)2;(4)313;(5)15-16;(6)3-x(x≤3);(7)-x(x≥0);(8)(a-1)2;(9)-x2-5;(10)(a-b)2(ab≥0).解析:要判断一个根式是不是二次根式,一是看根指数是不是2,二是看被开方数是不是非负数.解:因为11,(-7)2,15-16=130,3-x(x≤3),(a-1)2,(a-b)2(ab≥0)中的根指数都是2,且被开方数为非负数,所以都是二次根式.313的根指数不是2,-5,-x(x≥0),-x2-5的被开方数小于0,所以不是二次根式.方法总结:判断一个式子是不是二次根式,要看所给的式子是否具备以下条件:(1)带二次根号“”;(2)被开方数是非负数.探究点二:二次根式有意义的条件【类型一】根据二次根式有意义求字母的取值范围求使下列式子有意义的x 的取值范围.(1)14-3x;(2)3-x x -2;(3)x +5x .解析:根据二次根式的性质和分式的意义,被开方数大于或等于0且分母不等于0,列不等式(组)求解.解:(1)由题意得4-3x >0,解得x <43.当x <43时,14-3x有意义;(2)由题意得⎩⎪⎨⎪⎧3-x ≥0,x -2≠0,解得x ≤3且x ≠2.当x ≤3且x ≠2时,3-xx -2有意义;(3)由题意得⎩⎪⎨⎪⎧x +5≥0,x ≠0,解得x ≥-5且x ≠0.当x ≥-5且x ≠0时,x +5x 有意义.方法总结:含二次根式的式子有意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是各个二次根式中的被开方数都必须是非负数;(2)如果所给式子中含有分母,则除了保证二次根式中的被开方数为非负数外,还必须保证分母不为零.【类型二】 利用二次根式的非负性求解(1)已知a 、b 满足2a +8+|b -3|=0,解关于x 的方程(a +2)x +b 2=a -1;(2)已知x 、y 都是实数,且y =x -3+3-x +4,求y x 的平方根.解析:(1)根据二次根式的非负性和绝对值的非负性求解即可;(2)根据二次根式的非负性即可求得x 的值,进而求得y 的值,进而可求出y x 的平方根.解:(1)根据题意得⎩⎨⎧2a +8=0,b -3=0,解得⎩⎨⎧a =-4,b = 3.则(a +2)x +b 2=a -1,即-2x +3=-5,解得x =4;(2)根据题意得⎩⎪⎨⎪⎧x -3≥0,3-x ≥0,解得x =3.则y =4,故y x =43=64,±64=±8,∴y x 的平方根为±8.方法总结:二次根式和绝对值都具有非负性,几个非负数的和为0,这几个非负数都为0.探究点三:和二次根式有关的规律探究性问题先观察下列等式,再回答下列问题.①1+112+122=1+11-11+1=112; ②1+122+132=1+12-12+1=116; ③1+132+142=1+13-13+1=1112. (1)请你根据上面三个等式提供的信息,写出1+142+152的结果; (2)请你按照上面各等式反映的规律,试写出用 含n 的式子表示的等式(n 为正整数).解析:(1)从三个等式中可以发现,等号右边第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积;(2)根据(1)找的规律写出表示这个规律的式子.解:(1)1+142+152=1+14-14+1=1120; (2)1+1n 2+1(n +1)2=1+1n -1n +1=11n (n +1)(n 为正整数). 方法总结:解答规律探究性问题,都要通过仔细观察找出字母和数之间的关系,通过阅读找出题目隐含条件并用关系式表示出来.三、板书设计1.二次根式的定义一般地,我们把形如a (a ≥0)的式子叫做二次根式. 2.二次根式有意义的条件被开方数(式)为非负数;a 有意义⇔a ≥0.通过将新知识与旧知识进行联系与对比,随后由学生熟悉的实际问题出发,用已有的知识进行探究,由此引入二次根式.在教学过程中让学生感受到研究二次根式是实际的需要,体会到数学与实际生活间的紧密联系,以此充分激发学生学习的兴趣.第2课时二次根式的性质1.经历二次根式的性质的发现过程,体验归纳、猜想的思想方法;(重点) 2.了解并掌握二次根式的性质,会运用其进行有关计算.(重点,难点)一、情境导入a2等于什么?我们不妨取a的一些值,如2,-2,3,-3,…分别计算出对应的a2的值,看看有什么规律.22=4=2;(-2)2=4=2;32=9=3;(-3)2=9=3;…你能概括一下a2的值吗?二、合作探究探究点一:二次根式的性质【类型一】化简:(1)(5)2;(2)52;(3)(-5)2;(4)(-5)2.解析:根据二次根式的性质进行计算即可.解:(1)(5)2=5;(2)52=5;(3)(-5)2=5;(4)(-5)2=5.方法总结:利用a2=|a|进行计算与化简,幂的运算法则仍然适用,同时要注意二次根式的被开方数要为非负数.【类型二】(a)2=a(a≥0)的有关应用在实数范围内分解因式.(1)a2-13;(2)4a2-5;(3)x4-4x2+4.解析:由于任意一个非负数都可以写成一个数的平方的形式,利用这个即可将以上几个式子在实数范围内分解因式.解:(1)a2-13=a2-(13)2=(a+13)(a-13);(2)4a2-5=(2a)2-(5)2=(2a+5)(2a-5);(3)x4-4x2+4=(x2-2)2=[(x+2)(x-2)]2=(x+2)2(x-2)2.方法总结:一些式子在有理数的范围内无法分解因式,可是在实数范围内就可以继续分解因式.这就需要把一个非负数表示成平方的形式.探究点二:二次根式性质的综合应用【类型一】结合数轴利用二次根式的性质求值或化简已知实数a,b在数轴上的位置如图所示,化简:(a+1)2+2(b-1)2-|a-b|.解析:根据数轴确定a和b的取值范围,进而确定a+1、b-1和a-b的取值范围,再根据二次根式的性质和绝对值的意义化简求解.解:从数轴上a,b的位置关系可知-2<a<-1,1<b<2,且b>a,故a+1<0,b -1>0,a-b<0.原式=|a+1|+2|b-1|-|a-b|=-(a+1)+2(b-1)+(a-b)=b-3.方法总结:结合数轴利用二次根式的性质求值或化简,解题的关键是根据数轴判断字母的取值范围和熟练运用二次根式的性质.【类型二】二次根式的化简与三角形三边关系的综合已知a、b、c是△ABC的三边长,化简(a+b+c)2-(b+c-a)2+(c-b-a)2.解析:根据三角形的三边关系得出b+c>a,b+a>c.根据二次根式的性质得出含有绝对值的式子,最后去绝对值符号合并即可.解:∵a、b、c是△ABC的三边长,∴b+c>a,b+a>c,∴原式=|a+b+c|-|b+c-a|+|c-b-a|=a+b+c-(b+c-a)+(b+a-c)=a+b+c-b-c+a+b+a-c=3a+b-c.方法总结:解答本题的关键是根据三角形的三边关系得出不等关系,再进行变换后,结合二次根式的性质进行化简.【类型三】利用分类讨论的思想对二次根式进行化简已知x为实数时,化简x2-2x+1+x2.解析:根据a2=|a|,结合绝对值的性质,将x的取值范围分段进行讨论解答.解:x2-2x+1+x2=(x-1)2+x2=|x-1|+|x|.当x≤0时,x-1<0,原式=1-x+(-x)=1-2x;当0<x≤1时,x-1≤0,原式=1-x+x=1;当x>1时,x-1>0,原式=x-1+x=2x-1.方法总结:利用二次根式的性质进行化简时,要结合具体问题,先确定出被开方数的正负,对于式子a2=|a|,当a的符号无法判断时,就需要分类讨论,分类时要做到不重不漏.【类型四】二次根式的规律探究性问题细心观察,认真分析下列各式,然后解答问题.(1)2+1=2,S1=1 2,(2)2+1=3,S2=2 2,(3)2+1=4,S3=3 2.(1)请用含n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S21+S22+S23+…+S210的值.解析:利用直角三角形的面积公式,观察上述结论,会发现第n个三角形的一直角边长就是n,另一条直角边长为1,然后利用面积公式可得.解:(1)(n)2+1=n+1,S n=n2(n是正整数);(2)∵OA 1=1,OA 2=2,OA 3=3,…∴OA 10=10;(3)S 21+S 22+S 23+…+S 210=⎝⎛⎭⎫122+⎝⎛⎭⎫222+⎝⎛⎭⎫322+…+⎝⎛⎭⎫1022=14(1+2+3+…+10)=554. 方法总结:解题时通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想.