1.2有理数教案 人教版数学

合集下载

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。

借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。

七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。

两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。

以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。

例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。

数学人教版七年级上第一章:1.2-有理数教案

数学人教版七年级上第一章:1.2-有理数教案

数学人教版七年级上第一章:1.2有理数教案1教学目标:1.1知识与技能:①借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;②利用相反数符号表示方法化简多重符号;③理解掌握绝对值的概念和意义,体会绝对值的作用。

1.2过程与方法:①用情景引出问题,采用数形结合的方法观察数轴上与原点对称的点的特点,找出这两点到原点的距离关系。

②培养学生分析、解决问题的能力,逐步渗透数形结合的思想方法。

③通过正数、负数、零的相反数和绝对值的学习,体会分类讨论的方法1.3情感态度与价值观:①逐步培养学生探索学习数学的方法。

②通过师生的活动,学生自我探究,让学生充分参与到学习中。

2教学重点/难点/易考点2.1教学重点:①理解相反数、绝对值的意义②有理数的大小比较③借助数轴利用数形结合的思想方法理解相反数、绝对值的概念和几何意义2.2教学难点①相反数的识别和理解②利用绝对值比较两个负数的大小3专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,介绍了相反数和绝对值,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的,体会相反数及绝对值的实际含义。

4教学方法问题引入——数形结合理解相反数、绝对值的意义——交流讨论——课程小节——巩固练习 5教学用具6教学过程6.1问题引入问题1:在数轴上表示出下面的点,2,-3,2.5,-2,3,-2.5观察所画的数轴及表示的点,这些点有什么特点?问题2:这些点有哪些不同,他们有什么关系?【教师说明】提问上面两个问题,总结同学们的回答,说明像2和-2,3和-3,2.5和-2.5他们只有符号不同,分别在原点的两侧,到原点的距离相等,那么这两个点关于原点对称。

人教版数学七年级上册1.2《有理数的除法》教学设计

人教版数学七年级上册1.2《有理数的除法》教学设计

人教版数学七年级上册1.2《有理数的除法》教学设计一. 教材分析《有理数的除法》是人教版数学七年级上册第一章第二节的内容,本节内容是在学生已经掌握了有理数的概念和加减乘除的基础上进行学习的。

有理数的除法是数学中的基本运算之一,它不仅涉及到数学知识,还涉及到生活实际,例如在解决实际问题时,经常会遇到需要进行除法运算的情况。

因此,本节内容的学习对于学生来说是非常重要的。

二. 学情分析学生在学习本节内容之前,已经掌握了有理数的概念和加减乘除的知识,但是对于除法运算的理解可能还不够深入,特别是在处理负数的除法时,可能会存在一定的困难。

因此,在教学过程中,需要引导学生通过实例来理解除法运算的规律,并通过练习来巩固所学知识。

三. 教学目标1.知识与技能:使学生掌握有理数的除法运算方法,能够正确进行有理数的除法运算。

2.过程与方法:通过实例分析,让学生理解有理数除法运算的规律,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、克服困难的意志品质。

四. 教学重难点1.重点:有理数的除法运算方法。

2.难点:理解处理负数除法时的运算规律。

五. 教学方法采用讲解法、引导法、练习法、讨论法等教学方法,以学生为主体,教师为主导,通过实例分析、练习巩固等方式,引导学生自主学习,提高学生的学习效果。

六. 教学准备1.准备相关的教学PPT,包括除法运算的定义、规律和练习题。

2.准备一些实际问题,让学生通过解决实际问题来理解除法运算的应用。

3.准备黑板和粉笔,用于板书解题过程和重点知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“小明买了一本书,原价是25元,书店进行了8折优惠,小明实际支付了多少钱?”让学生思考并解答这个问题,引出有理数的除法运算。

2.呈现(10分钟)讲解有理数的除法运算方法,包括定义、规律和注意事项。

通过PPT展示相关的知识点,让学生了解除法运算的基本规则。

有理数人教版数学七年级上第一章第一课时教案

有理数人教版数学七年级上第一章第一课时教案

1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。

并会判断一个给定的数是整数或分数或有理数。

②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。

③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。

④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。

1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。

②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。

2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。

②数轴的三要素和有理数在数轴上的表示方法教学。

2.2 教学难点①给一个数能正确说出它属于的集合。

②有理数与数轴上点的对应关系。

3 专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。

在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。

人教版-数学-七年级上册-人教版七年级第一章第二节 1.2有理数 教案

人教版-数学-七年级上册-人教版七年级第一章第二节 1.2有理数 教案

人教版七年级第一章第二节 有理数 教案【教学目标】知识技能1. 进一步加深对负数的认识。

2. 掌握有理数的概念,会对有理数按照一定的标准进行分类, 初步了解“集合”的含义。

过程方法体会分类讨论的思想,能理解不同的分类标准有不同的分类方法,但都要求不重不漏。

情感态度通过师生合作,使分数、整数在引入负数的基础上达到完善,从而体会到成功的快乐。

【教学重点】正确理解有理数的概念。

【教学难点】正确理解分类的标准和按照定的标准进行分类。

【复习引入】1. 我们知道,所有的分数都可以写成两个整数的比.有限小数0.37可以写成两个整数的比吗?无限循环小数•3.0也可以写成两个整数的比吗?所有的有限小数都是分数吗? 所有的无限循环小数呢?结论:所有的有限小数和无限循环小数都是分数.想一想:小数3.14159265是分数吗?圆周率π为什么不是分数?你能确定小数3.14159265…是不是分数吗?2.小学所学的整数只包括正整数和零,也就是自然数.学了负整数以后,今后我们所指的整数与小学时所学的整数有什么不同? 对,还有负整数。

