中考数学 专题三 方案设计与决策型问题

合集下载

最新中考数学专项训练:方案设计与决策型问题(提高)(含答案解析)

最新中考数学专项训练:方案设计与决策型问题(提高)(含答案解析)

中考冲刺:方案设计与决策型问题(提高)一、选择题1.(2016春•内江期末)有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需()A.50 B.100 C.150 D.2002.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.① B.②C.③ D.④3. 下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个 B.3个 C.2个 D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):______.方案(3):______.5.(重庆校级期中)适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择______厂更划算.6. 几何模型:条件:如下左图,A、B是直线同旁的两个定点.问题:在直线上确定一点P,使PA+PB的值最小.方法:作点A关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,则的最小值是___________;(3)如图3,,是内一点,,分别是上的动点,则周长的最小值是___________.三、解答题7. (2016•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?8.(2015•宜昌模拟)今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.9. 某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m,一套B型桌椅(一桌三椅)需木料0.7m,工厂现有库存木料302m.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10. 如图1,矩形铁片ABCD的长为,宽为;为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______ .答案与解析【答案与解析】一、选择题1.【答案】B;【解析】设购甲,乙,丙三种商品各一件需要x元、y元、z元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一件共需150元.2.【答案】B;【解析】如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故选B.3.【答案】A【解析】根据旋转、轴对称的定义来分析.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有 4个.故选 A.二、填空题4.【答案】方案(2):该角恰为两边的夹角时;方案(3):该角为钝角时.5.【答案】甲【解析】设每一份校庆专刊的单价为a元.甲厂的花费:2000a(1﹣20%)(1﹣10%)=1440a;乙厂的花费:1000a(1﹣10%)+1000a(1﹣30%)=1600a;1440a<1600a所以选择甲厂更划算.故答案为:甲.6.【答案】(1);(2);(3).【解析】解:(1)的最小值是DE,.(2)延长AO交⊙o于点D,连接CD交OB于P则PA=PD,PA+PC=PC+PD=CD连接AC,∵AD为直径,∴∠ACD=90°,AD=4∵∠AOC=60°,∴∠ADC=30°在Rt△ACD中,CD=cos30°・AD=,即PA+PC的最小值为(3)解:分别作点P关于OA,OB的对称点E,F,连接EF交OA,OB于R,Q,则△PRQ的周长为:EF,∵OP=OE=OF=10, ∠FOB=∠POB,∠POA=∠AOE,∵∠AOB=45°, ∴∠EOF=90°在Rt△EOF中,∵OE=OF=10,∴EF=10,即△PRQ的周长最小值为10三、解答题7.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.8.【答案与解析】解:(1)设2011年热水器的财政补贴为x亿元,则2012年热水器的财政补贴为1.1x,洗衣机的财政补贴1.2×1.1x、平板电视的财政补贴1.4×1.1x、空调的财政补贴×1.1x,根据题意列方程得:1.1x+1.2×1.1x+1.4×1.1x+×1.1x=264解得:x=5答:2011年热水器的财政补贴为5亿元;(2)设“十二五”的最后两年用于此项财政补贴的年平均增长率为m.根据题意列方程得:(264﹣a)+264+(264+a)+(264+a)×(1+m)+(264+a)(1+m)2=264×5.31+2.31a 即(264+a)m2+3(264+a)m﹣0.31(a+264)=0,m2+3m﹣0.31=0解得:m1=3.1(舍去),x2=0.1.答:此项财政补贴的年平均增长率是10%.9.【答案与解析】解:(1)设生产型桌椅套,则生产型桌椅套,由题意得解得因为是整数,所以有11种生产方案.(2),随的增大而减少.∴当时,有最小值.∴当生产型桌椅250套、型桌椅250套时,总费用最少.此时(元)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.10.【答案与解析】(1)是菱形如图,过点M作MG⊥NP于点GM、N、P、Q分别是AD、AB、BC、CD的中点∴△AMN≌△BPN≌△CPQ≌△DMQ∴MN=NP=PQ=QM∴四边形MNPQ是菱形MN=∴MG=∴此时铁片能穿过圆孔.(2)①如图,过点A作AH⊥EF于点H, 过点E作EK⊥AD于点K显然AB=,故沿着与AB垂直的方向无法穿过圆孔过点A作EF的平行线RS,故只需计算直线RS与EF之间的距离即可BE=AK=,EK=AB=,AF=∴KF=,EF=∠AHF=∠EKF=90°,∠AFH=∠EFK∴△AHF∽△EKF∴可得AH=∴该直角梯形铁片不能穿过圆孔.②或.。

中考数学 专题三 方案设计与决策型问题

中考数学 专题三 方案设计与决策型问题
中考数学 专题三 方案设 计与决策型问题
汇报人: 2023-12-11
目 录
• 方案设计型问题 • 决策型问题 • 方案设计与决策型问题的关系 • 方案设计与决策型问题的实际应用 • 方案设计与决策型问题的备考策略
01
方案设计型问题
定义与特点
定义
方案设计型问题通常是指给定一 个具体的任务或目标,要求考生 设计一个可操作的具体方案或计 划,以实现该任务或目标。
特点
方案设计型问题通常需要考生具 备一定的创新能力和实际操作经 验,同时还需要对相关领域的知 识有一定的了解和掌握。
常见类型与解题思路
• 常见类型:方案设计型问题可以涵盖各个领域,如工程设 计、市场营销、金融投资、产品设计等等。
常见类型与解题思路
解题思路 1. 仔细阅读题目,明确任务和目标。
2. 分析相关领域的知识和背景资料,了解行业标准和最佳实践。
常见类型与解题思路
3. 设计具体的方案和计划,确保其可 行性和可操作性。
5. 综合评估方案的经济效益、社会效 益和环境效益,确保其综合效益最大 化。
4. 针对可能出现的风险和问题,制定 相应的应对措施。
经典案例解析
案例
某城市计划建设一个大型公园,要求实现以下目标:提高市民的生活质量、促进城市的可持续发展、 提升城市的生态环境。请设计一个具体的方案,包括选址、设计、施工和维护等方面的具体计划。
掌握转换技巧与应用场景
1 2 3
代数式转换
掌握代数式转换的技巧和方法,如提取公因式、 平方差公式、完全平方公式等,了解代数式转换 在实际问题中的应用场景。
函数图像转换
了解函数图像的转换方法和技巧,如平移、伸缩 、对称等变换,熟悉函数图像转换在实际问题中 的应用场景。