探究点三:代数式的定义及简单应用按照下列程序计算,表格内应输出的代数式是____________.n →立方→+n →÷n →-n →答案解析:根据程序所给的运算,用代数式表示即可,根据程序所给的运算可得输出的代数式为n 3+n n -n .故答案为n 3+nn-n .方法总结:根据实际问题列代数式的一般步骤:(1)认真审题,对语言或图形中所代表的意思进行仔细辨析;(2)分清语言和图形表述中各种数量的关系;(3)根据各数量间的运算关系及运算顺序写出代数式.三、板书设计 1.二次根式的性质1:(a )2=a (a ≥0); 2.二次根式的性质2:a 2=a (a ≥0). 3.代数式的定义用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式.新的教学理念要求教师在课堂教学中注意引导学生进行探究学习,在课堂教学中,对学生探索求知作出了引导,并且鼓励学生自由发言,但在师生互动方面做得还不够,小组间的合作不够融洽,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的学习和生活.16.2二次根式的乘除第1课时二次根式的乘法1.掌握二次根式乘法法则和积的算术平方根的性质;(重点) 2.会用积的算术平方根的性质对二次根式进行化简.(难点)一、情境导入 计算:(1)4×25与4×25; (2)16×9与16×9. 思考:对于2×3与2×3呢?从计算的结果我们发现2×3=2×3,这是什么道理呢? 二、合作探究探究点一:二次根式的乘法【类型一】 二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( ) A .x ≤2 B .x ≥-1C .-1≤x ≤2D .-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x ≥0,解得-1≤x ≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0),必须注意被开方数均是非负数这一条件.【类型二】 二次根式的乘法运算计算:(1)3×5;(2)14×64; (3)627×(-33); (4)3418ab ·⎝⎛⎭⎫-2a6b 2a . 解析:有理式的乘法运算律及乘法公式对二次根式同样适用,计算时注意最后结果要化为最简形式.解:(1)3×5=3×5=15; (2)14×64=14×64=16=4; (3)627×(-33)=-1827×3=-1881=-18×9=-162; (4)3418ab ·⎝⎛⎭⎫-2a6b 2a =-34·2a ·18ab ·6b 2a =-32a ·36×3b 3=-32a ·6b 3b =-9b a 3b .方法总结:在运算过程中要注意根号前的因数是带分数时,必须化成假分数,如果被开方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.探究点二:积的算术平方根的性质化简:(1)(-36)×16×(-9);(2)362+482;(3)x3+6x2y+9xy2.解析:主要运用公式ab=a·b(a≥0,b≥0)和a2=a(a≥0)对二次根式进行化简.解:(1)(-36)×16×(-9)=36×16×9=62×42×32=62×42×32=6×4×3=72;(2)362+482=(12×3)2+(12×4)2=122×(32+42)=122×52=12×5=60;(3)x3+6x2y+9xy2=x(x+3y)2=(x+3y)2·x=|x+3y|x.方法总结:利用积的算术平方根的性质可以对二次根式进行化简.探究点三:二次根式乘法的综合应用小明的爸爸做了一个长为588πcm,宽为48πcm的矩形木相框,还想做一个与它面积相等的圆形木相框,请你帮他计算一下这个圆的半径(结果保留根号).解析:根据矩形的面积公式、圆的面积公式,构造等式进行计算.解:设圆的半径为r cm.因为矩形木相框的面积为588π×48π=168π(cm2),所以πr2=168π,r=242cm(r=-242舍去).答:这个圆的半径是242cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想.三、板书设计1.二次根式的乘法法则:a·b=ab(a≥0,b≥0)2.积的算术平方根:ab=a·b(a≥0,b≥0)在教学安排上,体现由具体到抽象的认识过程.对于二次根式的乘法法则的推导,先利用几个二次根式的具体计算,归纳出二次根式的乘法运算法则.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,这样安排有助于学生缜密思考和严谨表达,更有助于学生合作精神的培养.第2课时二次根式的除法1.掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算;(重点) 2.能综合运用已学性质进行二次根式的化简与运算.(难点)一、情境导入计算下列各题,观察有什么规律? (1)3649=________;3649=________. (2)916=________;916=________. 3649________3649;916________916. 二、合作探究探究点一:二次根式的除法【类型一】 二次根式的除法运算计算:(1)0.760.19;(2)-123÷554; (3)6a 2b 2ab;(4)5÷⎝⎛⎭⎫-5145. 解析:本题主要运用二次根式的除法法则来进行计算,若被开方数是分数,则被开方数相除时,可先用除以一个数等于乘这个数的倒数的方法进行计算,再进行约分.解:(1)0.760.19=0.760.19=4=2; (2)-123÷554=-123÷554=-53×545=-18=-32; (3)6a 2b 2ab=6a 2b2ab=3a ; (4)5÷⎝⎛⎭⎫-5145=-5÷595=-5×15×59=-15×53=-13. 方法总结:利用二次根式的除法法则进行计算时,可以用“除以一个不为零的数等于乘这个数的倒数”进行约分化简.【类型二】 二次根式的乘除混合运算计算:(1)945÷3212×32223; (2)a 2·ab ·bb a÷9b 2a. 解析:先把系数进行乘除运算,再根据二次根式的乘除法则运算. 解:(1)原式=9×13×32×45×25×83=183;(2)原式=a 2·b ·ab ·b a ·a 9b 2=a 2b3a . 方法总结:二次根式乘除混合运算的方法与整式乘除混合运算的方法相同,在运算时要注意运算符号和运算顺序,若被开方数是带分数,要先将其化为假分数.探究点二:商的算术平方根的性质【类型一】 利用商的算术平方根的性质确定字母的取值范围若a 2-a =a 2-a,则a 的取值范围是( )A .a <2B .a ≤2C .0≤a <2D .a ≥0解析:根据题意得⎩⎪⎨⎪⎧a ≥0,2-a >0,解得0≤a <2.故选C.方法总结:运用商的算术平方根的性质:b a =ba(a >0,b ≥0),必须注意被开方数是非负数且分母不等于零这一条件.【类型二】 利用商的算术平方根的性质化简二次根式化简:(1)179; (2)3c 34a 4b 2(a >0,b >0,c >0). 解析:运用商的算术平方根的性质,用分子的算术平方根除以分母的算术平方根. 解:(1)179=169=169=43; (2)3c 34a 4b 2=3c 34a 4b 2=c2a 2b3c . 方法总结:被开方数中的带分数要化为假分数,被开方数中的分母要化去,即被开方数不含分母,从而化为最简二次根式.探究点三:最简二次根式在下列各式中,哪些是最简二次根式?哪些不是?并说明理由.(1)45;(2)13;(3)52;(4)0.5;(5)145.解析:根据满足最简二次根式的两个条件判断即可.解:(1)45=35,被开方数含有开得尽方的因数,因此不是最简二次根式;(2)13=33,被开方数中含有分母,因此它不是最简二次根式;(3)52,被开方数不含分母,且被开方数不含能开得尽方的因数或因式,因此它是最简二次根式;(4)0.5=12=22,被开方数含有小数,因此不是最简二次根式;(5)145=95=355,被开方数中含有分母,因此它不是最简二次根式.方法总结:解决此题的关键是掌握最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.探究点四:二次根式除法的综合运用座钟的摆针摆动一个来回所需的时间称为一个周期,其周期计算公式为T=2πlg,其中T表示周期(单位:秒),l表示摆长(单位:米),g=9.8米/秒2,假若一台座钟摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟大约发出了多少次滴答声(π≈3.14)?