结论:正整数﹑零﹑负整数统称整数.3. 下列负数哪些是负分数?-12, 73-, -0.33, •-3.5. 【教学过程】 1. 所有正整数组成正整数集合, 所有负整数组成负整数集合.请把下列各数填入它所属于的集合的大括号里:1, 0.0708, -700, -3.88, 0, 3.14159265, 237-, ••32.0. 正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …} 负分数集合:{ …}分数集合:{ …}(注意:大括号内的省略号表示什么?)数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

补充:所有正数组成正数集合,所有负数组成负数集合,所有整数组成整数集合,所有分数组成分数集合,所有正数和0组成非负数集合,所有正整数和0组成自然数集合……2.归纳概念:整数:正整数、0、负整数统称为整数。

人教版数学七年级上册1.2《有理数》教学设计

人教版数学七年级上册1.2《有理数》教学设计

人教版数学七年级上册1.2《有理数》教学设计一. 教材分析人教版数学七年级上册1.2《有理数》是学生在初中阶段接触数学的基础概念之一。

本节内容主要介绍有理数的定义、分类、运算及其性质。

教材通过丰富的实例和生动的语言,让学生感受有理数在实际生活中的应用,培养学生对数学的兴趣和好奇心。

教材内容由浅入深,循序渐进,既注重知识传授,又注重能力培养,为学生进一步学习更高级的数学知识打下坚实基础。

二. 学情分析七年级的学生已具备一定的数学基础,但对有理数的概念、性质和运算可能还比较陌生。

因此,在教学过程中,教师要关注学生的认知水平,针对学生的特点进行引导和讲解。

同时,学生在这个年龄段具有较强的求知欲和好奇心,教师应充分利用这一点,通过丰富的教学手段激发学生的学习兴趣。

三. 教学目标1.让学生了解有理数的定义、分类和性质,理解有理数在实际生活中的应用。

2.培养学生掌握有理数的运算方法,提高学生的数学运算能力。

3.引导学生运用数形结合的思想方法,感受数学的趣味性和实用性。

4.培养学生的团队合作精神,提高学生的口头表达和交流能力。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算方法。

3.有理数的性质。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,让学生感受数学与实际的联系。

2.启发式教学法:引导学生主动思考、探究有理数的性质和运算方法。

3.小组合作学习:让学生在团队合作中交流想法,提高口头表达能力。

4.数形结合:利用图形辅助讲解,让学生更加直观地理解有理数的概念和性质。

六. 教学准备1.教学课件:制作富有生动形象的课件,辅助讲解和展示。

2.实例素材:准备一些与生活实际相关的问题,用于引入和巩固知识点。

3.练习题库:挑选一些有针对性的练习题,用于课堂练习和课后作业。

4.图形工具:准备一些图形工具,如数轴、坐标轴等,用于数形结合的讲解。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。

人教版初中七年级数学第一单元有理数1.2.4_绝对值教案

人教版初中七年级数学第一单元有理数1.2.4_绝对值教案

6 / 6人教版初中七年级数学第一单元有理数1.2 有理数(第4课时)教学目标1.会求一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小.2.经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略.3.渗透数形结合等思想方法,培养学生的概括能力.教学重点难点重点:绝对值的定义.难点:求一个数的绝对值.课前准备多媒体课件教学过程导入新课1.上节课我们学习了相反数,请画一条数轴,并标出表示6,-2,0及它们的相反数的点.2.大家设想一下,如果在你刚才所画数轴上表示+6和-6的两点处各有一只蚂蚁以相同的速度向原点爬去,会是谁先爬到呢?讨论一下,答案是,原因是. 答案:1.如图1所示.图12.同时爬到两点到原点的距离相等师生活动教师展示图片,学生到黑板上画出数轴,分组讨论第2题,并回答.探究新知活动11.关于“蚂蚁爬行”的问题,大家一定回答上来了,原因是两点到原点的相等.2.+6与-6互为相反数,只有不同,但表示它们的点到是相等的.3.两辆汽车从同一处O出发,分别向东、西方向行驶,第一辆沿公路向东行驶了10千米,第二辆向西行驶了10千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作10千米和-10千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了,如图2所示.(媒体展示:汽车的位置,直观体现问题)图2提出问题(1)它们的行驶路线相同吗?(2)它们的行驶路程相等吗?4.下面请同学们阅读教材第11页,思考并解决以下几个问题:(1)什么叫做绝对值?怎么用语言表达?其关键词是什么?(2)绝对值用符号怎样表示?(3)绝对值里面的数都可以是哪些数?6 / 6(要求学生自己看书,勾画主要内容)归纳:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值.记作|a|.这里的a可以是正数,可以是负数,也可以是0.例如,上面的问题中|10|=10,|-10|=10,而|0|=0.答案:1.距离 2.符号原点的距离3.(1)路线不同 (2)路程相等4.(1)数轴上表示数a的点与原点的距离叫做数a的绝对值.(2)记作|a|.(3)可以是正数、零、负数.师生活动教师展示问题图片,学生分组讨论并回答问题.教师总结:从“形”的角度看,绝对值就是数轴上表示数a的点与原点的距离,所以绝对值绝对不会是个负值.活动21.想一想+6和-6的绝对值分别是什么,有什么关系?±3呢?2.分别写出下列绝对值的结果:︱5︱=,︱-2︱=,︱+4︱=,︱9︱=,︱0︱=,︱-7.8︱=.3.上边分别求了正数、负数和0的绝对值,观察这些结果,你能得到一个数的绝对值与这个数的关系吗?6 / 64.在如图3所示数轴上标出表示-1.5,-3,-1,-5的点.图3它们的绝对值分别是,,,,这四个数的大小你一定知道.-1.5,-3,-1,-5呢?试填在下边横线上:>>>.答案:1.6,6,相等;3,3,相等.2.5 2 4 9 0 7.83.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.4.图略 1.5 3 1 5 -1 -1.5 -3 -5师生活动教师展示问题图片,学生分组讨论后举手回答问题.教师总结:从“数”的角度看,非负数的绝对值是它本身,非正数的绝对值是它的相反数.可见绝对值具有非负性.新知应用例1 比较下列两组数的大小:和-2.7.(1)-1和-7;(2)-56解:(1)-1>-7;(2)-5>-2.7.6师生活动6 / 6教师展示问题图片,让学生到黑板前做题,下面学生自主完成.教师总结:两个负数比较大小,绝对值大的反而小.例2 用“<”连接下列各数:-2.7,-3.5,0,23,π.解:-3.5<-2.7<0<23<π.师生活动教师展示问题图片,学生分组讨论,回答问题并总结出此类问题的解决方法. 课堂练习(见导学案“当堂达标”)参考答案1.B2.B 解析:原式=-1+2=1,故选B.3.C 解析:实数的大小比较方法:正数大于零,零大于负数.因为π>3,所以选C.4.C 解析:负数的比较方法:绝对值大的反而小,故选C.5.A6.D7.B 解析:因为│−13│=13,所以│−13│的相反数是-13.点评:主要考查绝对值与相反数.本题是求│−13│的相反数,而不是求-13的相反数.8.D 9.±46 / 66 / 610.(1)11 -5,-4,-3,-2,-1,0,1,2,3,4,5(2)4,5,-4,-511.812.a =2,b =3.课堂小结1.什么是绝对值?2.正数、负数、0的绝对值分别是什么?3.如何利用绝对值比较两个负数的大小?4.比较有理数的大小还有什么方法?布置作业教材第11页练习第1,3题板书设计教学反思绝对值的性质,是初中数学中的一个重要性质,这也是历年中考的一个热点;本节教师上课时可作必要的补充,如:(1)|a |≥0. (2)|a |≥a .(3)|a |=|-a|.(4)若|a|=|b|,则a=b或a=-b.(5)若|a|+|b|=0,则a=b=0,以此来突出重点,强化难点.6 / 6。

