6 刚体的基本运动
理论力学
| a全 || an a | an a R 2 w 4
2 2
a R t g 2 2 an w R w
21
结论: ① v方向与w 相同时为正 , R ,与 R 成正比。
②各点的全加速度方向与各点转动半径夹角θ都一致,且 小于90o , 在同一瞬间的速度和加速度的分布图为:
习题课
35
匀 速 直 匀 a=C 线 变 运 动 变 dv a 速 dt 曲 线 运 动 匀 速 匀 变 变 速 0
a 0
点的运动(刚体平动) 加速度 v an a 0 0 v C 0 0 a =C
v v0 at
s
s f ( t ) vt
1 s v0 t at 2 2
1
第六章 刚体的基本运动
§6–1 刚体的平行移动
§6–2 刚体的定轴转动 §6–3 定轴转动刚体内各点的速度与加速度 §6–4 绕定轴转动刚体的传动问题 §6–5 角速度与角速度的矢量表示 点的速度与加速度的矢积表示 习题课
2
由于研究对象是刚体,所以运动中要考虑 其本身形状和尺寸大小,又由于刚体是几何形 状不变体,所以研究它在空间的位置就不必一 个点一个点地确定,只要根据刚体的各种运动 形式,确定刚体内某一个有代表性的直线或平 面的位置即可。
π 0l 16
v (m· s-1)
0
14
§6-2
刚体的定轴转动
一.刚体定轴转动的特征及其简化 当刚体运动时,如其上(或其延展部分)有一
条直线始终保持不动,这种运动称为刚体的定轴转
动。该固定不动的直线称为转轴。 特点:有一条不变的线称为转轴,其余各点都在垂
直于转轴的平面上做圆周运动,圆心在该平面与转
第三章-刚体力学基础
薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O
刚体基本运动
第八章刚体的基本运动一、内容提要刚体的基本运动包括刚体的平动和定轴转动。
1、刚体的平动(1)刚体的平动的定义:刚体在运动过程中,若其上任一条直线始终保持平行于它的初始位置,称这种运动为刚体的平动。
(2)刚体平动的运动特征:刚体平动时,其上各点的轨迹形状相同并彼此平行;在每一瞬时,刚体上各点的速度相同,各点的加速度也相同。
因此刚体的平动可简化为一个点的运动来研究。
2、刚体的定轴转动(1)刚体的定轴转动的定义:刚体运动时,若其上(或其延伸部分)有一条直线始终保持不变,称这种运动为刚体的定轴转动。
(2)刚体的定轴转动的运动特征:刚体定轴转动时,其上各点均在垂直于转轴的平面内绕转轴作圆周运动。
(3)刚体的转动规律转动方程ϕ=f(t)角速度ω=dϕ /d t角加速度ε=dω t(4)转动刚体上各点速度和加速度速度V=Rω加速度aτ=Rεa n=Rω2全加速度大小和方向a=√ aτ +a n(5)转动刚体上各点速度和加速度的矢积表示:若沿转轴作出刚体的角速度矢ω和角加速度矢ε,则定轴转动刚体内任一点的速度V=ω⨯ r4142 加速度 a=a τ+a n =ε ⨯ r + ω ⨯ V二、基本要求1、熟练掌握刚体平动的运动特征。
2、熟练掌握刚体的转动规律和转动刚体上各点速度和加速度的求解。
三、典型例题1、曲柄O 1A 和O 2B 的长度均为2R ,分别绕水平固定轴O 1和O 2转动,固连于连杆AB 的齿轮Ⅰ带动齿轮Ⅱ绕O 轴转动。
若已知曲柄O 1A 的角速度为ω、角加速度为ε,O 1O 2=AB , 齿轮Ⅰ和齿轮Ⅱ的半径均为R 。