解析:由给出的公式代入数据计算即可.要先求出这个钟摆的周期,然后利用时间除周期得到次数.解:∵T=2π0.59.8≈1.42,60T=601.42≈42(次),∴在1分钟内,该座钟大约发出了42次滴答声.方法总结:解决本题的关键是正确运用公式.用二次根式的除法进行运算,解这类问题时要注意代入数据的单位是否统一.三、板书设计1.二次根式的除法运算2.商的算术平方根3.最简二次根式被开方数不含分母;被开方数中不含能开得尽方的因数或因式.在教学中应注重积和商的互相转换,让学生通过具体实例再结合积的算术平方根的性质,对比、归纳得到商的算术平方根的性质.在此过程中应给予适当的指导,可提出问题让学生有一定的探索方向.在设计课堂教学内容时,以提问的方式引出本节课要解决的问题,让学生自主探究,在探究过程中观察知识产生发展的全过程,从而让学生的学习情感和学习品质得到升华,学生的创新精神得到发展.16.3二次根式的加减第1课时二次根式的加减1.会将二次根式化为最简二次根式,掌握二次根式加减法的运算;(重点)2.熟练进行二次根式的加减运算,并运用其解决问题.(难点)一、情境导入小明家的客厅是长7.5m,宽5m的长方形,他要在客厅中截出两个面积分别为8m2和18m2的正方形铺不同颜色的地砖,问能否截出?二、合作探究探究点一:被开方数相同的最简二次根式已知最简二次根式2a+b与a+b3a-4能够合并同类项,求a+b的值.解析:利用最简二次根式的概念求出a,b的值,再代入a+b求解即可.解:∵最简二次根式2a+b与a+b3a-4能够合并同类项,∴a+b=2,2a+b=3a-4,解得a=3,b=-1,∴a+b=3+(-1)=2.方法总结:根据同类二次根式的概念求待定字母的值时,应该根据同类二次根式的概念建立方程或方程组求解.探究点二:二次根式的加减【类型一】二次根式的加减运算计算:12-13-(2)2+|2-3|.解析:二次根式的加减运算应先化简,再合并同类二次根式.解:原式=23-33-2+2-3=⎝⎛⎭⎫2-13-13=233. 方法总结:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并时系数相加减,根式不变.【类型二】 二次根式的化简求值先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =2+3,b =2- 3.解析:先将原式化为最简形式,再将a 与b 的值代入计算即可求出.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b .当a=2+3,b =2-3时,原式=2+3+2-32+3-2+3=423=233.方法总结:化简求值时一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,缺少必要的步骤易造成错解.【类型三】 二次根式加减运算在实际生活中的应用母亲节快到了,为了表示对妈妈的感恩,小号同学特地做了两张大小不同的正方形的壁画送给妈妈,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用金色细彩带把壁画的边镶上会更漂亮,他手上现有1.2m 长的金色细彩带,请你帮他算一算,他的金色细彩带够用吗?如果不够,还需买多长的金色细彩带(2≈1.414,结果保留整数)?解析:先求出每张正方形壁画的边长,再根据正方形的周长公式求所需金色细彩带的长.解:镶壁画所用的金色细彩带的长为:4×(800+450)=4×(202+152)=1402≈197.96(cm).因为 1.2m=120cm<197.96cm,所以小号的金色细彩带不够用.197.96-120=77.96≈78(cm),即还需买78cm的金色细彩带.方法总结:利用二次根式来解决生活中的问题,应认真分析题意,注意计算的正确性与结果的要求.三、板书设计1.被开方数相同的最简二次根式2.二次根式的加减一般地,二次根式加减时,可以先将二次根式化简成最简二次根式,再将被开方数相同的二次根式进行合并.在授课过程中,要以学生为主体,进行探究性学习,让学生自己发现规律,得出结论.在例题的选择上可由简到难,符合学生的认知规律,便于学生掌握知识.在得到定义、法则的过程中,让学生经历发现、思考、探究的过程,体会学习知识的成功与快乐.第2课时二次根式的混合运算1.会熟练地进行二次根式的加减乘除混合运算,进一步提高运算能力;(重点) 2.正确地运用二次根式加减乘除法则及运算律进行运算,并把结果化简.(难点)一、情境导入如果梯形的上、下底边长分别为22 cm,43cm,高为6cm,那么它的面积是多少?毛毛是这样算的:梯形的面积:12(22+43)×6=(2+23)×6=2×6+23×6=2×6+218=23+62(cm2).他的做法正确吗?二、合作探究探究点一:二次根式的混合运算【类型一】二次根式的四则运算计算:(1)12223×9145÷35;(2)⎝⎛⎭⎫312-213+48÷23+⎝⎛⎭⎫132;(3)2-(3+2)÷3.解析:先把各二次根式化为最简二次根式,再把括号内合并后进行二次根式的乘法运算,然后进行加法运算.解:(1)原式=12×9×83×145×53=12×9×229=2;(2)原式=⎝⎛⎭⎫63-233+43÷23+13=2833×123+13=143+13=5;(3)原式=2-(3+2)÷13=2-3+23=2-1-233.方法总结:二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.探究点二:利用乘法公式及运算律进行二次根式混合运算计算:(1)(2+3-6)(2-3+6); (2)(2-1)2+22(3-2)(3+2); (3)⎝⎛⎭⎫6-1332-3424×(-26).解析:(1)利用平方差公式展开然后合并即可;(2)先利用完全平方公式和平方差公式展开然后合并即可;(3)利用乘法分配律进行计算即可.解:(1)原式=[2+(3-6)][2-(3-6)]=(2)2-(3-6)2=2-(9-218)=2-9+62=-7+62;(2)原式=2-22+1+22×(3-2)=2-22+1+22=3;(3)原式=⎝⎛⎭⎫6-66-326×(-26)=-236×(-26)=8. 方法总结:利用乘法公式进行二次根式混合运算的关键是熟记常见的乘法公式;在二次根式的混合运算中,整式乘法的运算律同样适用.探究点三:二次根式混合运算的综合运用【类型一】 与二次根式的混合运算有关的新定义题型对于任意的正数m 、n 定义运算※为m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(3※2)×(8※12)的结果为( )A .2-46B .2C .25D .20解析:∵3>2,∴3※2=3- 2.∵8<12,∴8※12=8+12=2(2+3),∴(3※2)×(8※12)=(3-2)×2(2+3)=2.故选B.方法总结:弄清新定义中的运算法则,转化为代数式的运算,正确运用运算律及公式是解题的关键.【类型二】 二次根式运算的拓展应用请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰似斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解析:分别把n =1、2代入式子化简即可.解:第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15[1+52-1-52]=15×5=1; 第2个数,当n =2时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15×1×5=1.方法总结:此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.三、板书设计1.二次根式的四则运算先算乘方(开方),再算乘除,最后算加减,有括号的先算括号内的.2.运用乘法公式和运算律进行计算 在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.本节课以学生发展为本的教育理念,注重对学生的启发引导,鼓励学生主动探究思考,获取新知识,通过启发引导,让学生经历知识的发现和完善的过程,从而利用二次根式加减法解决一些实际问题,并及时进行巩固练习和应用新知,以深化学生对所学知识的理解和记忆.同时加强师生交流,以激发学生的学习兴趣.。