大理市一中七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 有理数教案 新人教版

大理市一中七年级数学上册 第1章 有理数 1.2 有理数 1.2.1 有理数教案 新人教版

第一章有理数1.2 有理数【知识与技能】(1)掌握有理数的概念,会对有理数按一定的标准进行分类,培养分类能力;(2)了解分类的标准与集合的含义;(3)体会分类是数学上常用的处理问题的方法.【过程与方法】采用探究、归纳与练习相结合的形式引导学生联系实际,认识有理数.【情感态度与价值观】通过按不同的标准对有理数进行分类,学会从不同的侧面看待同一种事物,从多个角度分析问题.正确理解有理数的概念.正确理解有理数的分类标准,学会按照一定标准对有理数进行分类.多媒体课件在前面的学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了数还包括负数,现在请同学们在草稿纸上任意写出3个数(同时请3位同学上台在黑板上写出).教师提问:观察黑板上的9个数,你能将它们分类吗?学生思考讨论分类的情况.学生可能只给出了很粗略的分类,如只分为“正数”“负数”和“0”三类,此时,教师应给予引导和鼓励.划分数的类型要从文字所表示的意义上去引导,这样易于学生理解.例如,对于数5,可这样问:5和5.1是相同的类型吗?5可以表示5个人,5.1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数”.通过教师的引导、鼓励和不断完善以及学生的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,0,负整数,正分数和负分数”一、思考探究,获取新知在学生讨论的基础上,引导学生自己进行有理数的分类举例.我们学过的数有:正整数,如1,2,3,…;0;负整数,如-1,-2,-3,…;正分数,如13,227,4.5即412,…;负分数,如-12,-227,-0.3即-310,-35,….教师给出整数、分数和有理数的概念:正整数、0和负整数统称为整数;正分数、负分数统称为分数.整数和分数统称为有理数.教师:“统称”是指合起来总的名称.教师提问:你能对以上各种数做出一张分类表吗(要求不重复不遗漏)?让学生根据自己做出的分类表将数进行分类,可以根据不同的需要,采用不同的分类标准.提示:根据有理数的概念划分:根据有理数的性质划分:通过分类让学生感受分类的方法和原则:统一标准,不重不漏.教师出示投影,提出问题,师生共同解答.回答下列问题:(1)0是不是整数?0是不是有理数?(2)-5是不是整数?-5是不是有理数?(3)-0.3是不是负分数?-0.3是不是有理数?【解】(1)0是整数,也是有理数.(2)-5是整数,也是有理数.(3)-0.3是负分数,也是有理数.二、典例精析,掌握新知例把下列各数填入相应的数集(分正数、负数、整数、分数、有理数)内:-18,227,3.141 6,0,2 016,-35,-0.142 857,95%.【解】正数:{227,3.141 6,2 016,95%,…}.负数:{-18,-35,-0.142 857,…}.整数:{-18,0,2 016,…}.分数:{227,3.141 6,-35,-0.142 857,95%,…}.有理数:{-18,227,3.141 6,0,2 016,-35,-0.142 857,95%,…}.到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同.教材P6练习第1,2题数轴课后作业1.下列说法中,错误的是( )A .所有的有理数都可以用数轴上的点表示B .数轴上的原点表示0C .在数轴上表示-3的点与表示-1的点的距离是-2D .数轴上表示-314的点,在原点左边314个单位 2.下列绘制的数轴正确的是( )3.用“>”或“<”填空.(1)-0.01_______0,(2)-3.5_______-513,(3)-0.67_______-23. 4.最小的正整数为______,最大的负整数为________,最小的自然数为________,最小的非负数为______,最大的非正数为________,最大的负数为________.5.小于6的所有正整数的和是________.6.点A 在数轴上表示的数是+1,从点A 出发,沿数轴向左平移3个单位长度到达点B ,则点B 所表示的数是________.7.在数轴上,与表示-1的点距离为2的点所表示的数为________.8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,判定墨迹遮盖的整数共有________个.9.比较下列各组数的大小.(1)-3和0;(2)-4和-2.10.把数4,-3,1.5,212表示在数轴上,并将它们按从小到大的顺序排列.11.在数轴上有三个点A ,B ,C 如图所示,请回答:(1)将B 点向左移动3个单位长度后,三个点表示的数谁最小?(2)与A 点相距3个单位长度的点所表示的数是什么?(3)将C 点左移6个单位长度后,这时B 点表示的数比C 点表示的数大多少?12.一辆货车从百货大楼出发负责送货,向东走4千米到达小明家,继续向东走1千米到达小红家,然后向西走10千米到达小刚家,最后回到百货大楼.以百货大楼为原点,向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置.中考链接(2013·莱芜)如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.4参考答案课后作业1.C 数轴上表示-3的点与-1的点的距离是2.2.B 考查数轴的画法3.(1)< (2)> (3)<4.1 -1 0 0 0 不存在 5.15 6.-27.1或-3 -1左、右侧各有一个点8.90左侧的点表示的数是-1,负号被盖上了,墨迹盖上的负整数有5个,正整数有4个9.(1)-3<0(负数小于零) (2)-4<-2(在数轴上,-4所对应的点在-2所对应点的左侧)10.如图所示:-3<1.5<212<411.(1)-2+(-3)=-5,-5<-4<3,B 最小;(2)-4-3=-7,-4+3=-1,是-1,-7;(3)1.12.解:如图所示.中考链接C M 点在-2和-3之间,故选C.DedeCMS Error Warning!Error page: /plus/download_iweike.php?open=2&id=6153906&uhash=4520326796de34546f9f5112 Error infos: DedeCms错误警告:连接数据库失败,可能数据库密码不对或数据库服务器出错!9。