中考数学专题-方案设计与决策型问题 含答案

中考数学专题-方案设计与决策型问题 含答案

⎨ ⎩ ⎨ 1.(2010 江苏盐城)(本题满分 10 分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格 不得超过进价的 15%.根据相关信息解决下列问题:(1) 降价前,甲乙两种药品每盒的出厂价格之和为 6.6 元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的 5 倍少 2.2 元,乙种药品每盒的零售价格是出厂价格的 6 倍,两种药品每盒的零售价格之和为 33.8 元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2) 降价后,某药品经销商将上述的甲、乙两种药品分别以每盒 8 元和 5 元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价 15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每 10 盒为 1 箱进行包装. 近期该医院准备从经销商处购进甲乙两种药品共 100 箱,其中乙种药品不少于 40 箱,销售这批药品的总利润不低于 900 元.请问购进时有哪几种搭配方案?【答案】解:(1)设甲种药品的出厂价格为每盒 x 元,乙种药品的出厂价格为每盒 y 元.则根据题意列方程组得:⎧x + y = 6.6⎩5x - 2.2 + 6 y = 33.8 ……………………………………(2 分) 解之得:⎧x = 3.6 ⎨ y = 3 …………………………………………………………………(4 分)5×3.6-2.2=18-2.2=15.8(元) 6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是 15.8 元和 18 元 ....... (5 分)(2)设购进甲药品 x 箱(x 为非负整数),购进乙药品(100-x )箱,则根据题意列不等式组得:⎧8⨯15% ⨯10x + 5⨯10% ⨯10(100 - x ) ≥ 900 ⎩100 - x ≥ 40 ………………………………………(7 分)解之得:57 1 ≤ x ≤ 60 7……………………………………………………………(8 分)则 x 可取:58,59,60,此时 100-x 的值分别是:42,41,40有 3 种方案供选择:第一种方案,甲药品购买 58 箱,乙药品购买 42 箱;第二种方案,甲药品购买 59 箱,乙药品购买 41 箱;第三种方案,甲药品购买 60 箱,乙药品购买 40 箱; ……(10 分)(注:(1)中不作答不扣分,(2)中在方案不写或写错扣 1 分)2.(2010 辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购 1 个书包,赠送 1 支水性笔;②购书包和水性笔一律按 9 折优惠.书包每个定价 20 元,水性笔每支定价 5 元.小丽和同学需买 4 个书包,水性笔若干支(不少于 4 支).(1) 分别写出两种优惠方法购买费用 y (元)与所买水性笔支数 x (支)之间的函数关系式;(2) 对 x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3) 小丽和同学需买这种书包 4 个和水性笔 12 支,请你设计怎样购买最经济.【答案】解:(1)设按优惠方法①购买需用 y 1 元,按优惠方法②购买需用 y 2 元 ······ 1 分y 1 = (x - 4) ⨯ 5 + 20 ⨯ 4 = 5x + 60,y 2 = (5x + 20 ⨯ 4) ⨯ 0.9 = 4.5x + 72 . ·················· 3 分(2)设 y 1 > y 2 ,即5x + 60 > 4.5x + 72 ,∴ x > 24 .当 x > 24 整数时,选择优惠方法②. ············· 5 分 设 y 1 = y 2 ,∴当 x = 24 时,选择优惠方法①,②均可.⎨ ∴当 4 ≤ x < 24 整数时,选择优惠方法①. ··············· 7 分(3)因为需要购买 4 个书包和 12 支水性笔,而12 < 24 ,购买方案一:用优惠方法①购买,需5x + 60 = 5 ⨯12 + 60 = 120 元; ···· 8 分 购买方案二:采用两种购买方式,用优惠方法①购买 4 个书包,需要 4 ⨯ 20 =80 元,同时获赠 4 支水性笔;用优惠方法②购买 8 支水性笔,需要8⨯ 5⨯ 90% = 36 元.共需 80+36=116 元.显然 116<120. ··················· 9 分 ∴最佳购买方案是:用优惠方法①购买 4 个书包,获赠 4 支水性笔;再用优惠方法②购买 8 支水性笔.10 分3.(2010 山东济宁)某市在道路改造过程中,需要铺设一条长为 1000 米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设 20 米,且甲 工程队铺设 350 米所用的天数与乙工程队铺设 250 米所用的天数相同.(1) 甲、乙工程队每天各能铺设多少米?(2) 如果要求完成该项工程的工期不超过 10 天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.【答案】(1)解:设甲工程队每天能铺设 x 米,则乙工程队每天能铺设( x - 20 )米.根据题意得:350 = 250 .····························································2 分 x x - 20解得 x = 70 .检验: x = 70 是原分式方程的解.答:甲、乙工程队每天分别能铺设70 米和50 米. ······································· 4 分(2) 解:设分配给甲工程队 y 米,则分配给乙工程队(1000 - y )米.⎧ y 由题意,得 ⎪ 70 ≤ 10, 解得500 ≤ y ≤ 700 . ········· 6 分 ⎪1000 - y ≤ 10.⎩⎪ 50所以分配方案有 3 种.方案一:分配给甲工程队500 米,分配给乙工程队500 米;方案二:分配给甲工程队600 米,分配给乙工程队 400 米;方案三:分配给甲工程队700 米,分配给乙工程队300 米. ····· 8 分4.(2010 四川眉山)某渔场计划购买甲、乙两种鱼苗共 6000 尾,甲种鱼苗每尾 0.5 元,乙种鱼苗每尾 0.8 元.相关资料表明:甲、乙两种鱼苗的成活率分别为 90%和 95%.(1) 若购买这批鱼苗共用了 3600 元,求甲、乙两种鱼苗各购买了多少尾?(2) 若购买这批鱼苗的钱不超过 4200 元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【答案】解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000 -x) 尾,由题意得:0.5x + 0.8(6000 -x) = 3600解这个方程,得:x = 4000∴6000 -x = 2000………………………………………(1 分)答:甲种鱼苗买4000 尾,乙种鱼苗买2000 尾.................. (2 分)(2)由题意得:0.5x + 0.8(6000 -x) ≤ 4200 ……………………………(3 分)解这个不等式,得:x ≥ 2000即购买甲种鱼苗应不少于2000 尾............................. (4 分)(3)设购买鱼苗的总费用为y,则y = 0.5x + 0.8(6000 -x) =-0.3x + 4800 (5 分)由题意,有90x +95(6000 -x) ≥93⨯ 6000 .................................. (6 分)100 100 100解得:x ≤ 2400 ................................................................................... (7 分)在y =-0.3x + 4800 中∵ -0.3 < 0 ,∴y 随x 的增大而减少∴当x = 2400 时,y最小= 4080 .即购买甲种鱼苗2400 尾,乙种鱼苗3600 尾时,总费用最低.………(9 分)5.(2010 浙江嵊州市)为支持玉树搞震救灾,某市 A、B、C 三地现分别有赈灾物资 100 吨、100 吨、80 吨,需全部运往玉树重灾地区 D、E 两县,根据灾区情况,这批赈灾物资运往 D县的数量比运往 E 县的数量的 2 倍少20 吨。

浙教版初中数学初三中考冲刺:方案设计与决策型问题--知识讲解(基础)

浙教版初中数学初三中考冲刺:方案设计与决策型问题--知识讲解(基础)

中考冲刺:方案设计与决策型问题—知识讲解(基础)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【答案与解析】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y 吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?【答案】解:(1)设男生有6x人,则女生有5x人.依题意得:6x+5x=55,∴x=5,∴6x=30,5x=25.答:该班男生有30人,女生有25人.(2)设选出男生y人,则选出的女生为(20-y)人.由题意得:2027y yy--⎧⎨⎩>≥,解得:7≤y<9,∴y的整数解为:7、8.当y=7时,20-y=13,当y=8时,20-y=12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,②若运往B(2)若总运费为5800元,求n的最小值.【思路点拨】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往C地的产品件数:运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A 产品的运费+B 产品的运费+C 产品的运费,进而根据函数的增减性及(1)中②得到的x 的取值求得n 的最小值即可.【答案与解析】②由题意得1600564000x ⎧⎨+≤⎩解得40≤x ≤4267.∵x 为正整数,∴x =40或41或42,∴有3种方案,分别为: (ⅰ)A 地40件,B 地80件,C 地80件; (ⅱ)A 地41件,B 地77件,C 地82件; (ⅲ)A 地42件,B 地74件,C 地84件. (2)由题意得30x +8(n -3x )+50x =5800, 整理得n =725-7x .∵n -3x ≥0,∴x ≤72.5.又∵x ≥0,∴0≤x ≤72.5且x 为正整数.∵n 随x 的增大而减小,∴当x =72时,n 有最小值为221. 【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n 的最小值. 举一反三:【:方案设计与决策型问题 例2】【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水. (1)请你计算每台甲型设备和每台乙型设备的价格各是多少元? (2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费) 【答案】解:(1)设一台甲型设备的价格为x 万元,由题意3x+2×0.75x=54,解得x =12,∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a台,由题意有12a+9(8-a)≤84①;200a+160(8-a)≥1300②,解得:12≤a≤4,由题意a为正整数,∴a=1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W万元,W=12a+9(8-a)+1×10a+1.5×10(8-a),化简得:W=-2a+192,∵W随a的增大而减少∴当a=4时,W最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?(2)该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.【思路点拨】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【答案与解析】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍需资金y万元,则34803400x yx y+=⎧⎨+=⎩,解得90130xy=⎧⎨=⎩.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍需资金130万元.(2)设A类学校应该有a所,则B类学校有(8-a)所.则2030(8)(90-20)(13030)(8)a aa a+-⎧⎨+--⎩≥210≤770,解得aa⎧⎨⎩≤3≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案:方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A 类学校有3所,B 类学校有5所. 【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键. 举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要y 1元,买x 支钢笔需要y 2元,求y 1、y 2关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【答案】解:(1)设每个文具盒x 元,每支钢笔y 元,由题意得5210047161x y x y +=⎧⎨+=⎩,解得1415x y =⎧⎨=⎩. 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x .由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y 2=15x .当买10支以上时,超出部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +30.(3)当y 1<y 2,即12.6x <12x +30时,解得x <50; 当y 1=y 2,即12.6x =12x +30时,解得x =50; 当y 1>y 2,即12.6x >12x +30时,解得x >50.综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱; 当购买奖品等于50件时,买文具盒和买钢笔钱数相等; 当购买奖品超过50件时,买钢笔省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A 地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,填写表2,写出 运费w (元)与a 的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费.【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W 与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【答案与解析】解:(1)设需要大货车x辆,则需要小货车(18﹣x)辆,由题意,得15x+10(18﹣x)=220,解得:x=8,需要小货车18﹣8=10辆.答:需要大货车8辆,则需要小货车10辆;(2)设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,表格2答案为:大货车去乙地(8﹣a)辆,小货车去甲、乙两地各(8﹣a)辆,(2+a)辆.由题意,得W=700a+800(8﹣a)+400(8﹣a)+600(2+a),W=100a+10800.15a+10(8﹣a)≥110,a≥6.∵k=100>0,∴W随a的增大而增大,∴a=6时,W最小=11400,∴运往甲地的大货车6辆,小火车2辆,运往乙地的大货车2辆,小火车8辆.最小运费为11400辆.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计【:方案设计与决策型问题例1】5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.【答案与解析】 解:(1)由题意得, πy+πx=628,∵3.14y+3.14x=628, ∴y+x=200则y=200﹣x ;(2)①W=428xy+400π2()2y+400π2()2x ,=428x (200﹣x )+400×3.14×2(200)4x +400×3.14×24x ,=200x 2﹣40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x ﹣100)2+1.056×107>107, 所以不能; ③由题意可知:x≤23y 即x≤23(200﹣x )解之得x≤80, ∴0≤x≤80,又题意得:W=200(x ﹣100)2+1.056×107=107+6.482×105,整理得(x ﹣100)2=441,解得x 1=79,x 2=121(不合题意舍去), ∴只能取x=79,则y=200﹣79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 【总结升华】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.。