人教版八年级数学下册第十六章二次根式(教案)

人教版八年级数学下册第十六章二次根式(教案)
二、核心素养目标
1.培养学生的数学抽ห้องสมุดไป่ตู้能力,使其理解二次根式的概念,并能运用性质进行化简和运算;
2.培养学生的逻辑推理能力,通过分析二次根式的性质和法则,进行合理推理,解决相关数学问题;
3.提高学生的数学建模素养,能够将二次根式应用于实际问题,建立数学模型,并解决问题;
4.培养学生的数学运算能力,熟练掌握二次根式的乘除法法则和加减法法则,准确进行计算;
首先,对于二次根式的运算法则,特别是分母有理化这一部分,学生们普遍感到困惑。我意识到,在讲解这个难点时,需要更加细致地分解步骤,多举几个不同类型的例子,让学生们逐步掌握解题技巧。同时,在课后应该布置一些针对性的练习题,帮助他们巩固这一知识点。
其次,在小组讨论环节,我发现有些学生在讨论中不够积极,可能是因为他们对二次根式的应用还不够自信。今后,我需要更多地鼓励这些学生参与讨论,提供一些更具体的指导,帮助他们建立起自信心。
我也注意到,实践活动对于加深学生对二次根式的理解非常有效。学生们在实际操作中能够更好地理解二次根式的意义和用途。因此,我计划在未来的教学中,增加更多类似的实践活动,让数学学习变得更加生动有趣。
另外,我发现学生们在解决问题的过程中,有时会忽略最简二次根式的判断。这说明我需要在教学中加强对这一部分的强调,通过对比不同形式的二次根式,让学生们明白何为最简形式。
5.培养学生的直观想象能力,通过二次根式的几何意义,加深对数学概念的理解,提高空间想象力和直观感知力。
三、教学难点与重点
1.教学重点
-二次根式的定义与性质:理解二次根式的概念,掌握其性质,如非负性、乘除法法则等。
-举例:解释二次根式表示的是非负平方根,如√9=3,但不表示-3。
-二次根式的化简与运算:掌握化简二次根式的方法,包括分母有理化、合并同类项等。