试求齿轮Ⅱ节圆上任一点D 的加速度。
解 轮Ⅰ与AB 杆固连在一起作平动。
设N 点是轮Ⅰ节圆与轮Ⅱ的接触点,则有 V N =V A =2R ω ;a τN =a τA =2R ε ; a n N =a n A =2R 2ω又设M 点是轮Ⅱ节圆与轮Ⅰ的接触点,因两轮之间无相对滑动,所以有εM τ43V M =V N =2R ω ; a τM = a τN =2R ε因为轮Ⅱ作定轴转动,设其角速度为2ω,角加速度为2ε,则又有 V M = R 2ω,a τM =R 2ε,所以有 2ω=2ω ; 2ε=2ε 轮Ⅱ节圆任一点D 的切向和法向加速度大小分别为 a τD = R 2ε=2R ε ; a n D =R 22ω=4R 2ω 故点D 的加速度大小为 a D =()()222242ωετ+=+R a a nDD方向可由a D 与D 点处半径夹角α的正切表示为 tan α=22ωετ=nDD aa。
刚体的基本运动
轮2的角速度和角加速度。
解:AB平动,所以轮B上D点处 :
v v
D A
a a a a
n D A A
t
A
因轮1,2啮合,所以2轮上D点速度与1轮上D点速度相同, 切向加速度也相同。 v lb cos t 0 v l lb cost r r
t
2
A
A
2
2
2
啮 合 大 观
啮合大观
啮合大观
AB O O ,齿轮1和半径 为r 的齿轮2啮合,齿轮2可绕O2轴转动且和曲柄 O B 没有联系。 π s 时, 设O A O B l , b sin t ,试确 定 t 2
[例]图示机构中齿轮1紧固在杆AC上,
2
1 2 2 1 2
x
O
逆时针为正
顺时针为负
三.定轴转动的角速度和加速度 1.角速度:
定义:
Δ d lim Δ t 0 Δ t dt
(代数量)
工程中常用单位:
n = 转/分(r / min)
则n与的关系为:
2n n n (rad/s) 60 30 10
二.角加速度 与an ,a 的关系
a R,
an v2
R 2
a全 ||an a | an 2 a 2 R 2 4 |
a R t g 2 an R 2
各点速度分布图
各点加速度分布图
[例] 已知曲柄O1A以匀角速1转
r 2 1 l r 2 0
(2)当 = 1t = 90o亦即O1A与O1O2垂直时,
r2 2 2 2 1 r l
2
l r rl r l
刚体的定轴转动定律
T2、 T2’(T2’= T2)
T1
T2
T1
T2
am
a
1
a
m
m1
m1g 2
m2
m2g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以
顺时针方向旋转,Mr的指向如图所示。可列出下列方
程
T1 G1 m1a
G2 T2 m2a
T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮
t 0
方向:
t dt
右手螺旋方向
z (t)
x
参考平面
参考轴
刚体定轴转动(一
维转动)的转动方向可
以用角速度的正负来表
示.
角加速度
d
dt
定轴转动的特点
z
>0
z
<0
1) 2)
每一质点均作圆周运动,圆面为转动平面;
任一质点运动
,
,
均相同,但
v,
a不同;
3) 运动描述仅需一个坐标 .