人教版数学七年级上册1.2《有理数的除法》教学设计1

人教版数学七年级上册1.2《有理数的除法》教学设计1

人教版数学七年级上册1.2《有理数的除法》教学设计1一. 教材分析人教版数学七年级上册1.2《有理数的除法》是学生在学习了有理数的概念和加减乘法运算后,进一步学习有理数除法运算的重要内容。

本节内容通过实例引入有理数的除法运算,让学生掌握有理数除法的基本法则,理解除法运算与乘法运算的互逆关系,为后续学习更高级的数学运算打下基础。

二. 学情分析学生在七年级上册之前已经学习了整数的四则运算,对运算有一定的理解和掌握。

但是,对于有理数的除法运算,学生可能还存在一定的困难,特别是在理解除法运算的实质和法则方面。

因此,在教学过程中,需要引导学生从具体实例出发,理解有理数除法的实质,掌握有理数除法的基本法则。

三. 教学目标1.理解有理数除法的基本法则,能正确进行有理数的除法运算。

2.理解除法运算与乘法运算的互逆关系,提高运算能力。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数除法的基本法则。

2.除法运算与乘法运算的互逆关系。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体实例引入有理数除法,引导学生从实际问题中抽象出有理数除法的规则,并通过小组合作学习,让学生在实践中掌握有理数除法运算。

六. 教学准备1.教学课件。

2.练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个具体实例,如“小明有3个苹果,他想把这3个苹果平均分给3个朋友,每个朋友能得到几个苹果?”引导学生思考,引出有理数除法运算的概念。

2.呈现(15分钟)呈现有理数除法的基本法则,如“两数相除,同号得正,异号得负,并把绝对值相除”。

同时,通过具体例子,让学生理解除法运算与乘法运算的互逆关系。

3.操练(15分钟)让学生进行有理数除法的练习,教师巡回指导,及时纠正学生在运算过程中存在的问题。

4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数除法运算。

例如,让学生分组解决一些实际问题,如“某商品原价为200元,打8折后,售价是多少?”5.拓展(5分钟)引导学生思考除法运算在实际生活中的应用,如“在购物时,如何计算折扣后的价格?”6.小结(5分钟)对本节课的内容进行总结,强调有理数除法的基本法则和除法运算与乘法运算的互逆关系。

【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)

【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)

第一章有理数1.2有理数1.2.1有理数1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数说明:让学生感受分类的方法和原则,统一标准,不重不漏. 三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数⎩⎪⎨⎪⎧正数整数分数负数零四、练习与小结 练习:教材练习题. 小结:谈一谈今天你的收获. 五、作业 习题1.2第1题本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。

人教版七年级数学上册:1.2.1《有理数》教学设计2

人教版七年级数学上册:1.2.1《有理数》教学设计2

人教版七年级数学上册:1.2.1《有理数》教学设计2一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的一部分,主要介绍了有理数的概念、分类和运算。

本节课的内容是学生学习数学的基础,对于培养学生的逻辑思维和抽象思维能力具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,但是对于有理数的概念和运算可能还比较陌生。

因此,在教学过程中,需要注重引导学生从实际问题中抽象出有理数的概念,并通过具体的例题和练习来让学生理解和掌握有理数的运算方法。

三. 教学目标1.了解有理数的概念和分类。

2.掌握有理数的加、减、乘、除运算方法。

3.能够运用有理数解决实际问题。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

五. 教学方法1.情境教学法:通过实际问题引导学生抽象出有理数的概念。

2.例题教学法:通过具体的例题讲解和练习让学生掌握有理数的运算方法。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和团队精神。

六. 教学准备1.教学PPT:制作详细的PPT,内容包括有理数的概念、分类和运算方法。

2.例题和练习题:准备一些有代表性的例题和练习题,用于讲解和巩固知识点。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入有理数的概念,例如:“小明的零花钱有3元,小红给了小明2元,请问小明现在有多少元?”引导学生思考和讨论,从而引出有理数的概念。

2.呈现(15分钟)通过PPT展示有理数的定义、分类和运算方法。

用简洁明了的语言解释有理数的概念,并用图示和实例展示有理数的分类。

接着讲解有理数的加、减、乘、除运算方法,并通过具体的例题进行演示。

3.操练(10分钟)让学生分组进行练习,每组选择一道例题进行讲解和讨论。

学生在讲解过程中,教师进行指导和点评。

然后,让学生独立完成一些练习题,教师巡回辅导。

4.巩固(5分钟)选取一些典型的练习题,让学生上台板书并进行讲解。

2022年人教版七年级数学上册第一章有理数教案 绝对值(第1课时)

