量子力学课后习题答案
量子力学概论习题答案胡行

量子力学概论习题答案胡行量子力学概论习题答案解析量子力学是一门极具挑战性的物理学科,其理论和应用涉及到许多复杂的概念和现象。
在学习量子力学的过程中,习题是一个重要的学习工具,通过解答习题可以帮助我们更好地理解和掌握这门学科的知识。
在这篇文章中,我们将对一些量子力学概论习题的答案进行解析,帮助读者更好地理解这些问题的解决方法和相关概念。
1. 问题:一个自旋为1/2的粒子处于一个外加磁场中,磁场方向与粒子自旋方向相反,求粒子在磁场中的能量。
答案:根据量子力学的基本原理,粒子在外加磁场中的能量可以用哈密顿算符来描述。
对于自旋为1/2的粒子,其哈密顿算符可以表示为H = -μBσ·B,其中μB为玻尔磁子,σ为泡利矩阵,B为磁场的大小。
根据量子力学的理论,粒子在磁场中的能量可以通过求解哈密顿算符的本征值得到。
具体来说,粒子在磁场中的能量可以表示为E = -μBσ·B,其中E为能量的本征值。
因此,粒子在磁场中的能量与磁场的大小和方向有关,当磁场方向与粒子自旋方向相反时,粒子在磁场中的能量为-E = μBσ·B。
2. 问题:一个自旋为1的粒子处于一个外加磁场中,磁场方向与粒子自旋方向相同,求粒子在磁场中的能量。
答案:对于自旋为1的粒子,其哈密顿算符可以表示为H = -μBσ·B,其中μB 为玻尔磁子,σ为泡利矩阵,B为磁场的大小。
根据量子力学的理论,粒子在磁场中的能量可以通过求解哈密顿算符的本征值得到。
具体来说,粒子在磁场中的能量可以表示为E = -μBσ·B,其中E为能量的本征值。
因此,当磁场方向与粒子自旋方向相同时,粒子在磁场中的能量为E = μBσ·B。
通过以上两个问题的解析,我们可以看到量子力学在描述粒子在外加磁场中的行为时,需要考虑到粒子的自旋和磁场的相互作用,这些概念和原理都是量子力学的基本内容。
通过解析这些习题,我们可以更好地理解量子力学的基本原理和应用,为进一步学习和研究量子力学打下坚实的基础。
量子力学导论习题答案

第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, îíì<<><¥=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2L =×=n n a ln a /2=\l (1)又据de Broglie 关系 l /h p = (2) 而能量()L h h ,3,2,12422/2/2222222222==×===n ma n a m n h m m p E p l (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()ò==×L ,3,2,1,x x xn h n dx p即 h n a p x x =×2 (a 2:一来一回为一个周期)a h n p x x 2/=\,同理可得, b h n p y y 2/=, c h n p z z 2/=,L ,3,2,1,,=z y x n n n粒子能量 ÷÷øöççèæ++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x h pL ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V w =中运动,用量子化条件求粒子能量E 的可能取值。
量子力学答案(第二版)苏汝铿第六章课后答案6#2 @

骣1 2 ç A ç ç 4 ç ç ç ç 0 ç ç ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
i
(
e B sin cos t e B sin sin t i )c1 (t ) 2me c 2me c
(7)
再结合初始条件 c1 (0) 1 , c2 (0) 0 解(6) (7)两式得 t 时刻粒子跃迁到自旋在磁场方 向上的分量等于-
2
1 的态中的概率 2
2 2/ 2 ( ')2 sin 2 2 t 2 2 2 / ( ') / 4 4 1/ 2
解久期方程得:
0 A 1 4 0 0
2
eB mc 2 0 A 1 2 4 eB mc 2
0 ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ 0 ÷ ÷ ÷ ÷ ÷ eB ÷ ÷ ÷ ÷ mc 2 ÷ ÷ ÷ ÷ ÷ 0 ÷ ÷ ÷
E (1) = A
1 4
2
(二重),-A
1 4
2
?
A
1 2 e2 2 B 2 + 2 2 4 mc
i d c1 (t ) e dt eB c o s t me c
(5)
i
(
e B sin cos t e B sin sin t i )c2 (t ) 2me c 2me c
(6)
同理, (4)式两边同乘以 并利用(2) (3) (5)式得
曾谨言《量子力学教程》(第3版)笔记和课后习题复习答案考研资料

曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解完整版>精研学习网>免费在线试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试目录隐藏第1章波函数与Schrödinger方程1.1复习笔记1.2课后习题详解1.3名校考研真题详解第2章一维势场中的粒子2.1复习笔记2.2课后习题详解2.3名校考研真题详解第3章力学量用算符表达3.1复习笔记3.2课后习题详解3.3名校考研真题详解第4章力学量随时间的演化与对称性4.1复习笔记4.2课后习题详解4.3名校考研真题详解第5章中心力场5.1复习笔记5.2课后习题详解5.3名校考研真题详解第6章电磁场中粒子的运动6.1复习笔记6.2课后习题详解6.3名校考研真题详解第7章量子力学的矩阵形式与表象变换7.1复习笔记7.2课后习题详解7.3名校考研真题详解第8章自旋8.1复习笔记8.2课后习题详解8.3名校考研真题详解第9章力学量本征值问题的代数解法9.1复习笔记9.2课后习题详解9.3名校考研真题详解第10章微扰论10.1复习笔记10.2课后习题详解10.3名校考研真题详解第11章量子跃迁11.1复习笔记11.2课后习题详解11.3名校考研真题详解第12章其他近似方法12.1复习笔记12.2课后习题详解12.3名校考研真题详解内容简介隐藏本书是曾谨言主编的《量子力学教程》(第3版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的所有知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对曾谨言主编的《量子力学教程》(第3版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精编考研真题,培养解题思路。
量子力学答案(第二版)苏汝铿第一章课后答案1.3-1#02

h2 d 2 ( x) 1 m 2 x 2 ( x) E ( x) 8 2 m dx 2 2
批注 [JL1]: 不合题意!
1 h 2 2
(2) 设均匀磁场的大小为 B,电子的运动半径为 a,质量为 m,电量为 q,电子运动速率 为 v, v a 则a
d 。 dt
mv , 取电子角位移 为广义坐标,相应的的广义动量 p mav 。 qB
根据推广的玻尔量子化条件,有
pdq nh ,则 (mav)d nh
nh , 2
该广义动量大小在同一轨道中不变,故 mav =
再结合 a
nh mv ,得 a 2 qB qB
Hale Waihona Puke 1.3求下列各粒子的德布罗意波的波长: (1)能量为100eV的自由电子 (2)能量为0.1eV的自由中子 (3)能量为0.1eV,质量为1g的质点 3 (4)温度为1K时,具有动能 kT的氦原子 2
h h -9 解 (1)= = =1.2310 m p 2mE
h h -11 (2)= = =9.0710 m p 2mE
h h -22 (3)= = =1.1710 m p 2mE
h h h -9 (4)= = = =1.2610 m p 2mE 3mkT
1.4 利用玻尔量子化条件求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子的可能轨道半径。 解: (1) 一维谐振子的能量可以表示为 E p 2 / 2m kx 2 / 2 其对应的薛定谔方程为 计算结果为 En (n )
量子力学习题以及课堂练习答案

一.微观粒子的波粒二象性1、在温度下T=0k 附近,钠的价电子能量约为3电子伏特,求其德布罗意波长。
2、求与下列各粒子相关的德布罗意波长。
(1)能量为100电子伏特的自由电子;(2)能量为0.1电子伏特的自由中子;(3)能量为0.1电子伏特,质量为1克的自由粒子; (4)温度T=1k 时,具有动能kTE 23=的氦原子,其中k 为玻尔兹曼常数。
3、若电子和中子的德布罗意波长等于oA 1,试求它们的速度、动量和动能。
4、两个光子在一定条件下可以转化为正负电子对,如果两电子的能量相等,问要实现这种转化,光子的波长最大是多少?5、设一电子为电势差U 所加速,最后打在靶上,若电子的动能转化为一光子,求当这光子相应的光波波长分别为5000oA (可见光)o A 1(x 射线),oA001.0(γ射线)时,加速电子所需的电势差各是多少?二.波函数与薛定谔方程1、设粒子的归一化波函数为 ),,(z y x ϕ,求 (1)在),(dx xx +范围内找到粒子的几率;(2)在),(21y y 范围内找到粒子的几率; (3)在),(21x x 及),(21z z 范围内找到粒子的几率。
2、设粒子的归一化波函数为 ),,(ϕθψr ,求:(1)在球壳),(dr rr +内找到粒子的几率;(2)在),(ϕθ方向的立体角Ωd 内找到粒子的几率; 3、下列波函数所描述的状态是否为定态?为什么?(1)Eti ix Eti ix ex ex t x---+=ψ)()(),(211ψψ[])()(21x x ψψ≠(2)tE i t E i ex ex t x 21)()(),(2--+=ψψψ)(21E E ≠(3)EtiEti ex ex t x)()(),(3ψψ+=ψ-4、对于一维粒子,设 xp i o e xπψ21)0,(=,求 ),(t x ψ。
5、证明在定态中,几率密度和几率流密度均与时间无关。
6、由下列两个定态波函数计算几率流密度。
曾谨言量子力学第五版答案