人教版中考数学专题总复习《方案设计与决策型问题》练习题及答案精品教学课件PPT

人教版中考数学专题总复习《方案设计与决策型问题》练习题及答案精品教学课件PPT
当买 10 支以上时,超出部分有优惠,故此时的函 数关系式为 y2=15×10+15×80%(x-10),即 y2=12x +30.
(3)当 y1<y2,即 12.6x<12x+30 时,解得 x<50; 当 y1=y2,即 12.6x=12x+30 时,解得 x=50; 当 y1>y2,即 12.6x>12x+30 时,解得 x>50. 综上所述,当购买奖品超过 10 件但少于 50 件时, 买文具盒省钱; 当购买奖品正好是 50 件时,买文具盒和买钢笔的 钱数相等; 当购买奖品超过 50 件时,买钢笔省钱.
3.今年 4 月份,李大叔收获洋葱 30 吨,黄瓜
13 吨.现计划租用甲、乙两种货车共 10 辆,将这两种
蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱
4 吨和黄瓜 1 吨,一辆乙种货车可装洋葱和黄瓜各
2 吨.李大叔租用甲、乙两种货车的方案有( B )
A.2 种
B.3 种
C.4 种
D.5 种
解析:设租用甲种货车 x 辆,则租用乙种货车 (10-x)辆,依题意,得x4+x+22101-0-xx≥≥133,0, 解这个不 等式组,得 5≤x≤7.∵x 是整数,∴x 可取 5,6,7,即租 用甲、乙两种货车有三种方案:①甲种货车 5 辆,乙种 货车 5 辆;②甲种货车 6 辆,乙种货车 4 辆;③甲种货 车 7 辆,乙种货车 3 辆.故选 B.
(1)每个文具盒、每支钢笔各多少元?
(2)时逢“五一”,商店举行“优惠促销”活动, 具体办法如下:文具盒“九折”优惠;钢笔 10 支以上 超出部分“八折”优惠.若买 x 个文具盒需要 y1 元, 买 x 支钢笔需要 y2 元,求 y1,y2 关于 x 的函数关系式;

中考数学冲刺:方案设计与决策型问题--知识讲解(提高)

中考数学冲刺:方案设计与决策型问题--知识讲解(提高)

1
2
根据题意得解得,
类型三、利用方程(组)3
类型四、利用函数知识进行方案设计4
5
【思路点拨】
本题以紧密联系学生生活的“将军饮马”问题为原型,情景设计合理,设问层次分明,可以参照“将军饮马”问题来解决该题.
【答案与解析】
解:方案一:由题意可得:MB⊥OB,
∴点M到甲村的最短距离为MB.
∵点M到乙村的最短距离为MD.
∴将供水站建在点M处时,管道沿MD、MB线路铺设的长度之和最小.
PE 1 2
方案三:如答图②,作点M关于射线OF的对称点M′,连接作M′N⊥OE于点N,交OF于点G,交AM于点H,
∴M′N为点M′到OE的最短距离,即M′N=GM+GN.
在Rt△M′HM中,∠MM′N=30°,MM′=6.
∴MH=3,
∴NE=MH=3.
∵DE=3,
∴N、D两点重合,即M′N过D点.。

专题三_方案设计与决策型问题

专题三_方案设计与决策型问题

(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用 y1(元)和蔬菜加工厂加工制作纸箱的费用y2(元)关于x(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
【点拨】先分别求出y1和y2关于x的函数关系式,再根据y1=y2,y1>y2
和y1<y2三种方案求x,进行比较、决策.
目录
专题三 方案设计与决策型问题
考点知识梳理 中考典例精析
专题训练
专题训练
【练习篇】
宇轩图书
中考典例精析
首页
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入
某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费 按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加 工一个纸箱还需成本费2.4元.
上一页
下一页
宇轩图书
中考典例精析
首页
• 【点拨】先分别求出y1和y2关于x的函数关系式, 再根据y1=y2,y1>y2和y1<y2三种方案求x,进行比
较、决策. • 【解答】(1)从纸箱厂定制购买纸箱费用为
• y1=4x.由蔬菜加工厂自己加工纸箱费用为 • y2=2.4x+16 000.
(2)y2-y1=(2.4x+16 000)-4x=16 000-1.6x,
宇轩图书
上一页
下一页
专题训练
首页
1.迎接大运,美化深圳,园林部门决定利用现有的3 490盆甲种花卉
和2 950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧, 已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型

中考数学专题(方案设计和决策问题)

中考数学专题(方案设计和决策问题)