2022年人教版七年级数学上册第一章有理数教案  绝对值(第1课时)

第一章有理数1.2 有理数1.2.4 绝对值第1课时一、教学目标【知识与技能】1.借助数轴初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【过程与方法】1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念3.给出一个数,能求它的绝对值。

【情感态度与价值观】1. 从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

2. 培养学生积极参与探索活动,体会数形结合的方法.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确理解绝对值的概念,能求一个数的绝对值.【教学难点】借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.五、课前准备教师:课件、三角尺、屋顶架结构图等。

学生:三角尺、铅垂纸、小刀。

六、教学过程(一)导入新课教师问1:两辆汽车从同一处O出发分别向东、西方向行驶10km,到达A、B两处.(出示课件2)它们的行驶路线的方向相同吗?学生回答:不相同.教师问2:它们行驶路程的距离(线段OA、OB的长度)相同吗?学生回答:相同在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.(二)探索新知1.师生互动,探究绝对值的概念教师问3:甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正,两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作___km,乙车向西行驶10km到达B处,记做_________km.(出示课件4)学生回答:+10,-10教师问4:以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(出示课件5)学生回答:A、B两点与原点距离都是10,线段OA表示向东行驶10千米,线段OB表示向西行驶10千米.教师问5:如果汽车每公里耗油0.15升,计算甲、乙两辆汽车各耗油多少升?学生回答:甲、乙两辆汽车各耗油1.5升.教师问6:计算汽车的耗油量时,我们考虑是+10或-10了吗?学生回答:没有.教师讲解:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;这样我们得到了一个新的数学概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|总结点拨:(出示课件6)2.师生互动,探究绝对值的性质教师问7:观察这些表示绝对值的数,它们有什么共同点?(出示课件8)|5|=5 |-10|=10 |3.5|= 3.5|100|=100 |-3|=3 |50|=50|-4.5|=4.5 |-5000|=5000 |0|=0……学生讨论后回答:都是正数或0,也就是非负数.教师问8:观察下面正数的绝对值,想一想一个正数的绝对值是什么?|3.5|= 3.5 |100|=100 |50|=50学生回答:一个正数的绝对是它本身.教师问9:观察下面负数的绝对值,想一想一个负数的绝对值是什么?|-10|=10 |-3|=3 |-4.5|=4.5 |-5000|=5000学生回答:一个负数的绝对值是它本身的相反数.教师问10:0的绝对值是什么?学生回答:0的绝对值是0.总结点拨:(出示课件9)结论1:一个正数的绝对值是正数.一个负数的绝对值是正数.0的绝对值是0.|a|≥0任何一个有理数的绝对值都是非负数!结论2:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.教师问11:字母a表示一个有理数,你知道a的绝对值等于什么吗?(出示课件10)师生共同讨论后解答如下:(1)当a是正数时,|a|=__a__;(2)当a是负数时,|a|=_-a_;(3)当a=0时,|a|=__0_.绝对值的判断法则:教师问12:相反数、绝对值的联系是什么?(出示课件11)学生回答:互为相反数的两个数的绝对值相等. 绝对值相等,符号相反的两个数互为相反数.例1:求下列各数的绝对值.(出示课件12)12, , -7.5, 0.师生共同解答如下:解:|12|=12;正数的绝对值等于它本身.,|-7.5|=7.5;负数的绝对值等于它的相反数.|0|=0. 0的绝对值是0.总结点拨:(出示课件13)求一个数的绝对值的步骤例2:填一填:(出示课件16)(1)绝对值等于0的数是___,(2)绝对值等于5.25的正数是_____,(3)绝对值等于5.25的负数是______,(4)绝对值等于2的数是_______.师生共同解答如下:答案:(1)0,(2)5.25,(3)-5.25,(4)2或-2易错提醒:注意绝对值等于某个正数的数有两个,它们互为相反数,解题时不要遗漏负值.总结点拨:(出示课件17)绝对值的性质(1)任何有理数都有绝对值,且只有一个.(2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝对值越小,离原点越远,绝对值越大.(3)互为相反数的两个数的绝对值相等.(4)绝对值相等的两个数相等或互为相反数.例3:已知|x–4|+|y–3|=0,求x+y的值.(出示课件19)师生共同解答如下:分析:一个数的绝对值总是大于或等于0,即为非负数,如果两个非负数的和为0,那么这两个数同时为0.解:根据题意可知x - 4=0,y - 3=0,所以x=4,y=3,故x+y=7.总结点拨:几个非负数的和为0,则这几个数都为0.(三)课堂练习(出示课件21-25)1.如图,点A所表示的数的绝对值是( )A.3 B.-3C.D.2. 判断并改错:(1)一个数的绝对值等于本身,则这个数一定是正数. ( )(2)一个数的绝对值等于它的相反数,这个数一定是负数. ( )(3)如果两个数的绝对值相等,那么这两个数一定相等. ( )(4)如果两个数不相等,那么这两个数的绝对值一定不等. ( )(5)有理数的绝对值一定是非负数. ( )3. -2018的绝对值是______.4. ____的相反数是它本身,_______的绝对值是它本身,_______的绝对值是它的相反数.5. 的相反数是_____;若,则a= _____.6. 求下列各数的绝对值:3,3.14,,-2.8.7. 化简:| 0.2 |=______;=______;| b |=______ (b<0);| a – b | =______(a >b).8.正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下:指出哪个排球的质量好一些,并用绝对值的知识加以说明.参考答案:1.A2.(1)×;(2)×;(3)×;(4)×;(5)√.3.20184.0,非负数,非正数.5. ,±26. 解:|3|=3;|3.14|=3.14;|-2.8|=2.8.7.0.2;,-b,a-b.8. 答:第五个排球的质量好一些,因为它的绝对值最小,也就是离标准重量的克数最近.(四)课堂小结今天我们学了哪些内容:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.(五)课前预习预习下节课(1.2.4)12页到13页的相关内容。