人教版数学八年级下册16.1二次根式(教案)

人教版数学八年级下册16.1二次根式(教案)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”(例如,计算一个边长为$\sqrt{5}$的正方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
4.培养学生的数学抽象素养:让学生从具体的二次根式实例中抽象出一般规律,提升对数学概念的理解和抽象思维能力。
5.激发学生的数学探究精神:鼓励学生在二次根式学习中积极思考、探索,培养他们的创新意识和探究精神。
三、教学难点与重点
1.教学重点
-二次根式的定义:理解二次根式的概念,明确根号下仅含非负实数的表达式。
-二次根式的性质:掌握二次根式的乘除、平方等运算性质,如$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$。
-二次根式的化简:学会通过因式分解、提取公因数等方法化简二次根式,如$\sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2}$。
-二次根式的乘除法:熟练运用性质进行二次根式的乘除运算,如$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$($a \geq 0$,$b > 0$)。
1.培养学生的逻辑推理能力:通过二次根式的性质与运算法则的学习,使学生能够运用逻辑推理分析问题,提高解题的条理性和逻辑性。
2.提升学生的数学运算能力:让学生掌握二次根式的化简、乘除与加减运算,培养他们在数学运算中的准确性和熟练度。
3.增强学生的数学建模意识:通过解决实际问题,使学生能够运用二次根式知识构建数学模型,提高解决实际问题的能力。

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

最新人教版数学八年级下册第16章《二次根式》全章教学案含解析

人教版数学八下第16章《二次根式》全章教案含解析第十六章二次根式1.理解二次根式的概念.2.理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).3.掌握²=(a≥0,b≥0),=²(a≥0,b≥0),=(a≥0,b>0),=(a≥0,b>0).4.了解最简二次根式的概念,并能灵活运用其对二次根式进行加减.1.通过先提出问题,让学生探讨、分析问题,师生共同归纳得出概念,再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.2.让学生用具体数据探究规律,采用不完全归纳法得出二次根式的乘(除)法法则,并运用法则进行计算.3.让学生利用逆向思维,得出二次根式的乘(除)法法则的逆向等式,并运用它们进行化简.4.通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,让学生对被开方数相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.1.培养学生利用二次根式的性质和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.2.经过探索二次根式的重要结论和二次根式的乘除法法则,发展学生观察、分析、发现问题的能力.二次根式是新课标中数与代数领域的重要内容,它是在前面平方根、立方根的基础上进行学习的,是对代数式及实数等内容的延伸与补充.同时,也是后继学习勾股定理、一元二次方程的求根公式及三角形的边角关系等内容的学习基础.因此,本章的相关知识对于整个初中阶段学习数与代数有着承前启后的重要意义.本章内容分为三节,第一节主要学习二次根式的概念和性质;第二节是二次根式的乘法和除法运算,主要研究二次根式的乘除法运算法则和二次根式的化简;第三节是二次根式的加法和减法运算,主要研究二次根式的加减法运算法则和二次根式的化简.【重点】1.对(a≥0)是一个非负数的理解和对()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式乘除法的法则及其运用.3.最简二次根式的概念.4.二次根式的加减运算.【难点】1.对(a≥0)是一个非负数的理解和对等式()2=a(a≥0),=a(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.1.通过前面的学习,我们已经知道了平方根、立方根的概念和求法,实数的有关概念和运算,对数的认识已经由有理数的范围扩大到实数范围,并对实数的运算性质和运算法则有了初步的感受.因此,本章应充分注意与已有经验的联系.同时,本章内容与整式也有着密切的联系.由于数式通性,当将二次根式中的实数看成字母时,二次根式的运算实际上就是整式的运算,所以整式的运算法则和公式在二次根式的运算中仍然适用.因此本章强调了与整式相关内容的联系.2.对于一些重要结论,要注意经历观察、思考、讨论等探究活动归纳得出结论的过程.例如,对于二次根式的乘法法则,首先利用二次根式的概念和性质进行具体的计算,并观察所得结果发现二次根式相乘与积的算术平方根之间的关系,并利用发现的规律进行计算,再归纳得出二次根式的乘法运算法则.这个过程实际上就是反映了一个由特殊到一般的认识过程.要通过这样的探究活动来发展我们的思维能力,有效改变学生的学习方式.3.熟练掌握二次根式的概念和运算需要一定的训练,可以适当增加练习,以便较好地理解二次根式的意义,较好地掌握二次根式的性质和运算,为后续学习打下良好的基础.单元概括整合1课时16.1二次根式1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.[设计意图]将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).[设计意图]以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.[设计意图]让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0.[设计意图]加深对二次根式的理解,进一步明确二次根式的非负性.下列各式中,哪些是二次根式?并指出二次根式中的被开方数,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.[解题策略]①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C 中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.[易错分析]容易产生只考虑到x+1≥0,而忽略了x≠0的错误.[设计意图]通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.[知识拓展](1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3³,-表示-³,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014²南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数. (2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数. (3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数. (4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015²遵义中考)使二次根式有意义的x的取值范围是.【能力提升】5.当x 时,+在实数范围内有意义.6.(2015²攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=²,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a²2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3cm,宽取2cm.2.解:(1)当a-1≥0,即a≥1时,有意义. (2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义. (4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2³(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2³(-3)=-8.所以x+2y的值是-4或-8.[解题策略]根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.[解题策略]本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.[设计意图]以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质.[设计意图]复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一2()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2. 是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22³()2=4³5=20.[解题策略]把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4³3=12.[知识拓展]形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2二次根式的性质2:=(≥0),,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.[知识拓展](1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=. (2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出: ()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=[设计意图]在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.[设计意图]学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2³()2=25³2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22³()2=44,(3)2=32³()2=45,又∵44<45,且2>0,3>0,∴2<3.母也是代数式式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3. +的值是.解析:+=2+2=4.故填4.4.(1)当x 时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9. (2)(2)2=22³()2=12. (3)=(-2)2³=2.(4)(-)2=(-1)2³()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015²杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-[-(a+b)]=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22³5,所以正整数m 的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1). (2)宽:3;长:5.8.解:(1)=. (2)(3)2=32³()2=18. (3)=(-2)2³=. (4)-=-=-3π. (5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3. (2)(3)2=32³()2=9³2=18.2.解:(1)=0.3. (2)=. (3)-=-π. (4)=10-1=.习题16.1(教材第5页)1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义. (2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义. (3)欲使有意义,则必有5a≥0,∴a≥0,∴当a ≥0时,有意义. (4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.。