曾谨言量子力学第五版答案【篇一:量子力学第四版卷一 (曾谨言著)习题答案】量子力学的诞生1m?2x2中运动,用量子化条件求粒子能量e的可能取值。
2p?2m[e?v(x)]v()n?1,2,?,解:能量为e的粒子在谐振子势中的活动范围为 x?a(1)其中a 由下式决定:e?v(x)x?a?由此得a?1m?2a2。
?a 0 a x 22e/m?2 ,(2)x??a即为粒子运动的转折点。
有量子化条件p?得a?2a2?nh代入( enx,y,z轴三个xxx即 px?2a?nxh(2a:一来一回为一个周期)pxnxh/2a,同理可得, py?nyh/2b, pz?nzh/2c,nx,ny,nz?1,2,3,?粒子能量enxnynz1?2?2222?(px?py?pz)?2m2m222??nxnyn?? ?2?z22??abc??nx,ny,nz?1,2,3,?1.3设一个平面转子的转动惯量为i,求能量的可能取值。
提示:利用2?2p?d??nh,n?1,2,?, p?是平面转子的角动量。
转子的能量e?p?/2i。
解:平面转子的转角(角位移)记为?。
它的角动量p??i?(广义动量),p?是运动惯量。
按量子化条件 .2?p?dx?2?p?mh,m1,2,3,因而平面转子的能量p??mh,2em?p?/2i?m2?2/2i,m?1,2,3,?1.4有一带电荷e质量m的粒子在平面内运动,b,求粒子能量允许值.,设圆半径是r,线速度是v,用高斯制单bevc又利用量子化条件,令电荷角动量转角2?pdq??mrvd??2?mrv?nh (2)12be?nmv? 22mc即 mrv?nh(3) 由(1)(2)求得电荷动能=再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能 v磁矩*场强电流*线圈面积*场强ev*?r2*b=,v是电荷的旋转频率, v?,代入前式得2?rcccbe?n(符号是正的) 2mcbe?n点电荷的总能量=动能+磁势能=e= ( n?1,2,3)2mc运动电荷的磁势能=1.5,1.6未找到答案1.7(1)试用fermat最小光程原理导出光的折射定律nsin??nsin?112(2)光的波动论的拥护者曾向光的微粒论者提出下述非难:如认为光是粒子,则其运动遵守最小作用量原理射定律0这将导得下述折nsin??nsin?1331媒质到另一种媒质e仍不变,仍有?e是粒子能量,从一种?pdl?0a到定点b的i?n设ai?n1122又ab沿界面的投影c也是常数,因而,?12存在约束条件:atg?1?btg?2?c(2)求(1)的变分,而将,12看作能独立变化的,有以下极值条件in1asec1tg1d1n2bsec2tg2d20 (3)再求(2)的变分asec22bsec1d12d2c0(3)与(4)消去d和d?1222得nsin??nsin?1(5)[乙法]见同一图,取x为变分参数,取0为原点,则有: i?n1a2?x2?n2b2?(c?x2)求此式变分,令之为零,有: ?i?x?x1a?x22(c?x)?x2(cx)22这个式子从图中几何关系得知,就是(5).(2)按前述论点光若看作微粒则粒子速度v应等于光波的群速度 vg光程原理作?,依前题相速vpc2v,而vgc2gvcn,n是折射率,n是波前阵面更引起的,vp,这样最小作用p量原理仍可以化成最小光程原理.ndl?0前一非难是将光子的传播速度v看作相速度vp的误解.1.8对高速运动的粒子(静质量m)(3).计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:qih,本题中iqiv,p?p,因而im2c4?c2p2?v??pc2pmc?cp2422(4)从前式解出p(用v表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v和它的物质波的群速度vg间的关系.运用德氏的假设: p??k于(3)式右方, 又用e于(3)式左方,遍除h:m2c422ck??(k) 2按照波包理论,波包群速度vg是角频率丢波数的一阶导数:vg?k=m2c422ck 2c2kmc22ck224c2pmc?cp2422最后一式按照(4)式等于粒子速度v,因而又按一般的波动理论,波的相速度vgv。
量子力学答案(第二版)苏汝铿第五章课后答案5.7-5#4