三、 匀变速转动公式
轴的力矩 Mzk
r
F
z
F
k
O rFz
F
M z rF sin
z
Байду номын сангаас
F
M
O
r P
d
五. 定轴转动刚体的转动定律:
Fit
Fi
fit
•
ri
fi
mi• fin
Fin
O
•
j
d
fij
fji
i
Fit ri (miri2 )
I miri2
i
第八章 刚体的基本运动
理论力学电子教程
第八章 刚体的基本运动
荡木用两条等长的钢索平行吊起,如图所示。 例8-1 荡木用两条等长的钢索平行吊起,如图所示。钢索长 为 长 l, 长 度 单 位 为 m。 当 荡 木 摆 动 时 钢 索 的 摆 动 规 律 , 。 π 为时间,单位为s;转角φ 为 ϕ =ϕ0 sin t ,其中 t 为时间,单位为 ;转角 0的单位为 4 rad,试求当 和t=2 s时,荡木的中点 的速度和加速度。 的速度和加速度。 ,试求当t=0和 时 荡木的中点M的速度和加速度
∴aτ =ε × r
∴a n =ω × v
a n =ω × v
理论力学电子教程
第八章 刚体的基本运动
三、定轴轮系的传动比 在实际工程中,不同机器的工作转速往往是不一样的, 在实际工程中,不同机器的工作转速往往是不一样的, 故需要利用轮系的传动来提高或降低机器转速。 故需要利用轮系的传动来提高或降低机器转速。常用的有 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 带传动和齿轮传动。一般将主动轮转速与从动轮转速之比, 表示, 用i表示,即 表示 n主 ω主 i= = n从 ω 从 1.带传动 当主动轮Ⅰ转动时, 当主动轮Ⅰ转动时,利用胶带与带轮轮缘间的摩擦带动 从动轮Ⅱ转动。 从动轮Ⅱ转动。 不考虑胶带由于拉力引起的变形及胶带的厚度, 不考虑胶带由于拉力引起的变形及胶带的厚度,为此在 同一瞬时胶带上各点速度大小应相等, 同一瞬时胶带上各点速度大小应相等,即v1 = v = v2。若胶带 与带轮间没有滑动, 与带轮间没有滑动,则
工程力学6第六章
点的曲线运动与刚体的定轴转动的比较 运动性质 匀速运动 点的曲线运动 刚体定轴转动
s s0 vtv为常量 0 t 为常量
v v0 a t
0 at
1 2 0 0t t 2
匀变速 运动
2 2 v 2 v0 2a s s0 2 0 2 0
• 例6-2 • 作业:导学篇P88 1、6、7
按自然法 ds d s R , v R R dt dt dv d a R R dt dt v2 an R 2 R
M点全加速度
2 a a2 an R 2 4
tan
a an
2
例:已知轮1的角速度和角加速度,轮2的角速度与 角加速度?
则角速度为 d lim f `t t 0 t dt 即刚体绕定轴转动的角速度等于 转角对时间的一阶导数, 单位:rad / s
3.角加速度
角加速度是反映角速度变化快慢的物理量 如右图所示刚体, 设在瞬时t, 刚体的角速度为 到瞬时t t角速度变为 刚经过t时间后, 角速度的改变量为
• 二、以矢积表示转动刚体上点的速度与加速度 • 如图6-7
M点的速度 v r , 三者按右手法则确定方向。 矢积的 r 大小 : r r sin R v M点的加速度 dv d dr a r r v dt dt dt r ( r ) a a n 矢积 r 的大小: r r sin R a 矢积 v 的大小: v v sin 90 R 2
如何确定刚体在空间的位置?
第五章刚体的基本运动PPT课件
第一节 刚体的平动
第二节 刚体绕定轴转动
第三节 轮系的传动比
本章重点:
1、平动刚体上点的速度、加速度的计算;
2、定轴转动刚体角速度、角加速度的计算;
3、转动刚体上点的速度、加速度的计算。