中考数学专题方案设计与决策问题方案设计是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,列举出所有可能方案,或确定出最佳方案的一类数学问题.一、主要题型分类①经济类方案设计题:根据方程(组)、不等式(组)的整数解、函数等模型,对实际问题中的方案进行比较来确定最优方案来解决问题;②操作类方案设计题:根据实际问题拼接或分割图形.以上两类试题不仅要求学生要有扎实的数学知识,而且要能够把实际问题中所涉及的数学问题转化、抽象成具体的数学问题.二、解题的一般思路1、解决经济类方案设计题一般过程是:①阅读,弄清问题背景和基本要求;②分析,寻找问题的数量关系,找到与其相关的知识;③建模,由分析得出的相关知识建立方程模型、不等式(组)模型或函数模型;④解题,求解上述建立的方程、不等式或函数,结合实际确定最优方案.2、解决操作类方案设计题一般过程是:①阅读,弄清问题背景和基本要求;②慎重考虑,设计出尽量简便符合要求的图形;③标上适当的数据,或附上文字说明.三、典例讲解【例题1】某市继2019年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【解题思路】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10 000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答过程】(1)设温馨提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意,得2x+3×3x=550,∴ x =50. 经检验,符合题意,∴ 3x =150元.即温馨提示牌和垃圾箱的单价分别是50 元和150 元;(2)设购买温馨提示牌y 个( y 为正整数),则垃圾箱为(100-y) 个,根据题意,得∴ 50 ≤ y ≤ 52.∵y 为正整数,∴y 为50,51,52,共3 种方案.即温馨提示牌50 个,垃圾箱50 个;温馨提示牌51 个,垃圾箱49 个;温馨提示牌52 个,垃圾箱48 个.根据题意,费用为50y+150(100-y)=-100y+15 000,当y =52 时,所需资金最少,最少是9 800 元.【总结归纳】本例题属于经济类方案设计问题,用方程、不等式知识,是通过计算比较获得解决问题的方案的.此题主要考查了一元一次不等式组,一元一次方程的应用,一次函数的图像与性质等知识,正确找出相等关系是解决此类问题的关键.【例题2】为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17 个学生,还剩12 个学生没人带;若每位老师带18 个学生,就有一位老师少带甲种客车乙种客车载客量/(人/辆) 30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3 100 元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为________辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.【解题思路】(1) 设出老师有x 名,学生有y 名,得出二元一次方程组,解出即可;(2) 根据汽车总数不能小于300/42 =50/7 ( 取整为8 )辆,即可求出;(3) 设租用x 辆乙种客车,则甲种客车数为(8-x) 辆,由题意,得400x+300(8-x) ≤ 3 100,得x 的取值范围,分析得出即可.【解答过程】(1)设老师有x 名,学生有y 名.根据题意,列方程组为故老师有16 名,学生有284 名.(2) ∵ 每辆客车上至少要有 2 名老师,∴ 汽车总数不能大于 8 辆.又要保证 300 名师生有车坐,汽车总数不能小于 42300= 750 ( 取整为 8)辆, 综上可知汽车总数为 8 辆.故答案为8.(3)设租用 x 辆乙种客车,则甲种客车数为 (8-x) 辆,∵ 车总费用不超过 3 100 元,∴ 400x +300(8-x) ≤ 3 100,解得 x ≤ 7.为使 300 名师生都有座,∴ 42x +30(8-x) ≥ 300,解得 x ≥ 5.∴ 5 ≤ x ≤ 7 ( x 为整数 ).∴ 共有 3 种租车方案:方案一:租用甲种客车 3 辆,乙种客车 5 辆,租车费用为 2 900 元;方案二:租用甲种客车 2 辆,乙种客车 6 辆,租车费用为 3 000 元;方案三:租用甲种客车 1 辆,乙种客车 7 辆,租车费用为 3 100元;故最节省费用的租车方案是:租用甲种客车 3 辆,乙种客车 5 辆.【总结归纳】本例题属于经济类方案决策型问题,综合运用二元一次方程组与一元一次不等式确定方案,由题意得出租用 x 辆甲种客车与租车费用的不等式关系是解决问题的关键.【例题3】有一张边长为 a 厘米的正方形桌面,因为实际需要,需将正方形边长增加 b 厘米,木工师傅设计了如图所示的三种方案:方案一方案二方案三小红发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解题思路】根据题目中的图形面积可以分别写出方案二和方案三的推导过程,来解决问题.【解答过程】根据由题意,得方案二:a2+ab+(a+b)b= a2+ab+ab+b2=a2+2ab+b2=(a+b)2方案三:= a2+2ab+b2=(a+b)2【总结归纳】本例题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.四、知识拓展与提高【例题4】已知某种水果的批发单价与批发量的函数关系如下图4-1 所示.4-1(1)请说明图中①、② 两段函数图象的实际意义;(2)写出批发该种水果的资金金额w(元) 与批发量n(kg) 之间的函数关系式;在图4-2 的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果;4-2(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图4-3 所示. 该经销商拟每日售出60 kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.4-3【解答过程】(1)图① 表示批发量不少于20 kg 且不多于60 kg 的该种水果,可按5 元/kg 批发;图② 表示批发量高于60 kg 的该种水果,可按4 元/kg 批发.(2)根据题意,得函数图象如图 4-4 所示 .4-4由函数图象可知,资金金额满足 240 < w ≤ 300 时,以同样的资金可批发到较多数量的该种水果 .(3)解法一:设当日零售价为 x 元,由函数图象可得日最高销量n = 320 - 40x ,当 n > 60 时 ,x < 6.5 .根据题意,销售利润为y = (x-4)(320-40x) = 40(x-4)(8-x)= 40[-(x-6)2 +4]从而 x = 6 时,y 最大值 = 160,此时 n = 80 .即销售商应批发 80 kg 该种水果,日零售价定为 6 元/kg ,当日可得最大利润 160 元 . 解法二:设日最高销售量为 x kg (x>60) .则由图 4-3 可知日零售价 p 满足 x = 320 - 40p .则 p = (320-x)/40 .销售利润=-401(x-80)2+160 从而 x = 80 时,y 最大值 = 160,此时 p = 6 .即销售商应批发 80 kg 该种水果,日零售价定为 6 元/kg ,当日可得最大利润 160 元 .【总结归纳】本例题以实际生活中的水果批发为背景,考查了数形结合的数学思想,考查了列方程,求二次函数最值等知识点 .2020中考必考数学题。

中考冲刺:方案设计与决策型问题(基础)

中考冲刺:方案设计与决策型问题(基础)

中考冲刺:方案设计与决策型问题(基础)一转眼,距离中考只有短短几个月了,这个时候,我们不能再像以前那样慢慢悠悠地学习,而是要全力以赴,做好冲刺。

我将为大家分享一套中考冲刺方案,主要针对基础阶段的方案设计与决策型问题。

1.分析问题类型我们要明确决策型问题的特点。

这类问题通常涉及多个选项,需要我们根据已知信息进行分析、比较和判断,最终作出最佳选择。

这类问题分为两种:一种是单一决策问题,另一种是多阶段决策问题。

2.确定解题思路(1)理解题意:仔细阅读题目,确保理解题目所描述的情境、条件和目标。

(2)分析选项:对每个选项进行分析,找出其优点和缺点。

(3)比较选项:将各选项进行对比,找出最佳方案。

(4)作出决策:根据比较结果,作出最终选择。

3.实战演练下面,我们通过几个例子来具体讲解决策型问题的解题方法。

A.方案一:投资100万元,预计一年后收回投资并盈利50万元;B.方案二:投资200万元,预计一年后收回投资并盈利100万元;C.方案三:投资300万元,预计一年后收回投资并盈利150万元。