(0) 基态是非简并的,能级为 E 11 ,本征函数为
0) ( 11 = sin
2 a
x
a
sin
y
a
(0) 第一激发态是二重简并的,能级为 E 12 ,本征函数为
2 x 2 y sin a a a 2 x y 0) 2 ( sin 21 = sin a a a 基态能级的一级修正等于 H 的平均值,即 4 a a x 2 y (1) (0) (0) E11 11 | H | 11 2 xy sin 2 sin dxdy a 2 a 0 0 a a 4
解期望方程可得能级的一级修正为
(1) E 12 H H
4
a2
256 1024 a 2 a 2 (1 ) 4 81 4 81 4
a 2 a / 2 2 2 [ x(1 cos x)dx a (1 cos x)dx 2 0 a/2 a a a a 2 x(1 cos x)dx] a/2 a
2 1 2 a 2 a2 2 a/3 [( x x sin x sin x ) 0 a( x 2 2 a 2 2 a 4 a a 2 1 a 2 a2 2 a a sin x ) a / 2 ( x2 x sin x 2 cos x ) a/2] 2 a 2 2 a 4 a
5.8 一维无限深势阱( 0 x a )中的粒子,受到微扰
x 2 a H 2 (1 x ) a
a (0 x ) 2 a ( x a) 2
作用,求基态能量的一级修正值。
解:
基态波函数(零级近似)为
1( 0 )
1( 0 ) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
1.3 氦原子的动能是kT E 23=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。
解 根据eV K k 3101-=⋅,知本题的氦原子的动能为,105.123233eV K k kT E -⨯=⋅==显然远远小于2c 核μ这样,便有Ec hc 22核μλ=nmm m37.01037.0105.1107.321024.19396=⨯=⨯⨯⨯⨯⨯=---这里,利用了eV eV c 962107.3109314⨯=⨯⨯=核μ最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为Tkc hc Ec hc 2222μμλ==据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。
1.4 利用玻尔——索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。
已知外磁场H=10T ,玻尔磁子124109--⋅⨯=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。
解 玻尔——索末菲的量子化条件为⎰=nh pdq其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。
(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有22212kx p E +=μ这样,便有)21(22kx E p -±=μ 这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。
此外,根据221kx E =可解出 kEx 2±=±这表示谐振子的正负方向的最大位移。
这样,根据玻尔——索末菲的量子化条件,有⎰⎰-++-=--+-x x x x nh dx kx E dx kx E )21(2)()21(222μμ⇒nh dx kx E dx kx E x x x x =-+-⎰⎰+--+)21(2)21(222μμ⇒hn dx kx E x x 2)21(22=-⎰+-μ为了积分上述方程的左边,作以下变量代换;θsin 2kEx =这样,便有h nk E d E 2sin 2cos 2222=⎪⎪⎭⎫ ⎝⎛⎰-θθμππ⇒⎰-=⋅222cos 2cos 2ππθθθμh nd k E E⇒h nd kE 2c o s 2222=⋅⎰=ππθθμ这时,令上式左边的积分为A ,此外再构造一个积分⎰-⋅=222sin 2ππθθμd kE B这样,便有⎰⎰--⋅=-⋅=⋅=+22222cos 2,22ππππθθμμπθμd kE B A kE d kE B A (1)⎰⎰--==2222,cos )2(2cos ππππϕϕϖθθμd kEd kE这里ϕ =2θ,这样,就有0sin ==-⎰-ππϕμd kEB A (2)根据式(1)和(2),便有kE A μπ=这样,便有h nkE 2=μπ⇒ kh n E μπ2=,k nhμ=其中π2hh =最后,对此解作一点讨论。
首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。
(2)当电子在均匀磁场中作圆周运动时,有B q Rυυμ=2⇒ q B R p ==μυ 这时,玻尔——索末菲的量子化条件就为⎰=πθ20)(nh R qBRd⇒ nh qBR =⋅π22 ⇒ nh qBR =2又因为动能耐μ22p E =,所以,有μμ22)(2222R B q qBR E ==,22B nBN q nB qBn =⋅==μμ其中,μ2q M B =是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且B BM E =∆具体到本题,有J J E 232410910910--⨯=⨯⨯=∆根据动能与温度的关系式kT E 23=以及J eV K k 223106.1101--⨯==⋅可知,当温度T=4K 时,J J E 2222106.9106.145.1--⨯=⨯⨯⨯=当温度T=100K 时,J J E 2022104.2106.11005.1--⨯=⨯⨯⨯=显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。
1.5 两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?解 关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有2c hv E e μ==此外,还有λhcpc E ==于是,有2c hce μλ= ⇒2c hc e μλ=nmm m 31266104.2104.21051.01024.1---⨯=⨯=⨯⨯= 尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。
能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。
第二章波 函数和薛定谔方程2.1证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度:i k ri k re re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇s i n r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。