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
7
三、刚体绕定轴转动运动描述 1. 刚体的转动方程
过轴z作固定平面A、与刚体固连的转动平面B,两平面间的夹角用 表示,称为刚体的转角。当刚体转动时,随时间 t 变化, f(t) ,
该方程称为刚体的转动方程。
:
转角的符号规定:迎z 轴的正向看, 逆时针转向为正,反之为负;或用右手 法则确定。
8
2. 角速度和角加速度
角速度
单位为rad/s(弧度/秒)。
角加速 单位为rad/s2(弧度/秒2)。
角速度、角加速度都是代数量,符号规定和转角一致。当角速度、角加 速度同号时,刚体作加速转动,否则作减速转动。
用转速n(每分钟内的转数,以r/min为单位)来表示转动的快慢,
角速度与转速之间的关系是:
2πn πn
(2) 0,等于常量,0 t
12
例5-2 杆AB以匀速v运动,通过套筒A带动OC杆绕定轴转动。
开始时 0 ,试求 时,(1)摇杆OC的角速度、角加速度。 4
(2)设杆OC长d,杆端C点的速度和加速度。
解:(1)求角速度、角加速度
由几何关系可得:tan vt
l
等号两边同时对时间 t 求导, sec2d v
tana
理论力学6刚体的基本运动
当刚体作平动时,只须给出刚体内任意一点的运动,就可以 完全确定整个刚体的运动。这样,刚体平动问题就可看为点 的运动问题来处理。 这样,刚体平动问题就可看为点的运动问题来处理。
综上所述,可以得出刚体平动的特点: 1、平动刚体上的各点具有形状相同的运动轨迹。 2、平动刚体上的各点在某一瞬时具有相同的速度和加速度。 3、刚体平动时的运动分析可以简化为其上任意一点(一般取为 质心)的运动分析。������ ������
因此,研究刚体的平动,可以归结为研究刚体内任一点的运 动。
6.1 刚体的平行移动
平动刚体上各点的速度
平动刚体上各点的加速度
6.1 刚体的平行移动
注意:平动刚体内的点,不一定沿直线运动,也不一定保持 在平面内运动,它的轨迹可以是任意的空间曲线。 如果平动刚体内各点的轨迹都是平面曲线或直线,则这些特 殊情形称为平面平动或直线平动。 由上述定理可见:
即:定轴转动刚体内任一点的速度, 等于该点的转动半径与刚体角速度 的乘积。 式中v与ω两者正负相同。故速度是沿着点M的轨迹圆周的切 线,指向转动前进的一方。
6.3 转动刚体内各点的速度和加速度
即:转动刚体内任一点速度的大小等于刚体角速度与该点到轴 线的垂直距离的乘积,它的方向沿圆周的切线而指向转动的一 方。
6.1 刚体的平行移动
平动的实例
夹 板 锤 的 锤 头
6.1 刚体的平行移动
2. 平动的特点
定理:当刚体作平动时,刚体内所有各点的轨迹形状完 全相同,而且在每一瞬时,刚体各点的速度相等,各点 的加速度也相等。 证明:
rA rB BA
◆速度 刚体平动时,刚体内任一线段AB 的长度和方向都保持不变。 因而 x
6.1 刚体的平行移动
刚体运动知识点总结
刚体运动知识点总结刚体运动是物理学中的一个重要研究领域,它涉及到力学、动力学等多个方面的知识。
在学习刚体运动的过程中,我们需要了解刚体的运动方式、刚体的平动和转动运动、刚体的运动方程、刚体动力学等知识点。
下面将针对这些知识点进行详细的总结和讨论。
一、刚体的运动方式刚体可以进行平动运动和转动运动。
在平动运动中,刚体上所有的点都以相同的速度和相同的方向运动。
在转动运动中,刚体绕着固定轴线旋转,使得刚体上的各个点绕着这个轴线做圆周运动。
刚体的平动运动可以分为匀速直线运动和变速直线运动两种情况。
在匀速直线运动中,刚体上各个点的速度大小和方向都保持不变;在变速直线运动中,刚体上各个点的速度大小和方向都在不断地变化。
刚体的转动运动可以分为定轴转动和不定轴转动两种情况。