请问,该企业应该选择哪个方案?解答:我们要分析每个方案的优缺点。

方案一投资较少,但收益也较低;方案二投资适中,收益适中;方案三投资较多,收益也较高。

我们需要比较这三个方案。

从收益角度看,方案三最优;但从投资角度看,方案一最具优势。

综合考虑,我们可以认为方案二是最佳选择。

A.方案一:投资50亿元,预计五年后收回投资并盈利10亿元;B.方案二:投资80亿元,预计四年半后收回投资并盈利15亿元。

请问,该城市应该选择哪个方案?解答:同样地,我们先分析每个方案的优缺点。

方案一投资较少,但收益较低;方案二投资较多,收益也较高。

我们比较这两个方案。

从投资角度看,方案一更具优势;但从收益角度看,方案二更佳。

考虑到地铁建设对城市发展的长远影响,我们可以认为方案二是最佳选择。

4.决策型问题拓展(1)考虑时间因素:如上面的例2,我们需要根据项目的投资回收期来判断方案的优劣。

中考冲刺方案设计与决策型问题—知识讲解(基础).doc

中考冲刺方案设计与决策型问题—知识讲解(基础).doc

中考冲刺:方案设计与决策型问题—知识讲解(基础)【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【答案与解析】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x ≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元; 第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元; 第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元; 即购买A 型污水处理设备13台,则购买B 型污水处理设备7台时,所需购买资金最少,最少是226万元.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件. 举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案? 【答案】解:(1)设男生有6x 人,则女生有5x 人. 依题意得:6x +5x =55, ∴x =5,∴6x =30,5x =25.答:该班男生有30人,女生有25人.(2)设选出男生y 人,则选出的女生为(20-y )人.由题意得:,解得:7≤y <9,∴y 的整数解为:7、8. 当y =7时,20-y =13, 当y =8时,20-y =12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.(1)当n =200时,①根据信息填表:A 地B 地C 地 合计 产品件数(件)x 2x 200 运费(元)30x2027y y y --⎧⎨⎩>≥②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n 的最小值.【思路点拨】(1)①运往B 地的产品件数=总件数n -运往A 地的产品件数-运往C 地的产品件数:运费=相应件数×一件产品的运费;②根据运往B 地的件数不多于运往C 地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A 产品的运费+B 产品的运费+C 产品的运费,进而根据函数的增减性及(1)中②得到的x 的取值求得n 的最小值即可.【答案与解析】(1)①根据信息填表:A 地B 地C 地合计产品件数(件) 200-3x运费(元)1 600-24x 50x56x +1 600②由题意得解得40≤x ≤42.∵x 为正整数,∴x =40或41或42,∴有3种方案,分别为: (ⅰ)A 地40件,B 地80件,C 地80件; (ⅱ)A 地41件,B 地77件,C 地82件; (ⅲ)A 地42件,B 地74件,C 地84件. (2)由题意得30x +8(n -3x )+50x =5800, 整理得n =725-7x . ∵n -3x ≥0,∴x ≤72.5.又∵x ≥0,∴0≤x ≤72.5且x 为正整数.∵n 随x 的增大而减小,∴当x =72时,n 有最小值为221.【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n 的最小值.举一反三:【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.200321600564000x xx -≤⎧⎨+≤⎩(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费) 【答案】解:(1)设一台甲型设备的价格为x 万元,由题意3x+2×0.75x=54,解得x =12,∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有12a+9(8-a)≤84①;200a+160(8-a)≥1300②,解得:≤a≤4,由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为 方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台 方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台 (3)设二期工程10年用于治理污水的总费用为W 万元, W=12a+9(8-a )+1×10a+1.5×10(8-a ), 化简得:W=-2a +192,∵W 随a 的增大而减少 ∴当a =4时,W 最小(逐一验算也可) ∴按方案四甲型购买4台,乙型购买4台的总费用最少.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A 、B 两类学校的校舍进行改造.根据预测,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.(1)改造一所A 类学校和一所B 类学校的校舍所需资金分别是多少万元?(2)该县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所. 【思路点拨】(1)等量关系为:改造一所A 类学校和三所B 类学校的校舍共需资金480万元;改造三所A 类学校和一所B 类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A 类学校的总钱数+地方财政投资B 类学校的总钱数≥210;12国家财政投资A 类学校的总钱数+国家财政投资B 类学校的总钱数≤770.【答案与解析】解:(1)设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍需资金y 万元,则,解得.答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍需资金130万元.(2)设A 类学校应该有a 所,则B 类学校有(8-a )所. 则,解得,∴1≤a ≤3,即a =1,2,3. 答:有3种改造方案:方案一:A 类学校有1所,B 类学校有7所; 方案二:A 类学校有2所,B 类学校有6所; 方案三:A 类学校有3所,B 类学校有5所. 【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键. 举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要y 1元,买x 支钢笔需要y 2元,求y 1、y 2关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【答案】解:(1)设每个文具盒x 元,每支钢笔y 元,由题意得 ,解得. 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x .由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y 2=15x . 当买10支以上时,超出部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10),即y 2=12x +30.(3)当y 1<y 2,即12.6x <12x +30时,解得x <50; 当y 1=y 2,即12.6x =12x +30时,解得x =50; 当y 1>y 2,即12.6x >12x +30时,解得x >50.34803400x y x y +=⎧⎨+=⎩90130x y =⎧⎨=⎩2030(8)(90-20)(13030)(8)a a a a +-⎧⎨+--⎩≥210≤770a a ⎧⎨⎩≤3≥152********x y x y +=⎧⎨+=⎩1415x y =⎧⎨=⎩综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱;当购买奖品等于50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,填写表2,写出运费w(元)与a的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费.【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【答案与解析】解:(1)设需要大货车x辆,则需要小货车(18﹣x)辆,由题意,得15x+10(18﹣x)=220,解得:x=8,需要小货车18﹣8=10辆.答:需要大货车8辆,则需要小货车10辆;(2)设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,表格2答案为:大货车去乙地(8﹣a)辆,小货车去甲、乙两地各(8﹣a)辆,(2+a)辆.由题意,得W=700a+800(8﹣a)+400(8﹣a)+600(2+a),W=100a+10800.15a+10(8﹣a)≥110,a≥6.∵k=100>0,∴W随a的增大而增大,∴a=6时,W最小=11400,∴运往甲地的大货车6辆,小火车2辆,运往乙地的大货车2辆,小火车8辆.最小运费为11400辆.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y 米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.【答案与解析】解:(1)由题意得,πy+πx=628,∵3.14y+3.14x=628,∴y+x=200则y=200﹣x;(2)①W=428xy+400π+400π,=428x (200﹣x )+400×3.14×+400×3.14×,=200x 2﹣40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下, 由①知W=200(x ﹣100)2+1.056×107>107, 所以不能;③由题意可知:x≤y 即x≤(200﹣x )解之得x≤80, ∴0≤x≤80,又题意得:W=200(x ﹣100)2+1.056×107=107+6.482×105, 整理得(x ﹣100)2=441,解得x 1=79,x 2=121(不合题意舍去), ∴只能取x=79,则y=200﹣79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 【总结升华】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.2()2y2(200)4x 24x。

中考冲刺:方案设计与决策型问题(提高)

中考冲刺:方案设计与决策型问题(提高)

中考冲刺:方案设计与决策型问题(提高)清晨的阳光透过窗帘的缝隙,洒在了我的书桌上,思绪也随之活跃起来。

在这个关键时期,如何设计一套高效的中考冲刺方案,帮助学生在决策型问题上游刃有余,成了我心中的牵挂。

我们要明确决策型问题的特点。

这类问题往往要求学生在有限的时间内,对复杂情境进行快速、准确的判断。

因此,提高解题速度和准确度是关键。

一、知识点梳理1.系统梳理各科知识点,形成知识框架。

让学生对所学知识有一个整体的把握,为解决决策型问题奠定基础。

2.针对每个知识点,设计相应的例题和练习题,让学生在实践中掌握解题方法。

二、解题技巧训练2.设计针对性强的解题技巧训练题,让学生在实际操作中提高解题速度和准确度。

3.组织模拟考试,让学生在实战中检验自己的解题技巧。

三、心理素质培养1.培养学生的自信心。

在冲刺阶段,信心是成功的一半。

要让学生相信自己,敢于面对挑战。

2.增强学生的抗压能力。

决策型问题往往要求学生在高压环境下保持冷静,因此,培养学生的抗压能力至关重要。

3.提高学生的应变能力。

面对复杂的情境,学生要学会灵活应对,迅速作出决策。

四、时间管理策略1.合理安排学习时间。

在冲刺阶段,时间就是金钱。

要让学生学会合理分配时间,提高学习效率。

2.设定学习目标。

为学生设定明确的学习目标,让他们有针对性地进行复习。

3.利用碎片时间。

鼓励学生充分利用碎片时间,如上下学途中、课间休息等,进行复习。

五、家校合作2.家长要关心学生的生活。

在冲刺阶段,学生的生活节奏加快,家长要关注学生的饮食、作息等,确保学生身心健康。

3.家长要给予学生适当的支持。

在关键时刻,家长的支持是学生最大的动力。

六、冲刺阶段具体方案1.第一阶段:知识点复习(1周)重点复习各科知识点,形成知识框架。

每天安排一定时间进行复习,确保学生对所学知识有一个整体的把握。

2.第二阶段:解题技巧训练(2周)针对每个知识点,设计相应的例题和练习题,让学生在实践中掌握解题方法。

中考专题--利用函数与不等式解方案设计与决策型问题

中考专题--利用函数与不等式解方案设计与决策型问题

利用函数与不等式解方案设计与决策型问题一、从一道例题的解答看方案设计与决策型问题引例:恩发建筑公司从上海某厂购得挖机4台,从北京某厂购得挖机10台。

现在决定运往重庆分公司8台,其余都运往汉口分公司;从上海运往汉口、重庆的运费分别是300元/台、500元/台,从北京运往汉口、重庆的运费分别是400元/台、800元/台 。

(1)若总运费为8400元,上海运往汉口应多少台?解:(1)设上海运往汉口应x 台,则400(6-x)+ 300x + 800(x+4) + 500(4-x) = 8400解得:x=4因此,若总运费为8400元, 上海运往汉口应4台。

(2)若总运费少于8400元,有哪几种调运方案?解:(2)由题意知:200x+7600<8400解得:x < 4∵x 为非负整数∴x=0、1、2或3∴若要求总运费不超过 8400元,共有4种调运方案。