人教版八年级数学下册第十六章二次根式教案全

人教版八年级数学下册第十六章二次根式教案全

人教版八年级数学下册教案16.1二次根式(第1课时)16.1 二次根式(第2课时)偿提高化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.2 二次根式的乘除(第1课时)教学目标知识技能1.使学生能够利用积的算术平方根的性质进行二次根式的化简与运算;2.会进行简单的二次根式的乘法运算.过程方法让学生进一步了解数学知识之间是相互联系的.情感态度培养学生用分类讨论的思想分析生活中出现的不同事物.重点abba=⋅(a≥0,b≥0),baab⋅=(a≥0,b≥0)及它们的运用.难点二次根式的乘法与积的算术平方根的关系及应用.环节教学问题设计教学活动设计情境引入计算下列各式,观察计算结果,你发现什么规律(1)259⨯=,259⨯=(2) 436⨯= , 436⨯=(3)16×25=____,1625⨯=___;教师出示问题,引导学生观察运算结果,发现和总结式子有什么规律?学生计算,观察,分小组讨论.全班交流,体会结果特点.自主探究【问题1】1.参考上面的结果,用“>、<或=”填空.4×9_____49⨯,100×36________10036⨯16×25__ 1625⨯学生通过计算,能对于公式有些感性上的认识,并且能举一些类似的式子.学生先完成填空,对于公式的推导有更深一步的认识,再通过观察,分析,合作交流,得出公式.二次根式的除法是建立在二次根式的基础上的,所以在学习中侧重于引导学生利用与乘法相类似的方法去学习,从而进一步降低学习的难度,提高学习的效率,但在教与学中,可以明显感受到学生对分母有理化概念在运用中的不灵活性,这也是应在今后的复习中给予加强的16.1 二次根式(第2课时)直角坐标系中A(3,2)、B(6,2)、C(3,5)是三角形的三个顶点,求:BC的长.成果展示引导学生对上面的问题进行展示交流引导学生自己出一组题,小组内做.学习小组内互相交流,讨论,展示.补偿提高1.计算:(18)2 (23)2(94)2(0)2(-478)222(35)(53)-2.若数轴上表示数x的点在原点的左边,则化简23x+x的结果是()A、-4xB、4xC、-2xD、2x3.已知实数x,y满足x y-++=540,求代数式的值.教师出示题目.第1题、第2题由学生独立完成. 教师巡视,个别辅导.请学生板练.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.小结本节课你学到了什么知识?你有什么认识?学生自己说出本节课的收获作业设计作业:教材P5习题21.1复习巩固2题 (3)、(4)3题 (1)、(2).教师布置作业,并提出要求.学生课下独立完成,延续课堂.16.3 二次根式的加减(第1课时)教学目标知识技能能够正确进行简单的二次根式加减法的运算.过程方法1.通过整式加减法运算与二次根式加减法运算体会类比思想.2.通过二次根式加减法运算培养学生运算能力.情感态度通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.4.计算:(1)212+348 ; (2)(48+20)+(12-5)5.例题3.如图21.3.1-1要焊接如图所示的钢架,大约需要多少米钢材(结果保留小数点后两位)?图21.3.1-1 分析:先利用勾股定理求出AB 的长度,再求出BC 的长度,然后相加:AB =5216422=+,BC =51422=+ AB+BC+AC+BD =)(71.13753m ≈+教师巡视及时补教.小组讨论分析,养成良好的分析问题,解决问题的能力和习惯. 成果 展示通过今天的学习你有何收获?1二次根式加减法的运算方法和步骤是什么?2.二次根式加减法应注意先化简成最简二次根式,以及运算的准确性.3.在学习过程中运用了类比的学习方法.学习小组内互相交流,讨论,展示.补 偿 提 高1.以下二次根式:①12;②22;③23;④27中,与3是同类二次根式的是( ). A .①和② B .②和③ C .①和④ D .③和④2.计算5a -3b -7a +9b =________.3. 计算:(1)()279818-+(2)()⎪⎪⎭⎫⎝⎛--+6815.024.练习2:教材第16页练习教师出示题目. 第(1)题、第(2)题由学生独立完成. 教师巡视,个别辅导.请几位学生板练.师生共同评析.存在的共性问题共同讨论解决.第(3)题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内. 作 业 设 计 教材第12页.习题21.2复习巩固 2题,3题 (3)、(4) 综合运用 4题 (2),6题 (3)、(4)教师布置作业,分层要求. 学生按要求独立完成作业完成.16.3 二次根式的加减(第2课时)。