在定轴转动中,刚体绕着固定的轴线旋转,而在不定轴转动中,刚体绕着移动的轴线旋转。
二、刚体的平动运动在学习刚体的平动运动时,我们通常关心刚体上各点的速度、加速度和位移等动力学量。
1. 速度:刚体上任意一点的速度可以表示为该点的瞬时线速度,即该点的位矢对时间的导数。
刚体上不同点的速度大小和方向可以不同,但它们的速度矢量之间满足相对运动关系。
2. 加速度:刚体上任意一点的加速度可以表示为该点的瞬时线加速度,即该点的速度对时间的导数。
刚体上不同点的加速度大小和方向可以不同,但它们的加速度矢量之间满足相对运动关系。
3. 位移:刚体上任意一点的位移可以表示为该点的位矢的变化量。
刚体上不同点的位移可以通过相对位移关系来描述。
刚体的平动运动可以通过运动方程来描述,其中包含了刚体上不同点的速度、加速度和位移之间的关系。
在解决刚体平动问题时,我们通常会使用牛顿运动定律和动量定理等知识来进行分析和求解。
三、刚体的转动运动在学习刚体的转动运动时,我们需要了解刚体绕着固定轴线旋转的运动规律,以及刚体上各点的角速度、角加速度和角位移等动力学量。
1. 角速度:刚体上任意一点的角速度可以表示为该点的瞬时角位置对时间的导数。
教学要求1、理解刚体平动的概念及其特性,掌握刚体平动时速度、(精)
Ⅱ转动。求当重物下降h时,轮Ⅱ边缘上B点的速度
和加速度的大小。
解题分析与步骤: ①分析运动
Ⅰ
R1
R2 B1 B2
Ⅱ
重物为直线平动,轮Ⅰ和轮Ⅱ固连为定
轴转动。
A
②根据公式求未知量
h
重物自静止开始以匀加速度a下降高
过的圈数和t=2s时转子的角速度、角加速度。
解题步骤:由于转子的转动方程已知,可直接
应用公式计算。
将t=2s代入转动方程,则
φ=t3=23=8rad
于是,转子转过的圈数为
N=φ/2л=8 /2л=1.27圈
于是:ω=dφ/dt=3t2
α=dω/dt=6t
当t=2s时,有
ω=3t2=3×22=12rad/s
aB2 a2B2 a2B2n (aR2 / R1)2 (2ahR2 / R12 )2 R2a R12 4h2 / R1
度h时,其初速度v0=0,由公式 v2-v02= 2ah
得
v=√2ah
轮Ⅰ和轮Ⅱ的角速度、角加速度为:
ω= vB1/R1=√2ah/R1 α=aB1τ/R1=a/R1
轮Ⅱ边缘上B点的速度和加速度为
vB2 = R2ω= R2√2ah / R1 aB2τ= R2α=aR2/R1aB2n= R2ω2=2ahR2/R12
v ds R d R
dt dt
aτ
dv dt
R d
dt
R
an
v2
R
R 2
a
a
O
an
《理论力学》第六章 刚体的基本运动习题全解
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
刚体的基本运动
刚体的基本运动
答案:
刚体的基本运动形式包括平动、转动(分为定轴转动和非定轴转动)以及平面运动(随质心的平动、绕质心的转动)。
平动是指刚体在运动过程中,整体上以同一速度沿直线运动的现象,其特点是刚体内各点的运动轨迹完全相同。
转动则是刚体绕某一轴心进行旋转的运动,根据轴心的位置不同,可以分为定轴转动和非定轴转动。
平面运动则包括了随质心的平动和绕质心的转动,这种运动形式在工程实际中也是常见的。
复合运动,即平动和转动的组合运动,是刚体运动的一种特殊形式。
例如,自行车在平地上行驶时,既有整车质心的平动,又有轮胎相对于地面的转动。
因此,复合运动确实是刚体的基本运动形式之一。
延伸:
刚体指在运动中和受力作用后,形状和大小不变,而且内部各点相对位置不变的物体。
绝对刚体实际上只是一种理想模型,因为任何物体在受力作用后,都或多或少地变形,如果变形的程度相对于物体本身几何尺寸来说极为微小,在研究物体运动时变形就可以忽略不计。