如下表:(3)求出总运费最低的调运方案,总运费是多少?设总运费为y 元,由题意知:y= 200x+7600∵200>0 ∴x=0时y 最小,为7600元。

调运方案如下: 北京到汉口6台,北京到重庆4台,上海到重庆4台.二、方案设计与决策型问题的基本解题方法方案设计型问题是指应用数学基础知识建模的方法,来按题目所呈现的要求进行计算,论证,选择,判断,设计的一种数学试题。

纵观近年来各地的中考试题,涉及方案设计与应用的试题大量涌现,它在考查学生数学创新应用能力方面可谓独树一帜,新颖别致。

其类型有利用不等式(组)进行方案设计,利用概率与统计进行方案设计,利用函数知识进行方案设计,利用几何知识进行方案设计。

其中以利用函数与不等式解决的方案设计问题为最多。

利用函数与不等式解决的方案设计问题的基本方法是:(1)根据题意建立一次函数关系式;(2)根据实际意义建立关于自变量的不等式组,求函数自变量的取值范围;(3)根据函数自变量的取值范围,确定符合条件的设计方案;(4)利用一次函数的性质求最大值或最小值,确定最优化方案。

九年级数学专题复习方案设计与决策型问题

九年级数学专题复习方案设计与决策型问题

中考冲刺:方案设计与决策型问题【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计例1.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:(1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.运往地车型甲 地(元/辆) 乙 地(元/辆) 大货车 720 800 小货车 500 650类型二、利用不等式(组)进行方案设计例2.为美化市容,园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花卉搭配A,B两种园艺造型共50个,摆放在文庙广场,搭配每个造型所需花卉情况如表,解答问题:造型甲乙A 90盆30盆B 40盆100盆(1)符合题意的搭配方案有哪几种?(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,试说明选用哪种方案成本最低?举一反三:【变式】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和l辆乙型汽车共需费用2450元.且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.类型三、利用方程(组)、不等式(组)综合知识进行方案设计例3.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?举一反三:【变式】为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20∶1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅(课桌凳和办公桌椅均成套购进).(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案.类型四、利用函数知识进行方案设计例4.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?类型五、利用几何知识进行方案设计例5.某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所饮水站,由供水站直接铺设管道到另外两处.如图所示,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的23km处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A和点M处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB某处),请你在图②中,画出铺设到乙村某处和点M处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?举一反三:【变式】在△ABC 中,BC =a ,BC 边上的高h =2a ,沿图中线段DE 、CF 将△ABC 剪开,分成的三块图形恰能拼成正方形CFHG ,如图所示.请你解决如下问题:已知:在锐角△A ′B ′C ′中,B ′C ′=a ,B ′C ′边上的高h =a 21.请你设计两种不同的分割方法,将△A ′B ′C ′沿分割线剪开后,所得的三块图形恰能拼成一个正方形,画出分割线及拼接后的图形.【巩固练习】 一、选择题1.有甲,乙,丙三种商品,如果购甲3件,乙2件,丙1件共需315元钱,购甲1件,乙2件,丙3件共需285元钱,那么购甲,乙,丙三种商品各一件共需( )A .50B .100C .150D .2002.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④3. 下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个 B.3个 C.2个 D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2): .方案(3): .5.适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择厂更划算.6.几何模型:条件:如下左图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.+=的值最小(不必证方法:作点A关于直线l的对称点A',连结A B'交l于点P,则PA PB A B'明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方+的最小值是形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB PE___________;(2) 如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,则PA PC +的最小值是___________;(3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,则PQR △周长的最小值是___________.三、解答题7. 现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式; (2)小明选择哪家快递公司更省钱? 8.今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a 亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a 亿元.(1)若热水器的财政补贴今年比2011年增长10%,则2011年热水器的财政补贴为多少亿元? (2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.ABA 'PlOA B PRQ 图3OABC 图2ABE CPD图1P9.某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10.如图1,矩形铁片ABCD 的长为a 2,宽为a ;为了要让铁片能穿过直径为a 1089的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M 、N 、P 、Q 分别是AD 、AB 、BC 、CD 的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD 的中心作一条直线分别交边BC 、AD 于点E 、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=a 51时,判断直角梯形铁片EBAF 能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF 顺利穿过圆孔,请直接写出线段BE 的长度的取值范围 .。

中考冲刺:方案设计与决策型问题(提高)

中考冲刺:方案设计与决策型问题(提高)

中考冲刺:方案设计与决策型问题(提高)中考冲刺:方案设计与决策型问题(提高)一、选择题1.(20XX春•内江期末)有甲,乙,丙三种商品,如果购甲3,乙2,丙1共需315元钱,购甲1,乙2,丙3共需285元钱,那么购甲,乙,丙三种商品各一共需()A.50B.100C.150D.200 2.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是()A.①B.②C.③D.④3.下面的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个二、填空题4.我们知道,只有两边和一角对应相等的两个三角形不一定全等.你处理和安排这三个条,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3).解:设有两边和一角对应相等的两个三角形.方案(1):若这角恰好是直角,则这两个三角形全等.方案(2):______.方案(3):______.5.(重庆校级期中)适逢南开中学建校78周年暨(融侨)中学建校10周年校庆活动,学校准备印刷2000份校庆专刊.甲厂的优惠是先降价20%,再降价10%,乙厂的优惠是前1000份优惠10%,后1000份优惠30%,选择______厂更划算.6.几何模型:条:如下左图,A、B是直线同旁的两个定点.问题:在直线上确定一点P,使PA+PB的值最小.方法:作点A关于直线的对称点,连结交于点,则的值最小(不必证明).模型应用:(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,与关于直线对称.连结交于,则的最小值是___________;(2)如图2,的半径为2,点在上,,,是上一动点,则的最小值是___________;(3)如图3,,是内一点,,分别是上的动点,则周长的最小值是___________.三、解答题7.(20XX•临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?8.(20XX•宜昌模拟)今年是“十二五”计划的开局之年,5月16日国务院讨论通过《国家基本公共服务体系“十二五”规划》.会议决定:本年度安排264亿元的财政补贴用于推广符合节能标准的家用电器(包括空调、平板电视、洗衣机和热水器),其中洗衣机、平板电视的补贴比热水器补贴分别多20%、40%,而热水器的补贴比空调补贴少;同时建议,以后两年用于推广符合节能标准家用电器的财政补贴每年递增a亿元,“十二五”的最后两年用于此项财政补贴每年按照一定比例递增,从而使“十二五”期间财政补贴总额比规划第二年补贴的5.31倍还多2.31a亿元.(1)若热水器的财政补贴今年比2021年增长10%,则2021年热水器的财政补贴为多少亿元?(2)求“十二五”的最后两年用于此项财政补贴的年平均增长率.9.某工厂计划为某山区学校生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m,一套B型桌椅(一桌三椅)需木料0.7m,工厂现有库存木料302m.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往该学校,已知每套型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用生产成本运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.10.如图1,矩形铁片ABCD的长为,宽为;为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是_______________,给出证明,并通过计算说明此时铁片都能穿过圆孔;(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______ .答案与解析【答案与解析】一、选择题1.【答案】B;【解析】设购甲,乙,丙三种商品各一需要x元、y元、z 元.根据题意,得,两方程相加,得4x+4y+4z=600,x+y+z=150.则购甲,乙,丙三种商品各一共需150元.2.【答案】B;【解析】如图,把标有序号②的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故选B.3.【答案】A 【解析】根据旋转、轴对称的定义来分析.图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;轴对称是指如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,就是轴对称.图形1可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形2可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 3可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形 4可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有 4个.故选 A.二、填空题4.【答案】方案(2):该角恰为两边的夹角时;方案(3):该角为钝角时.5.【答案】甲【解析】设每一份校庆专刊的单价为a元.甲厂的花费:2000a(1﹣20%)(1﹣10%)=1440a;乙厂的花费:1000a(1﹣10%)+1000a(1﹣30%)=1600a;1440a<1600a所以选择甲厂更划算.故答案为:甲.6.【答案】(1);(2);(3).【解析】解:(1)的最小值是DE,.(2)延长AO交⊙o于点D,连接CD交OB于P则PA=PD,PA+PC=PC+PD=CD连接AC,∵AD为直径,∴∠ACD=90°,AD=4∵∠AOC=60°,∴∠ADC=30°在Rt△ACD中,CD=cos30°・AD=,即PA+PC的最小值为(3)解:分别作点P关于OA,OB的对称点E,F,连接EF交OA,OB于R,Q,则△PRQ的周长为:EF,∵OP=OE=OF=10, ∠FOB=∠POB,∠POA=∠AOE,∵∠AOB=45°, ∴∠EOF=90°在Rt△EOF中,∵OE=OF=10,∴E F=10,即△PRQ的周长最小值为10 三、解答题7.【答案与解析】解:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3.(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<;令y甲=y乙,即22x=16x+3,解得:x=;令y甲>y乙,即22x>16x+3,解得:<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:1<x<4.综上可知:当<x<4时,选乙快递公司省钱;当x=4或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>4时,选甲快递公司省钱.8.【答案与解析】解:(1)设2021年热水器的财政补贴为x亿元,则20XX 年热水器的财政补贴为1.1x,洗衣机的财政补贴1.2×1.1x、平板电视的财政补贴1.4×1.1x、空调的财政补贴×1.1x,根据题意列方程得:1.1x+1.2×1.1x+1.4×1.1x+×1.1x=264解得:x=5答:2021年热水器的财政补贴为5亿元;(2)设“十二五”的最后两年用于此项财政补贴的年平均增长率为m.根据题意列方程得:(264﹣a)+264+(264+a)+(264+a)×(1+m)+(264+a)(1+m)2=264×5.31+2.31a即(264+a)m2+3(264+a)m﹣0.31(a+264)=0,m2+3m﹣0.31=0解得:m1=3.1(舍去),x2=0.1.答:此项财政补贴的年平均增长率是10%.9.【答案与解析】解:(1)设生产型桌椅套,则生产型桌椅套,由题意得解得因为是整数,所以有11种生产方案.(2),随的增大而减少.∴当时,有最小值.∴当生产型桌椅250套、型桌椅250套时,总费用最少.此时(元)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.10.【答案与解析】(1)是菱形如图,过点M作MG⊥NP于点GM、N、P、Q分别是AD、AB、BC、CD的中点∴△AMN≌△BPN≌△CPQ≌△DMQ ∴MN=NP=PQ=QM∴四边形MNPQ是菱形MN=∴MG=∴此时铁片能穿过圆孔.(2)①如图,过点A作AH⊥EF于点H, 过点E作EK⊥AD于点K 显然AB=,故沿着与AB垂直的方向无法穿过圆孔过点A作EF的平行线RS,故只需计算直线RS与EF之间的距离即可BE=AK=,EK=AB=,AF=∴KF=,EF=∠AHF=∠EKF=90°,∠AFH=∠EFK ∴△AHF∽△EKF ∴可得AH=∴该直角梯形铁片不能穿过圆孔.②或.第 11 页共 11 页。