人教版七年级数学上册1.2《有理数》说课稿

人教版七年级数学上册1.2《有理数》说课稿

人教版七年级数学上册1.2《有理数》说课稿一. 教材分析《有理数》是人教版七年级数学上册第一章第二节的内容,本节内容是在学生已经学习了自然数、整数的基础上,引入负数和分数的概念,让学生初步理解有理数的定义及其性质。

教材通过丰富的实例和生动的语言,引导学生逐步认识和理解有理数,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于自然数和整数有一定的认识。

但负数和分数对他们来说是一个新的概念,可能存在一定的理解难度。

因此,在教学过程中,需要关注学生的认知水平,通过生动的实例和贴近生活的情境,激发学生的学习兴趣,帮助他们理解和掌握有理数的概念和性质。

三. 说教学目标1.知识与技能目标:使学生理解有理数的定义,掌握有理数的性质,能够运用有理数的概念解决一些实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生抽象思维能力,提高学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用价值。

四. 说教学重难点1.教学重点:有理数的定义及其性质。

2.教学难点:负数的概念和性质,有理数的运算。

五. 说教学方法与手段1.教学方法:采用情境教学法、问题教学法、合作学习法等,引导学生主动探究,发现知识,培养学生的抽象思维能力。

2.教学手段:利用多媒体课件、实物模型、学习卡片等辅助教学,提高课堂教学效果。

六. 说教学过程1.导入新课:通过展示生活中的一些实例,如温度、海拔等,引导学生认识负数,激发学生的学习兴趣。

2.探究新知:引导学生观察、分析、归纳有理数的定义和性质,让学生在探究过程中掌握知识。

3.巩固新知:通过一些练习题,让学生运用所学知识解决问题,巩固新知识。

4.拓展应用:出示一些实际问题,让学生运用有理数的概念解决问题,培养学生的应用能力。

5.小结:对本节课的主要内容进行总结,强化学生的记忆。

6.布置作业:布置一些有关有理数的练习题,让学生课后巩固所学知识。

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。

学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。

本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。

二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。

因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。

同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。

三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。

2.能够正确进行有理数的除法运算。

3.培养学生的运算能力,提高学生解决问题的能力。

四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。

2.教学难点:负数除法运算的理解,以及运算过程的准确性。

五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。

同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。

六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。

2.练习题,包括不同类型的有理数除法题目。

3.教学黑板,用于板书关键知识点和运算过程。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。

例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。

2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。

让学生初步了解有理数除法的基本概念。

3.操练(10分钟)教师提出练习题目,让学生独立完成。

例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。

教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。

人教版初中七年级数学第一单元有理数1.2.2_数轴教案

人教版初中七年级数学第一单元有理数1.2.2_数轴教案

人教版初中七年级数学第一单元有理数1.2 有理数(第2课时)教学目标1.掌握数轴的概念,理解数轴上的点和有理数的关系.2.会正确地画出数轴,利用数轴上的点表示有理数.3.领会类比、数形结合的重要思想方法.教学重点难点重点:能将已知数在数轴上表示出来,说出数轴上已知点所表示的数;用数轴比较有理数的大小.难点:数轴的画法;用数轴比较负分数的大小.课前准备多媒体课件、温度计教学过程导入新课导入一:在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站牌西3 m和4.8 m处分别有一棵槐树和一根电线杆,你能画图表示这一情况吗?导入二:1.图1中是我们经常见到的温度计,你们会读出显示的温度吗?6 / 66 / 6图12.根据已有的生活经验,请找出一支温度计在外观上具有哪些不可缺少的特征?3.我们看到温度计上有好多数:正整数、负整数、零,而这些数都是有理数.那大家想想能不能把所有的有理数都放在温度计上呢?答案:1.5 ℃ 0 ℃ -10 ℃2.一条竖线,有刻度.刻度是按照大小顺序排列的.3.能.探究新知活动1学生分组讨论以下问题,并画图表示.(1)马路可以用什么几何图形代表?(2)汽车站牌起什么作用?(3)你是怎么确定问题中各物体的位置的?答案:(1)用直线代表马路.(2)汽车站牌作为基准点.(3)根据各个物体与站牌的方向和距离关系确定在直线上的位置,如图2所示.6 / 6图2师生活动教师用多媒体出示问题.学生带着问题阅读教材第7页的内容,思考讨论问题并回答.教师总结.活动2各小组拿出温度计,观察温度计的结构,想一想它与上面所画的直线有什么共同点?答案:温度计也是用一条直线上的点表示正数、负数和零.师生活动学生观察温度计,思考并回答问题.活动3阅读教材第8页,思考如下问题:1.数轴的概念是什么?2.(1)画数轴的步骤是什么?(2)原点起到什么作用?(3)你是怎样理解选取适当的长度为单位长度的?答案:1.略.2.(1)画数轴的步骤:①画直线取原点;②规定正方向;③选取单位长度,取点.(2)原点是正数、负数的分界,它是数轴的基准点.(3)单位长度大小的选取要根据实际需要灵活选取.要表示的数绝对值较大时,单位长度就可以取小一些;要表示的数绝对值较小时,单位长度就可以取大一些. 师生活动教师总结:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a 个单位长度.新知应用例1 画出数轴,并用数轴上的点表示下列各数:2,-1.5,0,3.5,-4.解:如图3所示.图3师生活动教师展示问题图片,学生分组讨论并回答问题.教师总结:数轴上的点表示的数,右边的数总比左边的数大.设计意图使学生明确数轴上的点表示数的意义,会画数轴,并用数轴上的点表示有理数. 例2 比较下列各组数的大小,并用“<”把它们连接起来.(1)3,-5,0;(2)-1.5,0,-4,1.2.解:(1)-5<0<3;(2)-4<-1.5<0<1.2.6 / 66 / 6师生活动教师展示问题图片,学生分组讨论并回答问题.教师:大家还有别的比较方法吗?给学生思考的空间,为后面讲解两个负数比较大小奠定基础.课堂练习(见导学案“当堂达标”)参考答案1.2 ±52.73.A4.C5.B6.左 3 左 4 左7.58.如图4所示.图4-3.5<-1.59.解:(1)如图5所示.图5(2)4.(3)2或6.6 / 610.(1)-1,0,1 (2)-2,-1,0,1,2 (3)7 -3,-2,-1,0,1,2,3 (4)401(5)2n +1课堂小结1.画数轴的步骤是什么?2.数轴的三要素是什么?3.怎样利用数轴比较有理数的大小?布置作业教材第9页练习第2,3题板书设计教学反思数轴是数形转化,数形结合的重要媒介.教学中先让学生观察、思考和自己动手操作.经历和体验数轴的形成过程,加深对数轴概念的理解,体现了从感性认识到理性认识,到抽象概括的认识规律.应用了从特殊到一般,以及数形结合的数学思想方法.。