把许多固体视为刚体,所得到的结果在工程上一般已有足够的准确度。
刚体的特点:刚体上任意两点的连线在平动中是平行且相等的。
刚体上任意质元的位置矢量不同,相差一恒矢量,但各质元的位移、速度和加速度却相同。
因此,常用“刚体的质心”来研究刚体的平动。
第六章 刚体的基本运动
z R a M
n
a = α × r + ω× v
aτ = α × r
α × r = α ⋅ r sin θ = α ⋅ R
O
aτ
v
α ω θ r
ω× r
a
n
= ω × v
ω ⋅ v = ω ⋅ ω ⋅ R = ω
dθ = ωo 其中: dt
所以: bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
dϕ =ω dt
*
rcos(θ + ϕ ) ω 解得: ω o = bcosθ − rcos(θ + ϕ )
方程*两边对时间取导数,得:
bcosθ ⋅ ω o = rcos(θ + ϕ ) ⋅ (ω o + ω )
一 、角速度的矢量表示
z
ω
k k
ω
z
ω=ω k
右手螺旋规则:右手的四指代表转动的方向,拇指代表角 速度矢量 ω 的方向。
二、角加速度的矢量表示
角加速度矢量定义:
dω α= dt
角加速度矢
α 为角速度矢 ω 对时间的一阶导数
d dω α = ( ωk) = k dt dt
dω d ϕ = 2 α= dt dt
为描述变速的程度,引入传动比的概念。
ω1 R2 z 2 = = 传动比: i12 = ω 2 R1 z1
ω1 n1 α1 R2 z 2 i12 = = = = = ω 2 n2 α 2 R1 z1
二 、皮带轮传动
n1 R1
vB A vA B R2
刚体
牵连速度
r r r a = a'+a0
牵连 加速度
三、加利略变换 系相对于S系作匀速直线平动 若S′系相对于 系作匀速直线平动,则: 系相对于 系作匀速直线平动,
v u = 常矢量 v v du a0 = =0 dt v v a = a′
设t=0时两坐标系的原点 时两坐标系的原点 重合, 系相对于 系相对于S系以 重合,S′系相对于 系以 速率u朝 正方向运动 正方向运动,则 速率 朝x正方向运动 则
1-6
相对运动
一、运动描述具有相对性
车上的人观察
地面上的人观察
运动是相对的 静止参考系、 静止参考系、运动参考系也是相对的
二、“绝对运动”、牵连运动、相对运动 绝对运动” 牵连运动、 三者应具有如下变换关系 “绝对位矢” 绝对位矢” 绝对位矢 1、位移变换关系 相对位矢 、
v v v r = r′ + r0
A x
dy d 2 2 (2) v = = ( 8.5 + t − 8.5) dt dt t v= 8.52 + t 2
dv d t a= ) = ( dt dt 8.52 + t 2 8.52 a= (8.52 + t 2 )3 2
3、一质点在 、一质点在OXY平面内运动,运动学方程为: 平面内运动, 平面内运动 运动学方程为: X=2t, Y=19-2t2 (1) 质点的运动轨道方程 (2)写出 写出t=1s和t=2s时刻质点的位矢;并计算这一秒 时刻质点的位矢; 写出 和 时刻质点的位矢 内质点的平均速度; 内质点的平均速度; (4)在什么时刻质点的位矢与其速度恰好垂直 ? 这 在什么时刻质点的位矢与其速度恰好垂直? 在什么时刻质点的位矢与其速度恰好垂直 它们的X、 分量各为多少 分量各为多少? 时,它们的 、Y分量各为多少? (3)t=1s和t=2s时刻的速度和加速度; 时刻的速度和加速度; 和 时刻的速度和加速度 (5)在什么时刻,质点离原点最近?距离是多少? 在什么时刻, 在什么时刻 质点离原点最近?距离是多少?