最新中考数学专项训练:方案设计与决策型问题--知识讲解(基础)(含答案解析)

最新中考数学专项训练:方案设计与决策型问题--知识讲解(基础)(含答案解析)

中考冲刺:方案设计与决策型问题—知识讲解(基础)责编:常春芳【中考展望】方案设计与决策型问题对于考查学生的数学创新应用能力非常重要.如让学生设计图形、设计测量方案、设计最佳方案等都是近年考查的热点,题目多以解答题为主.方案设计与决策型问题是近几年的热点试题,主要利用图案设计或经济决策来解决实际问题.题型主要包括:1.根据实际问题拼接或分割图形;2.利用方程(组)、不等式(组)、函数等知识对实际问题中的方案进行比较等.方案设计与决策问题就是给解题者提供一个问题情境,要求解题者利用所学的数学知识解决问题,这类问题既考查动手操作的实践能力,又培养创新品质,应该引起高度重视.【方法点拨】解答决策型问题的一般思路,是通过对题设信息进行全面分析、综合比较、判断优劣,从中寻找到适合题意的最佳方案.解题策略:建立数学模型,如方程模型、不等式模型、函数模型、几何模型、统计模型等,依据所建的数学模型求解,从而设计方案,科学决策.【典型例题】类型一、利用方程(组)进行方案设计1.(2016•凉山州)为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【思路点拨】(1)根据1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨,可以列出相应的二元一次方程组,从而解答本题;(2)根据题意可以列出相应的不等式组,从而可以得到购买方案,从而可以算出每种方案购买资金,从而可以解答本题.【答案与解析】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y 吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.【总结升华】本题考查一元一次不等式组的应用、二元一次方程组的应用,解题的关键是明确题意,找出所求问题需要的条件.举一反三:【变式】某班有学生55人,其中男生与女生的人数之比为6∶5.(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上.请问男、女生人数有几种选择方案?【答案】解:(1)设男生有6x人,则女生有5x人.依题意得:6x+5x=55,∴x=5,∴6x=30,5x=25.答:该班男生有30人,女生有25人.(2)设选出男生y人,则选出的女生为(20-y)人.由题意得:2027y yy--⎧⎨⎩>≥,解得:7≤y<9,∴y的整数解为:7、8.当y=7时,20-y=13,当y=8时,20-y=12.答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人.类型二、利用不等式(组)进行方案设计2.温州享有“中国笔都”之称,其产品畅销全球.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数(件)x 2x 200运费(元)30x②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值.【思路点拨】(1)①运往B地的产品件数=总件数n-运往A地的产品件数-运往C地的产品件数:运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数,总运费不超过4000元列出不等式组,求得整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费,进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【答案与解析】(1)①根据信息填表:A地B地C地合计产品件数(件)200-3x运费(元) 1 600-24x 50x 56x+1 600②由题意得20032 1600564000x xx-≤⎧⎨+≤⎩解得40≤x≤4267.∵x为正整数,∴x=40或41或42,∴有3种方案,分别为:(ⅰ)A地40件,B地80件,C地80件;(ⅱ)A地41件,B地77件,C地82件;(ⅲ)A地42件,B地74件,C地84件.(2)由题意得30x+8(n-3x)+50x=5800,整理得n=725-7x.∵n-3x≥0,∴x≤72.5.又∵x≥0,∴0≤x≤72.5且x为正整数.∵n随x的增大而减小,∴当x=72时,n有最小值为221.【总结升华】考查一次函数的应用,得到总运费的关系式是解决本题的关键,注意结合自变量的取值n的最小值. 举一反三:【高清课堂:方案设计与决策型问题例2】【变式】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,要求本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】解:(1)设一台甲型设备的价格为x万元,由题意3x+2×0.75x=54,解得x=12,∵12×75%=9,∴一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a台,由题意有12a+9(8-a)≤84①;200a+160(8-a)≥1300②,解得:12≤a≤4,由题意a为正整数,∴a=1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台;方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台;方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W万元,W=12a+9(8-a)+1×10a+1.5×10(8-a),化简得:W=-2a+192,∵W随a的增大而减少∴当a=4时,W最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.类型三、利用方程(组)、不等式(组)综合知识进行方案设计3.在实施“中小学校舍安全工程”之际,某县计划对A、B两类学校的校舍进行改造.根据预测,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校和一所B类学校的校舍所需资金分别是多少万元?(2)该县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所.【思路点拨】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【答案与解析】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍需资金y万元,则34803400x yx y+=⎧⎨+=⎩,解得90130xy=⎧⎨=⎩.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍需资金130万元.(2)设A类学校应该有a所,则B类学校有(8-a)所.则2030(8)(90-20)(13030)(8)a aa a+-⎧⎨+--⎩≥210≤770,解得aa⎧⎨⎩≤3≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案:方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A 类学校有3所,B 类学校有5所. 【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键. 举一反三:【变式】为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要y 1元,买x 支钢笔需要y 2元,求y 1、y 2关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱. 【答案】解:(1)设每个文具盒x 元,每支钢笔y 元,由题意得5210047161x y x y +=⎧⎨+=⎩,解得1415x y =⎧⎨=⎩. 答:每个文具盒14元,每支钢笔15元.(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x .由题意知,买钢笔10支以下(含10支)没有优惠,故此时的函数关系式为y 2=15x .当买10支以上时,超出部分有优惠,故此时的函数关系式为y 2=15×10+15×80%(x -10), 即y 2=12x +30.(3)当y 1<y 2,即12.6x <12x +30时,解得x <50; 当y 1=y 2,即12.6x =12x +30时,解得x =50; 当y 1>y 2,即12.6x >12x +30时,解得x >50.综上所述,当购买奖品等于10件但少于50件时,买文具盒省钱; 当购买奖品等于50件时,买文具盒和买钢笔钱数相等; 当购买奖品超过50件时,买钢笔省钱.类型四、利用函数知识进行方案设计4.(2015•深圳模拟)将220吨物资从A 地运往甲、乙两地,用大、小两种货车共18辆,恰好一次性运完这批物资,已知这两种货车的载重量分别为15(吨/辆)和10(吨/辆),运往甲、乙两地的运费如表1:(1)求这两种货车各需多少辆?(2)如果安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,填写表2,写出 运费w (元)与a 的函数关系式.若运往甲地的物资不少于110吨,请设计出货车调配方案,并求出最少运费. 表1 甲地(元/辆) 乙地(元/辆) 货车 700 800 小货车 400 600 表2. 