人教版七年级数学上1.2有理数教学设计(5课时)

人教版七年级数学上1.2有理数教学设计(5课时)

1.2 有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高【例1】把下列各数填入相应的集合内:,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B. 0不是自然数C.正数和负数统称为有理数D. 0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.【点拨】(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高【例1】下列所画数轴对不对?如果不对,指出错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.【例3】下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是 .3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和- ,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高【例1】填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.【例2】下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【例3】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).【归纳】化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.【例4】数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B 和点C各对应什么数?(四)总结反思,拓展升华【归纳】(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.第4课时绝对值教学目标:1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.教学重点:给出一个数,会求它的绝对值.教学难点:理解绝对值的几何意义、代数定义的导出.教与学互动设计:(一)创设情境,导入新课活动请两位同学到讲台前,分别向左、向右行3米.交流①他们所走的路线相同吗?②若向右为正,可分别怎样表示他们的位置?③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与-6,3.5与-3.5,1和-1,它们是一对互为,它们的不同,相同.总结数轴上表示6和-6的两个点虽然在原点的两边,但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和-6的绝对值.绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│.想一想(1)-3的绝对值是什么?(2)+2的绝对值是多少?(3)-12的绝对值呢?(4)a的绝对值呢?交流同桌间合作交流,每位同学任说五个数,由同桌指出它们的绝对值.思考求8,-8,3,-3,,-的绝对值.(出示胶片)由此,你想到什么规律?总结互为相反数的两个数的绝对值相同.思考说出下列各组数的绝对值:(1)+2.3,9,+3;(2)-1.6,-7,30%;(3)0.总结归纳:(1)正数的绝对值是它本身.用式子表示是:a>0,则|a|=a.(2)负数的绝对值是它的相反数.用式子表示是:a<0,则|a|=-a.(3)零的绝对值是零.用式子表示是:a=0,则|a|=0.(4)a为任意有理数,a的绝对值总是正数或零,用式子表示是:|a|≥0.(三)应用迁移,巩固提高例题填空:(1)绝对值等于4的数有个,它们是;(2)绝对值等于-3的数有个;(3)绝对值等于它本身的数有个,它们是;(4)①若│a│=2,则a= ,②若│-a│=3,则a= ;(5)绝对值不大于2的整数是.(四)总结反思,拓展升华本节课中,我们认识了绝对值,要注意掌握以下两点:①一个数的绝对值是在数轴上表示这个数的点到原点的距离;②求一个数的绝对值必须先判断这个数是正数还是负数.(五)课堂跟踪反馈夯实基础1.填空题.(1)-│-3│= ,+│-0.27│= , -│+26│= ,-│+24│= .(2)若│x│=2,则x= ;若│-x│=2,则x= .2.选择题.(1)若│a│≥0,那么()A.a>0B.a<0C.a≠0D.a为任意数(2)若│a│=│b│,则a、b的关系是()A.a=bB.a=-bC.a+b=0或a-b=0D.a=0且b=0(3)下列说法正确的是()A.两个数的绝对值相等,这两个数也相等B.两个数不相等,这两个数的绝对值也不相等C.一个数等于另一个数的绝对值,这两个数相等或互为相反数D.绝对值是同一个正数的有理数有两个,这两个数互为相反数提升能力3.若实数a、b满足│3a-1│+│b-2│=0,求a+b的值.4.抽查8个零件,内直径超过标准毫米数的记作正数,不足标准毫米数的记作负数.这种零件的标准内直径是30mm,且30±0.5mm为优等品,8个零件的内直径记录如下:(1)序号为几的零件最接近标准?(2)哪几个零件为优等品?第5课时比较有理数的大小教学目标:会利用绝对值比较两个有理数的大小.教学重难点:利用绝对值比较两个负数的大小.教与学互动设计:(一)创设情境,导入新课投影你能比较下列各组数的大小吗?(1)│-3│与│-8│;(2)4与-5;(3)0与3;(4)-7和0;(5)0.9和1.2.(二)合作交流,解读探究讨论交流由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.思考若任取两个负数,该如何比较它们的大小呢?总结两个负数,绝对值大的反而小,或者说,两个负数,绝对值小的反而大.注意(1)比较两个负数的大小又多了一种方法,即两个负数,绝对值大的反而小;(2)异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要先比较它们的绝对值;(3)在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即利用数轴来比较有理数的大小.(三)应用迁移,巩固提高【例1】比较下列各组数的大小:(1)- 和-2.7;(2)- 和- .【例2】自己任写三个数,使它大于- 而小于-.【例3】已知│a│=4,│b│=3,且a>b,求a、b的值.(四)总结反思,拓展升华通过本节课所学的有理数的大小比较,你能掌握以下两种方法吗?(1)利用数轴,在数轴上把这些数表示出来,然后根据“数轴上左边的数总比右边的数小”来比较.(2)利用比较法则:“正数大于零,负数小于零;两个负数,绝对值大的反而小”来进行.(五)课堂跟踪反馈夯实基础1.填空题(1)绝对值小于3的负整数有,绝对值不小于2且不大于5的非负整数有.(2)用“>”、“=”、“<”填空:①-7-5,②-0.1-0.01,③- -,④-(-)0.025.(3)若│x+3│=5,则x= .2.选择题(1)下列判断正确的是()A.a>-aB.2a>aC.a>-D.│a│≥a(2)│m│与-5m的大小关系是()A.│m│>-5mB.│m│<-5mC.│m│=-5mD.以上都有可能提升能力3.解答题(1)比较-和- 的大小,并写出比较过程;(2)求同时满足:①│a│=6,②-a>0这两个条件的有理数a;(3)将有理数:-(-4),0,-│-3│,-│+2│,-│-(+1.5)│,-(-3),│-(+2)│表示到数轴上,并用“<”把它们连接起来.。