人教版八年级下册数学第十六章《二次根式》教案

人教版八年级下册数学第十六章《二次根式》教案

16.1 二次根式(1)教学目的:1、了解二次根式的概念;2、了解二次根式的基本性质;3、通过二次根式原概念和性质的探究,提高数学探究能力和归纳表达能力。

重点:二次根式的概念和基本性质难点:二次根式的基本性质的灵活运用。

教学过程:例1.(1)当x 是怎样的实数时,2-x 在实数范围内有意义?(2)当x 是怎样的实数时,2x 在实数范围内有意义? (3)当x 是怎样的实数时,3x 在实数范围内有意义? 归纳总结:n x :当n 为奇数时,x ≥0时nx 有意义当n 为偶数时,x 为任意实数时n x 都有意义1. 求下列二次根式中字母k 的取值范围:(1 (2 (3 (42. 当x 分别取下列值时,的值:()10x =; ()21x =; ()31x =-.检测:求二次根式中x 的取值范围: (1)4-x (2)12+x (3)25+x (4)xx -42附加题:(5)22x x - (6)42-x (7)42+-x x 教学目的:1、理解二次根式的性质:(1)a (a ≥0)是非负数;(2)(a )2=a (a ≥0);(3)2a =a (a ≥0)2、会运用其进行相关计算。

重点:会运用a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)进行相关运算。

难点:理解a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0)。

教学过程:阅读P69-P71内容,完成两个探究填空,理解、识记两个公式。

公式1 : 公式2 : 例1计算:(1)(5.1)2 (2)(52)2练习:1、(32)2 2、(23)2 3、(52)2 4、(25)2 例2化简:(1)16 (2)2)5(-16.1 二次根式(2)教学目的:复习二次根式的概念、二次根式的基本性质a (a ≥0)是非负数、(a )2=a (a ≥0)、2a =a (a ≥0),能熟练运用其进行相关计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次根式》复习课骨架式教学设计【教学内容】义务教育教科书,人教版数学八年级下册P71§19 二次根式.【教学目标】1.了解二次根式的概念和意义、理解并掌握二次根式的性质和混合运算法则;会用二次根式的意义的条件和性质进行求取值范围化简和运算;会初步运用二次根式的性质及运算解决简单的实际数学问题.2.通过自主探究,归纳,小组合作梳理本章所学内容,形成全章知识体系,培养学生归纳和概括能力.3.通过本章的复习,进一步向学生渗透数学转化、分类讨论和类比等数学思想方法.【教学重点】梳理全章知识重点,形成二次根式知识体系.【教学难点】运用二次根式的性质进行化简和运算.【活动设计】一、创设情境导入课题课前三分钟媒体播放班级活动剪影……预备铃响起、教师组织同学们饱含情感的朗读《青春》选段:青春不是年华,而是心境;青春不是桃面、丹唇、柔膝,而是深沉的意志、恢宏的想象、炽热的感情;青春是生命的深泉在涌流.青春气贯长虹,勇锐盖过怯弱,进取压倒苟安.如此锐气,二十后生有之,六旬男子则更多见.年岁有加,并非垂老;理想丢弃,方堕暮年.岁月悠悠,衰微只及肌肤;热忱抛却,颓唐心至灵魂.忧烦、惶恐、丧失自信,定使心灵扭曲,意气如灰.教师朗读:人人心中皆有一台天线,只要你从天上人间接受美好、希望、欢乐、勇气和力量的信号,你无不青春永驻、风华长存.《青春》塞缪尔·厄尔曼(德国)教师:同学们,青春除了享受,还更应该有勇气、进取、和奋斗……(本堂课是复习课,不像新课那样有新意,因此设计了班级活动剪影的视频播放和一段诗歌选段朗诵,一是渲染课堂氛围,二是渗透数学课堂德育功能和文化内涵!)教师开门见山指出本堂课开始我们全面进入期末复习阶段,期末复习该怎么进行?同学们怎么利用有限的时间提高期末复习效果?这节课老师以二次根式的复习为蓝本,抛砖引玉给大家一些复习的建议作为参考.教师黑板板书课题“§二次根式专题复习”二、思考交流探究复习活动一做(用媒体依次呈现)教师组织学生独立完成“做”的部分,边做边思考这些题目的考点是什么?1.下列式子是二次根式的是()m≤C DB0)答案:B 考点:二次根式的概念2.有意义的条件是( )A.x ≤3 B .x <3 C .x ≥3 D .x >3答案:C 考点:二次根式有意义的条件3.下列二次根式中,是最简二次根式的是( ); 答案:B 考点:最简二次根式4.是同类二次根式的是( ); ; 答案:D 考点:同类二次根式5. 下面计算正确的是( )A.3=3==2=- 答案:B 考点:二次根式性质及加减、乘除运算6. 3x =-,则x 的取值范围是( )A .3>x B.3<x C.3≥x D.3≤x答案:D 考点:二次根式性质7. 已知,x y ()2320y -=,则________x y -=.答案:1- 考点:二次根式的非负性8. 若122x <<21x -=________.答案:1x + 考点:二次根式化简教师组织学生,先独立完成,完成后组织学生大声整齐的说出答案,教师根据回答情况有针对性点评;点评结束引导学生逐一批注每个试题的考点,以促进学生积极主动的学习数学,培养学生个性化学习习惯,提高学生自主学习能力.活动二 忆提问:本章还有那些知识点呢?为了达到复习效果,我个人认为还得对本章知识点进行进行梳理,那么怎么梳理知识点呢?一般来说,我们有这样一些知识整理的方法:图表式归纳、对比式归纳、要点式归纳、问题式归纳(适合文科)、框架式归纳(适合理科)、思维导图……既然我们学校教学特色是框架式教学,本堂课我们结合教材和笔记本以框架式归纳法对本章知识点进行梳理,并且给大家简单介绍思维导图.(本环节教师引导学生体会整理知识的重要性:提高能力、提高效率、巩固知识).同学们想一想:那如果要梳理本章知识点,我们应该按什么思路进行呢?个人认为可以按二次根式的概念、性质、运算三个方面就行梳理.请同学们查阅相关学习资料,先独立尝试完成完成下图中知识框架,(教师给予充分的时间让学生完成)完成后组内交流,完善知识框架.《二次根式》全章知识框架20(0)(0)(0)0(0)(0)a a a a a a a a a⎧⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎪≥≥⎪⎪⎪⎪=≥⎨⎨⎪⎪>⎧⎪⎪⎪⎪⎪===⎨⎪⎪⎪-<⎩⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩二次根式概念:二次根式有意义的条件:概念最简二次根式:二次根式性质运算加减(合并同类二次根式):一相加,两不变.混合运算:组内交流结束,教师一边在黑板板书,一边对各知识点进行点拨:a ≥0)的式子”,同时具备两个特征,(1.数学当中还有很多像这样的定义方式,例如:形如0(0)axb a +=≠的方程叫一元一次方程,形如(0)y kx b k =+≠的函数叫一次函数……;②人教版教材是这样定义最简二次根式的“(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.”→“(1)开放要开尽;(2)分母里面没根号,根号里边没分母(特别注意被开方数是小数时)”;③常见含有非负性的式子:20a ≥,0a ≥0≥,拓展:20n a ≥,0≥, 非负性主要考察有限个非负数的和为零,则每个非负数都为零;④将公式2(0)a a =≥是指一个非负数的算术根的平方等于本身,如果公式逆用,即2(0)a a =≥,就可以把一个非负数写成一个数平方的形式;⑤化简形如2a 的式子时,先转化为a 的形式,再根据a 的正负去掉绝对值符号. ⑥2()a 与2a 是不一样的,一个先开方后平方,另一个先平方后开放,结果不一定相等,22()a a =的前提是0a ≥;⑦乘法法则推广:123123n n x x x x x x x x ⋅⋅⋅⋅=…………;⑧除法运算方法大多时候不唯一,计算中可以把被开方数先相除,也可以先开方后再除,还可以把除法转化为乘法计算,如27279333===或2733333==或2732733333=⨯=⨯=; ⑨乘除运算法则的逆用,(0,0),(0,0)a a ab a b a b a b b b =⋅≥≥=≥>,常用来化简二次根式,但注意公式能利用的前提条件,如果没有这个前提则公式应变为,a a ab a b b b =⋅=.⑩二次根式混合运算严格按照运算顺序进行,运算顺序和实数运算顺序完全相同,先乘方、再乘除、最后加减、有括号先去括号;同时二次根式混合运算中乘法公式依然实用.化简→判断→合并.教师组织学生相互交流,讲一讲,说一说!刚才我们是利用框架式归纳知识点,这里我简单介绍思维导图(它是表达发散性思维的有效的图形思维工具 ,简单却又极其有效,将抽象,繁琐的知识结构形象化),并利用媒体超链接MindMapper 思维导图软件展示两二次根式的知识思维导图的形成.引导部分优生在未来的复习当中学会画思维导图或学会实用思维导图,同时利用数学课堂渗透学科科学素养.如果我们要站在更高的角度看二次根式,那二次根式其实是代数式无理式中的一类.⎧⎧⎧⎪⎪⎨⎨⎪⎩⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩单项式整式有理式多项式代数式分式二次根式无理式…… 到这个地方我们已经对二次根式的整个骨架和知识点有了巩固,这样我们也许在做题过程中也许才会轻松一些.请同学们以最快速度完成“议”的例1和例2.活动三 议例1:1)a <.解:是二次根式的有:①④⑤⑥⑧不是二次根式有:②(被开放式小于0);③(根指数为3,不可能是二次根式);⑦(1,10a a <-<,被开方数为负数).考点:二次根式的概念(例1“面向全体学生”,教师组织学生,先独立的做,最后组织学生大声整齐的说出答案.教师根据学生回答问题整齐度判断哪些需要点拨,预测本题做的情况应该很好!)例2:求下列二次根式中字母的取值范围:(1)当时,(2)当时,(3)当时, (4)当时,12x +有意义. 解:(1)∵5a ≥0,∴a ≥0,当a ≥0有意义.(2)∵23x -≥0,∴x ≥32,∴当x ≥32. (3)∵1a ->0,∴a <1,∴当a <1. (4)∵1020x x +≥⎧⎨+≠⎩,∴1x ≥-,∴当1x ≥-. 考点:二次根式有意义的条件通过例2使学生强化二次根式有意义的条件,判断学生对此知识点的掌握情况.例3:计算:(1)1(1220)(35)3++- (2)321224⨯÷ 解:原式=23+25+3-5 解:原式=32432⨯⨯ =33+5 =322(3)(2533)(2533)+- (4)2(252)-解:原式=222533-()()解:原式=222522522-⨯⨯+()() =2027- =204102-+=3 =22410-考点:二次根式的化简、同类二次根式、、二次根式的性质、二次根式的运算教师点拨(3)(4)可用乘法公式,组织两个学生(一男,一女)黑板上书写,在学生的书写中点评;通过二次根式的计算,引导学生强化二次根式的性质.进而让学生明白二次根式的化简的依据和二次根式的计算的依据一样,源自二次根式的性质.例4:已知数a ,b ,c 在数轴上的位置如图所示:22||()||a a c c b b ++--解:由图可知:0a <,0a c +<,0c b -<,0b -<∴原式=a a c c b b -++---=a a c b c b -+++--=0活动三 悟本堂课学到了什么,感悟到了什么?引导学生说说本节知识点,形成本节课的知识体系,强调两个性质的区别, 及使用的注意事项.本章主要知识点:1.二次根式的概念;2.二次根式有意义的条件:①被开方数不小于零;②分母中有字母时,要保证分母不为零;3.二次根式的三条性质:①二次根式的双重非负性②2a a =(隐含了0a ≥)2a a =4.二次根式相关运算.三、拓展延伸自我升华活动四拓已知a、b、c满足2(0a c+-=.求:(1)a、b、c的值;(2)试问:以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.解:(1)∵2(0a≥,0c-≥且2(0a c-=∴2(0a==,0c-=∴0a=,50b-=,0c-=即a=5b=,c=(2)∵5=>∴能构成三角形∴三角形的周长=55=。

相关文档
最新文档