甲地 乙地 大货车 a 辆 辆小货车辆辆【思路点拨】(1)设需要大货车x辆,则需要小货车(18﹣x)辆,根据两种货车的运货总量为220吨建立方程求出其解即可(2)由安排8辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,由总运费=两地费用之和就可以表示会出W 与a的关系式,由运往甲地的物资不少于110吨建立不等式求出a的取值范围,由一次函数的性质就可以求出结论.【答案与解析】解:(1)设需要大货车x辆,则需要小货车(18﹣x)辆,由题意,得15x+10(18﹣x)=220,解得:x=8,需要小货车18﹣8=10辆.答:需要大货车8辆,则需要小货车10辆;(2)设前往甲地的大货车为a辆,则甲地的小货车为(8﹣a)辆,乙地的大货车为(8﹣a)辆,小货车(2+a)辆,表格2答案为:大货车去乙地(8﹣a)辆,小货车去甲、乙两地各(8﹣a)辆,(2+a)辆.由题意,得W=700a+800(8﹣a)+400(8﹣a)+600(2+a),W=100a+10800.15a+10(8﹣a)≥110,a≥6.∵k=100>0,∴W随a的增大而增大,∴a=6时,W最小=11400,∴运往甲地的大货车6辆,小火车2辆,运往乙地的大货车2辆,小火车8辆.最小运费为11400辆.【总结升华】此题主要考查了一次函数的应用以及不等式的解法和一次函数的最值问题,根据题意用x表示出运往各地的台数是解决问题的关键.类型五、利用几何知识进行方案设计【高清课堂:方案设计与决策型问题例1】5.某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.【思路点拨】(1)把组合图形进行分割拼凑,利用圆的周长计算公式解答整理即可;(2)①利用组合图形的特点,算出种植花草和铺设鹅卵石各自的面积,进一步求得该工程的总造价即可解答;②利用配方法求得最小值进行验证即可得出结论;③建立不等式与一元二次方程,求出答案结合实际即可解决问题.【答案与解析】 解:(1)由题意得, πy+πx=628,∵3.14y+3.14x=628, ∴y+x=200则y=200﹣x ;(2)①W=428xy+400π2()2y+400π2()2x ,=428x (200﹣x )+400×3.14×2(200)4x +400×3.14×24x ,=200x 2﹣40000x+12560000;②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x ﹣100)2+1.056×107>107, 所以不能; ③由题意可知:x≤23y 即x≤23(200﹣x )解之得x≤80, ∴0≤x≤80,又题意得:W=200(x ﹣100)2+1.056×107=107+6.482×105,整理得(x ﹣100)2=441,解得x 1=79,x 2=121(不合题意舍去), ∴只能取x=79,则y=200﹣79=121;所以设计方案是:AB 长为121米,BC 长为79米,再分别以各边为直径向外作半圆. 【总结升华】此题利用基本数量关系和组合图形的面积列出二次函数,运用配方法求得最值,进一步结合不等式与一元二次方程解决实际问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.迎接大运,美化深圳,园林部门决定利用现有的3 490盆甲种花卉
和2 950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧, 已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型
需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设
【解答】(1)方案 1 最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案 2 最后得分:18(7.0+7.8+3×8.0+3×8.4)=8. 方案 3 最后得分:8.
方案4最后得分:8或8.4. (2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数 据的“平均水平”,所以方案1不适合作为最后得分的方案. 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合 作为最后得分的方案.
方案1 所有评委所给分的平均数. 方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后 再计算其余给分的平均数. 方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实 验.下图是这个同学的得分统计图.
(1)分别按上述4个方案计算这个同学演讲的最后得分. (2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个 同学演讲的最后得分. 【点拨】对于题目中的四种方案我们可以分别计算出结果,只要注意 平均数、中位数、众数的概念及其三种统计量的意义即可.
专题三 方案设计与决策型问题
考点知识梳理 中考典例精析
专题训练
专题训练
【练习篇】
方案设计与决策问题就是给解题者提供一个问题情景.要求解题者 利用所学的数学知识,解决题目的要求,这类问题既考查了学生动手操作 的实践能力,又培养了学生的创新品质,应该引起我们的高度重视.
关于一次函数和不等式的方案设计是最近几年中考的命题热点,正 确理解题意,找出等量关系,列出函数表达式是解题的关键,分类讨论一 定要全面,不能有遗漏.
园艺造型17个.
(2)应选择方案③,成本最低,最低成本为42 720元. 2.有一个可以自由转动的转盘,被分成了4个相同的扇 形,分别标有数1、2、3、4(如图所示),另有一个不透明的 口袋装有分别标有数0、1、3的三个小球(除数不同外,其余 都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的 数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数 ,然后计算这两个数的积. (1)请你用画树形图或列表的方法,求这两个数的积为0的概率; (2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢; 否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你设计该 游戏规则,使游戏公平.
选择方案一,从纸箱厂定制购买纸箱所需的费用低;
当x>10 000时,y1>y2,
选择方案二,由蔬菜加工厂自己加工纸箱所需的费用低;
当x=10 000时,y1=y2,
两种方案都可以,两种方案所需的费用相同.
某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从 如下4个方案中选择合理的方案来确定每个演讲者的最后得分.
3y+4z=20,且 x+y+z=7.解得xy==42,, z=1,
或xy==23,, z=2.
【答案】C
二、填空题(每小题6分,共6分)
2.(2010中考变式题)如图所示,AB为⊙O的直径,DC⊥AB,现有的长 方形长、宽分别为AC、CB,若要设计一个正方形,使其面积等于长方形面
积,则正方形的边长应为________.

【解答】(1)从纸箱厂定制购买纸箱费用为y1=4x. 由蔬菜加工厂自己加工纸箱费用为y2=2.4x+16 000. (2)y2-y1=(2.4x+16 000)-4x=16 000-1.6x, 由y1=y2,得16 000-1.6x=0,解得x=10 000, ∴当x<10 000时,y1<y2,
【解析】连接 AD、BD,因为 AB 为⊙O 的直径,∴∠ADB=90°. 易证△ACD∽△DCB,得DACC=DCCB,即 DC2=AC·CB.
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入 某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元; 方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费 按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加 工一个纸箱还需成本费2.4元.
一、选择题(每小题4分,共4分)
1.(2012中考预测题)一宾馆有二人间、三人间、四人间三种客 房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个 房间都住满,租房方案有( )
A.4种 B.3种 C.2种 D.1种
【解析】设租二人间 x 间,三人间 y 间,四人间 z 间,则 2x+
计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是
960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
答案:(1)可设计三种搭配方案:①A种园艺造型31个,B种园艺造型 19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种
(1)若需要这种规格的纸箱x个,请分别写出从纸箱厂购买纸箱的费用 y1(元)和蔬菜加工厂加工制作纸箱的费用y2(元)关于x(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
【点拨】先分别求出y1和y2关于x的函数关系式,再根据y1=y2,y1>y2 和y1<y2三种方案求x,进行比较、决策.
答案:(1)积为 0 的概率为 P=142=13. (2)不公平. 积为奇数的概率为 P1=142=13;积为偶数的概 率为 P2=182=23,所以该游戏不公平.
游戏规则可修改如下: 若这两个数的积为 0,则小亮赢;积为奇数,则小红赢.(只 要正确即可)
方案设计与决策型问题 训练时间:60分钟 分值:100分
相关文档
最新文档