06 刚体的基本运动
3 1 ln 3 1 3 0 t
6.4 已知轮 I、II、III 的半径分别为 r1=30cm,r2=75cm,r3=40cm,轮 I 的转速 n1= 100rpm。求物块 M 的上升速度,胶带 AB、BC、CD、DA 各段上点的加速度的大 小。 B A
r3
r2
n1
O1 DБайду номын сангаас
r1
2
O2
1
C
v
I
当 d=r=5cm 时,
II
50 50 2 2 (rad/s2) 2 r 5 2n I II 20 (rad/s) 60
所以,当 d=r 时,轮 II 边缘上的一点的全加速度的大小
2 4 a R II II 15 (2 )2 (20 )4 59218 (cm/ s2 )
a A a
n n aM aA a 2 ,
M 点:∵AB 杆作曲线平动,∴ vM v A a , 6.3
a M a A a
如图所示,一飞轮绕固定轴 O 转动,其轮缘上任一点 M 的全加速度在某运动 过程中与轮半径的交角恒为 60o。当运动开始时,其转角 0 0 ,角速度为0。求 飞轮的转动方程以及角速度与转角的关系。
M
解:
1
n1
30
, 2
1 r1
r2
AB 和 CD 之间各点作匀速直线运动, AD 和 BC 之间各点作匀速圆周运动,所以
a AD r112 32.9 (cm/s2)
2 a BC r2 2 13.16 (cm/s2)
aAB aCD 0 , 物块 M 的上升速度 v M r3 2 1.676 (cm/s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
vt
B v
当:
4
,
v v2 , a 2 2l 2l
(2)求C点的速度、加速度
4
,
vd vC d , 2l
2
dv2 a C ad 2 2l
n2 C
dv2 a C d 2 4l
n 2
11
aC aC a
dv2 2 5 4l
14
图示为一带式输送机。已知:主动轮Ⅰ的转速n1=1200r/min,
齿数z1=24;齿轮Ⅱ的齿数为z2=96;齿轮Ⅲ和Ⅳ用链条传动,齿数 各为z3=15和z4=45,轮Ⅴ的直径D=460mm。试求输送带的速度。
解(1)计算轮Ⅰ的角速度和轮系的传动比
1
π n1 π 1200 40π rad/s 30 30
1
(3)计算输送带的速度
2
1
1
D 460 10 v 4 π 2 2 1000 3 2.41 m/s
16
小 结
一、刚体的平动 刚体平动时,其上各点的轨迹形状相似;同一 瞬时,各点的速度相同,加速度也相同。 二、刚体的定轴转动 1.刚体的转动方程 2.角速度 3.角加速度
f (t ) a
2πn πn 60 30
7
3. 匀变速转动和匀速转动
(1) a 等于常量,匀变速转动
0 at
1 2 0 0 t at 2
2 2 0 2a ( 0 )
(2) a0 , 等于常量,匀速转动
0 t
8
四、转动刚体内各点的速度和加速度
1 R2 z 2 n1 i12 2 R1 z1 n2
i12
1 n1 z 2 2 n2 z1
齿轮外啮合取正, 内啮合取负。 二、皮带轮传动、链轮传动 皮带轮传动、链轮传动相当于齿轮内啮合:
i12
1 R2 z2 2 R1 z1
1 1 1
2 2
2
I
II
轮缘上一点的加速度:
a a an
2
Rb , 5t
an R 2 Rb2 ln 2
5t 5
2 1 2 4 (5 t ) Rb b ln 2 (5 t ) 25
12
第三节 轮系的传动比
传动比:主动轮的角速度与从动轮的角速度之比 。 一、齿轮传动
外啮合
内啮合
两齿轮的啮合点具有共同的速度和切向加速度:
三、转动刚体内各点的速度和加速度 v R 1.点的速度
2.点的加速度
a Ra
2 4
a R a
四、轮系的传动比
a tan 2
an R 2
1 R2 z 2 n1 i12 2 R1 z1 n2
17
6- 10, 14
加速度分布图
一方。
10
杆AB以匀速v运动,通过套筒A带动OC杆绕定轴转动。开始 时 =0,试求=/4 时,(1)摇杆OC的角速度、角加速度。(2) 设杆OC长d,杆端C点的速度和加速度。
y A
C
O
l
x