2024秋七年级数学上册第一章有理数1.2有理数4绝对值——绝对值的定义和性质教案(新版)新人教版

2024秋七年级数学上册第一章有理数1.2有理数4绝对值——绝对值的定义和性质教案(新版)新人教版
3.学生互评:
鼓励学生之间相互评价和交流,促进学生之间的学习互助和合作。可以让学生在小组内相互评价对方的作业或解题过程,相互提出意见和建议,共同讨论和解决问题。通过学生互评,可以培养学生的批判性思维和团队合作能力,同时也能够促进学生对知识点的深入理解和运用。
4.家长沟通:
与家长保持良好的沟通,及时反馈学生的学习情况和进展。可以通过家访、电话沟通或线上交流等方式,与家长交流学生的学习表现、课堂表现和作业完成情况。向家长介绍学生在课堂上的积极参与和取得的进步,同时也向家长了解学生的学习环境和家庭支持情况。通过与家长的沟通,共同关注学生的学习需求和问题,共同促进学生的全面发展。
4.提高逻辑推理能力:通过学习绝对值的性质和解决问题,学生的逻辑推理能力将得到锻炼和提高,他们能够更好地理解和分析数学问题。
5.培养数学建模能力:通过解决实际问题,学生能够学会如何建立数学模型,并将数学知识应用到实际情况中,从而培养数学建模能力。
6.增强直观想象能力:通过数轴的演示和实际问题的解决,学生的空间想象能力和数形结合的思维方式将得到增强,他们能够更好地理解和visualize数学问题。
3.重点难点解析:在讲授过程中,我会特别强调绝对值的定义和性质这两个重点。对于性质部分,我会通过举例和比较来帮助大家理解。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与绝对值相关的实际问题。例如,讨论如何使用绝对值来计算一个数列的平均值。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示绝对值的基本原理,例如通过在数轴上标出两点,并计算它们之间的距离来展示绝对值的概念。
课堂
1.课堂评价:
2.作业评价:
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。在批改作业时,要注意学生的解题过程和答案的正确性,不仅要关注最终答案,还要关注学生的解题思路和方法。对于错误的地方,要用红笔标出并给出具体的修改意见,帮助学生找到错误的原因并进行改正。在点评作业时,可以给予学生积极的评价和鼓励,指出他们的进步和优点,同时提出改进的建议和期望,激发学生的学习积极性和自信心。

人教版数学七年级上册1.2《有理数》(有理数的混合运算)教学设计1

人教版数学七年级上册1.2《有理数》(有理数的混合运算)教学设计1

人教版数学七年级上册1.2《有理数》(有理数的混合运算)教学设计1一. 教材分析《有理数》是初中数学的重要内容,对于七年级学生来说,这是他们第一次系统地接触有理数的概念和运算。

本节课的内容主要包括有理数的混合运算,这是学生在掌握了有理数的基本概念和加减乘除运算之后,进一步深化对有理数运算的理解。

教材通过例题和练习题的形式,让学生掌握有理数混合运算的规则和技巧。

二. 学情分析七年级的学生已经有了一定的数学基础,对有理数的基本概念和加减乘除运算有所了解。

但是,对于有理数的混合运算,他们可能还存在一定的困难。

因此,在教学过程中,教师需要通过具体例题和练习,让学生逐步理解和掌握有理数混合运算的规则。

三. 教学目标1.让学生理解有理数混合运算的概念和规则;2.培养学生解决有理数混合运算问题的能力;3.让学生掌握有理数混合运算的技巧,提高解题速度和正确率。

四. 教学重难点1.教学重点:有理数的混合运算规则和技巧;2.教学难点:如何引导学生理解和掌握有理数混合运算的规则。

五. 教学方法1.采用案例教学法,通过具体例题让学生理解和掌握有理数混合运算的规则;2.采用练习法,通过大量练习让学生巩固所学知识,提高解题能力;3.采用小组讨论法,让学生在讨论中互相学习,共同进步。

六. 教学准备1.准备相关教学PPT和教案;2.准备一系列有代表性的例题和练习题;3.准备教学用的黑板和粉笔。

七. 教学过程1.导入(5分钟)通过复习有理数的基本概念和加减乘除运算,引导学生进入有理数混合运算的学习。

2.呈现(10分钟)呈现一系列有代表性的例题,让学生观察和分析,引导学生发现有理数混合运算的规则。

3.操练(10分钟)让学生分组进行练习,每组解决一组有理数混合运算的问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一份有理数混合运算的练习题,检验学生对所学知识的掌握程度。

5.拓展(5分钟)通过一些富有挑战性的题目,让学生进一步运用所学知识,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三维目标一、知识与能力理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。

分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。

关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备用电脑制作动画体现有理数的分类过程。

教学过程四、课堂引入1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?2.举例说明现实中具有相反意义的量。

3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?
4.举两个例子说明+5与-5的区别。

相关文档
最新文档