解:(1)求角速度、角加速度 vt tan 由几何关系可得: l v vl 2 cos 2 2 2 解得: l l v t d 2lv3t a 2 2 2 2
5
三、刚体绕定轴转动运动描述 1. 刚体的转动方程 过轴z作固定平面A、与刚体固连的转 动平面B,两平面间的夹角用表示,称为 刚体的转角。当刚体转动时,随时间 t 变 化,则该方程称为刚体的转动方程:
=( t)
转角的符号规定:迎z 轴的正向看, 逆时针转向为正,反之为负;或用右手法 则确定。
第五章 刚体的基本运动
第一节 刚体的平动 第二节 刚体绕定轴转动
第三节 轮系的传动比
本章重点: 1、平动刚体上点的速度、加速度的计算; 2、定轴转动刚体的角速度、角加速度的计算;3、 转动刚体上点的速度、加速度的计算。
1
第一节 刚体的平动
一、刚体平动的定义 刚体运动时,若其上任一直线始终保持与它的初始位置平行, 则称刚体作平行移动,简称为平动或移动 。
2 a a2 an ( Ra ) 2 ( R 2 ) 2
ቤተ መጻሕፍቲ ባይዱ
R a 2 4
点的切向加速度和法向加速度
a tan 2 2 an R
a
(1)转动刚体内各点加速度的大小,与该
Ra
点的转动半径成正比。 (2)转动刚体内各点的全加速度与其转动
半径具有相同的夹角,并偏向角加速度转向的
i12
1 z 2 2 z1
i34
3 z4 4 z3
2 3
1 1 2
i14
1 1 2 1 3 z z i12i34 2 4 4 2 4 2 4 z1 z 3
15
(2)计算轮Ⅳ的角速度
z1 z3 24 15 4 1 40 π i14 z 2 z 4 96 45 10 π rad/s 3
vB R22 v A R11
1 1 2 1 2 2
aB R2a 2 a A R1a1
I
II
传动比: i12
1 R2 a 1 2 R1 a 2
13
传动比: 齿轮的齿数与半径成正比: 考虑转向:
i12
1 R2 a 1 2 R1 a 2
0
1.以弧坐标表示的点的运动方程
s R
2.点的速度
v s R R
转动刚体内任一点的速度,其大小等 于转动半径OM与刚体角速度的乘积,方
向沿轨迹的切线,指向刚体转动的一方。
速度分布图
9
3.点的加速度
a v R Ra
( R ) 2 an R 2 R v2
当t=0时,=0
π l 0 vM v A 4 a 0
2 v 2 π 2 l 0 a M an l 16
v2
加速度的方向与an , 相同,即铅垂向上。
4
第二节 刚体绕定轴转动
一、实例 1、齿轮 2、杆
二、刚体的定轴转动 刚体运动时,若其上(或其体外)有一直线始终保持不动, 则称刚体作定轴转动。该固定不动的直线称为转轴。
1 2
2、求A点的速度、加速度 规定弧坐标s向右为正,则点A的运
(+)
动方程为:
π s l l0 sin t 4
3
任一瞬时t点A的速度、加速度为:
π l 0 π vs cos t 4 4 π 2 l 0 π a v sin t 16 4 2 v 2 v 2 π 2 l 0 π an cos2 t l 16 4
三、平动刚体的运动特点
1 2
结论:刚体平动时,其上各点的轨
迹形状相似;同一瞬时,各点的速
1
度相同,加速度也相同。
2
2
荡木用两根等长的绳索平行吊起,已知O1O2=AB,绳索长 O1A=O2B=l,摆动规律为=0sin(t/4)。试求当t =0时,荡木中点 M的速度和加速度。 解:1、运动分析:荡木作平动 ,荡木 上各点的轨迹为半径为l的圆弧。
半径为R的飞轮由静止开始转动,角加速度a=b /(5+t)rad/s2 , 式中b为常量。试求轮缘上一点的速度、加速度的大小。 解:已知 分离变量积分:
a
d b dt 5 t
t
0
b d dt 05t
v R
a Ra
2
b ln
5t 5
轮缘上一点的速度:
6
2. 角速度和角加速度 角速度 角加速度a
单位为rad/s(弧度/秒)。 单位为rad/s2(弧度/秒2)。
a
角速度、角加速度都是代数量,符号规定和转角一致。当角速度、
角加速度同号时,刚体作加速转动,否则作减速转动。
用转速n(每分钟内的转数,以r/min为单位)来表示转动的快慢, 角速度与转速之间的关系是: