新人教版八年级数学上册导学案 :第十二章 全等三角形复习(一)
全等三角形复习导学案
E DCBAN MO 八年级数学上册第十二章全等三角形导学案全等三角形(复习课)备课人:陈军营 审核人:余国霞 张金锋 备课时间:9.17 上课时间:学习目标:1、掌握全等三角形的性质.2、掌握三角形全等的判定方法。
2、熟练运用三角形全等的性质和判定方法解决线段相等及平行、角相等的相关问题。
一、课前知识回顾:1、(1)全等三角形的性质:全等三角形的对应边 、对应角 。
(2)全等三角形的判定(用字母表示):判断三角形全等的方法有: 、 、 、 。
判断直角三角形全等的方法有: 、 、 、 、 。
2、如图,AM=AN , BM=BN 说明△AMB ≌△ANB 的理由。
解:在△AMB 和△ANB 中⎪⎩⎪⎨⎧===)_________(_______)(___________)_______(__公共边已知BN AM ∴ △AMB ≌ ( )3、如图,∠B=∠DEF, BC= EF, 补充条件,使得ΔABC ≌ ΔDEF 。
(1) 若要以“SAS ”为依据,可补充条件 ; (2) 若要以“ASA ”为依据,可补充条件 (3) 若要以“AAS ”为依据,可补充条件 ;(4) 若补充条件AC=DF ,则 ΔABC 与 ΔDEF 一定全等吗?二、自主练习与合作探究:1、如图,线段AB 、CD 相交于O 点,AO=CO ,BO=DO ,试证明:AD=BC 。
2、24. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .4.如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 、B ′C ′边上的高,且AB =A ′B ′,AD =A ′D ′,若使△ABC ≌△A ′B ′C ′,请你补充条件________(只需填写一个你认为适当的条件).并证明三、当堂检测:1、如图,D 点在AB 上,E 点在AC 上,且∠B =∠C ,AB = AC,那么△ABE ≌△ACD 吗?为什么?2、如图,∠ACB =∠FDE ,AC =DF ,BD =EC ,请判断AB 与EF 是否平行,并说明理由。
人教版八年级数学第十二章全等三角形导学案
第十二章全等三角形12.1 全等三角形一、课前预习(一)全等形1.定义:能够完全_____的两个图形.2.特点:_____和_____完全相同.二、全等三角形1.定义:能够完全_____的两个三角形.2.对应元素:两个全等的三角形重合在一起有如下对应元素(1)对应顶点:_____的顶点.(2)对应边:_____的边.(3)对应角:_____的角.3.表示方法:(1)表示:△ABC和△DEF全等,记作△ABC___△DEF.(2)注意:记两个三角形全等时,把表示对应顶点的字母写在_____位置上.4.性质:(1)全等三角形的_______相等.(2)全等三角形的_______相等.思维诊断(打“√”或“×”)(1)两个形状相同的图形是全等形.( )(2)比例尺相同的两张中国地图是全等形.( )(3)所有的正方形都是全等形.()(4)全等三角形的面积相等.()(5)两个三角形全等时,两个三角形中最长的边是对应边. ()二、课内探究知识点 1 找全等三角形的对应元素【例1】如图所示,△ABC≌△EDA,∠BAC与∠DEA是对应角,AB与ED是对应边,写出其他对应边及对应角.【解题探究】1.两个三角形全等时,对应角所对的边是对应边,由∠BAC与∠DEA是对应角可得的一组对应边是什么?2.AB与ED是一组对应边,那么另一组对应边是什么?3.根据对应边所对的角是对应角,可知这两个三角形中未知的两组对应角是什么?【互动探究】此题还有另外的方法找对应边和对应角吗?提示:可以根据所给字母的顺序确定对应关系.【总结提升】确定两个全等三角形对应边、对应角的方法(1)确定对应边的“三种方法”①若全等三角形中有公共边,则公共边是对应边.②若已知对应角或对应顶点,则对应角或对应顶点所对的边为对应边.③若已知全等三角形中有最长(或最短)边,则一对最长(或最短)边是对应边.(2)确定对应角的“四种方法”①若全等三角形中有公共角,则公共角为对应角.②若全等三角形中有对顶角,则对顶角为对应角.③若已知全等形的对应顶点,则以对应顶点为顶点的角为对应角.④若已知全等三角形中有最大(或最小)角,则一组最大(或最小)角是对应角.知识点 2 全等三角形性质的应用【例2】如图所示,已知△ABD≌△ACE,AD=6 cm,AC=4 cm,∠ABD=50°,∠E=30°,求BE的长及∠COD的度数.【思路点拨】△ABD≌△ACE→求AE,AB的长→BE的长;根据∠ABD和∠E的大小→∠BOE的大小→∠COD的大小【总结提升】全等三角形性质的两点应用(1)求线段:全等三角形的对应边相等,可以直接确定对应边的数量关系,也可以间接求解相关线段的长度等.(2)求角:全等三角形的对应角相等,可以直接确定对应角的数量关系,也可以间接求解相关角的大小等.三、限时练习1.一个图形经过下列变换得到的图形与原图形不全等的是( )A.平移B.旋转C.翻折D.放大2.下列四个图形中,与图1全等的是( )3.如图所示,△ABC≌△CDA,且AB与CD是对应边,那么下列说法错误的是( )A.∠1与∠2是对应角B.∠B与∠D是对应角C.BC与AC是对应边D.AC与CA是对应边3题4题5题6题4.如图,小强利用全等三角形的知识测量池塘两端M,N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( )A.POB.QPC.MOD.MQ5.如图所示,沿直线AC对折,△ABC与△ADC重合,则△ABC≌______,AB的对应边是______,AC的对应边是______,∠B的对应角是______,∠BCA的对应角是______.6.如图,△ABC≌△ADE,写出其对应顶点、对应边、对应角.7.△ABC与△DEF的边长均为整数,且△ABC≌△DEF,若AB=2,BC=4,△DEF的周长为奇数,则DF的取值为( )A.3B.4C.3或5D.3或4或58.如图,△ABC绕点A旋转到△ADE,则下列说法不正确的是( )A. AB与DE是对应边B. △ABC≌△ADEC. ∠BAD=∠CAED. AC=AE9.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.210.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的F处,如果AD=9 cm,DE=2.4 cm,∠BAF=60°,则AF=________cm,EF=________cm, ∠DAE=________.8题9题10题11题11.如图所示,将△ABC沿直线BC平移到点D,使BC=CD.(1)相等的边有________,相等的角有________.(2)∠ACE=∠E吗?为什么?四、自助练习1.如果∆ABC ≌∆ADC ,AB=AD ,∠B=70°,BC=3cm,那么∠D=____,DC=____cm.2.如果 ∆ABC ≌∆DEF,且∆ABC 的周长为100 cm,A,B 分别与D,E 对应, AB=30 cm,DF=25 cm,则BC 的长为( )A.45 cmB.55 cmC.30 cmD. 25 cm3.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果 AD=7cm,DM=5cm,则AN=___cm,NM=___cm.4.如图所示,已知△ABD ≌△ACE ,AD=6 cm ,AC=4 cm ,∠ABD=50°, ∠E=30°,求BE 的长及∠COD 的度数.5.如图,△ABD ≌△EBC ,AB=2 cm,BC=5 cm,求DE 的长.6、【想一想错在哪?】如图,△ABC ≌△DEF ,则此图中相等的线段有( ) A.1对 B.2对 C.3对 D.4对M DNBC12.2 三角形全等的判定第1课时 SSS一、课前预习1.判定三角形全等的方法: 已知:△ABC.画△A ′B ′C ′,使A ′B ′=AB,B ′C ′=BC,A ′C ′=AC. 请同学们参照下面的步骤画△A ′B ′C ′. (1)画B ′C ′=___.(2)分别以B ′,C ′为圆心,线段___,___长为半径画弧, 两弧相交于点A ′.(3)连接线段_______,_______,得△A ′B ′C ′. 请同学们把画得的△A ′B ′C ′剪下来,放到△ABC 上, 观察可发现△A ′B ′C ′与△ABC_________,即 △A ′B ′C ′___△ABC.【归纳】(1)判定方法: 分别相等的两个三角形全等. (简写成_______或____)(2)应用格式:在△ABC 和△A ′B ′C ′中,∴△ABC ≌△A ′B ′C ′(____).2.用直尺和圆规作一个角等于已知角的依据是 .(打“√”或“×”)(1)当两个三角形的三边和三角中有两个条件分别相等时,这两个三角形不一定全等.( ) (2)当两个三角形的三边和三角中有三个条件分别相等时,这两个三角形可能全等.( ) (3)当一个三角形的三边确定时,这个三角形的形状就确定了. ( ) (4)两个三角形中,只要三条边分别相等,这两个三角形就一定全等.( )AB A B ,BC B C ,AC A C ,=''⎧⎪=''⎨⎪=''⎩∵二、课内探究知识点1 应用“SSS”证明两个三角形全等【例1】如图,点B,C,D,F在同一直线上,已知AB=EC, AD=EF,BC=DF,探索AB与EC的位置关系,并说明理由.【思路点拨】先判定AB与EC的位置关系,由BC=DF先证出BD=CF,再由SSS证出△ABD与△ECF全等,得出∠B=∠ECF,从而得出答案.【总结提升】证明三角形全等的步骤及寻找边相等的方法(1)证明三角形全等的“四个步骤”①准备条件:未知的条件要先证明(公共边相等可以直接应用,不必推理说明).②写出在哪两个三角形中.③列出三个条件用大括号括起来.④写出全等结论.(2)寻找边相等的“三种方法”①图形中的隐含条件,如公共边.②利用线段中点的定义说明边相等.③多条线段共线时,利用线段的和(差)关系证明边相等.知识点2 “SSS”的实际应用【例2】如图是工人师傅自己设计的测量垂直的仪器.仪器中的AB=AC,D是BC的中点,让BC平行于地面,当铅锤经过D点时,工人师傅就断定AD垂直于地面.工人师傅的判断有道理吗?你能说明理由吗?【思路点拨】证△ABD≌△ACD→∠ADB=∠ADC→∠ADB=90°→AD⊥BC→BC∥地面→结论【总结提升】利用“SSS”解决实际问题“三步法”(1)建模:把实际问题转化为数学问题,构造两个三角形.(2)证明:利用“SSS”证明两个三角形全等.(3)应用:应用全等三角形的性质说明线段或角的大小关系.三、限时训练1.下列说法中正确的个数为( )①周长相等的两个三角形全等②周长相等的两个等腰三角形全等③周长相等的两个等边三角形全等④有三条边分别相等的两个三角形全等A.1B.2C.3D.42.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACDB.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC3.如图,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )A.△ABD≌△ACDB.△ABE≌△ACEC.△BDE≌△CDED.以上答案都不对2题3题4题5题4.如图,若AB=AC,AD=AE,则需要______条件就可根据“SSS”判断△ABE≌△ACD.5.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠ABC=__________.6.如图,已知AB=DC,DB=AC,(1)求证:∠ABD=∠DCA.(注:证明过程要求给出每一步结论成立的依据.)(2)在(1)的证明过程中,需要作辅助线,它的目的是什么?7为稳固电线杆,从A处拉了两根等长的铁丝AC,AD,且C,D到杆脚B的距离相等,则有( )A.∠1>∠2B.∠1<∠2C.∠1=∠2D.∠1与∠2大小不能确定8.小明用四根竹棒扎成如图所示的风筝框架,已知AB=CD,AD=CB,下列判断不正确的是( )A.∠A=∠CB.∠ABC=∠CDAC.∠ABD=∠CDBD.∠ABD=∠C9.长为3 cm,4 cm,6 cm,8 cm的木条各两根,小明与小刚分别取了3 cm和4 cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为( )A.一个人取6 cm的木条,一个人取8 cm的木条B.两人都取6 cm的木条C.两人都取8 cm的木条D. B,C中的两种取法都可以10.如图为一三角形钢架(AB=AC),为使钢架更坚固,需在点A和BC间做一个支架,且使AD⊥BC于D,但只有一把可测长度的皮尺,应如何确定点D的位置.7题8题10题四、自助练习1、如图,D ,F 是线段BC 上的两点,AB=EC ,AF=ED ,要使△ABF ≌△ECD, 还需要条件2、如图,在四边形ABCD 中AB=CD ,则∠A=∠C ,请说明理由。
新人教版八年级数学上册第十二章 全等三角形 导学案
新人教版八年级数学上册第十二章全等三角形导学案一、本章地位中学阶段重点研究的两个平面图形间的关系是全等和相似,本章以三角形为例研究全等.对全等三角形研究的问题和研究方法将为后面相似的学习提供思路,而且全等是一种特殊的相似,全等三角形的内容是学生学习相似三角形的重要基础.本章还借助全等三角形进一步培养学生的推理论证能力,主要包括用分析法分析条件与结论的关系,用综合法书写证明格式,以及掌握证明几何命题的一般过程.由于利用全等三角形可以证明线段、角等基本几何元素相等,所以本章的内容也是后面将学习的等腰三角形、四边形、圆等内容的基础.二、课程学习目标(1)理解全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质.(2)经历探索三角形全等条件的过程,掌握判定三角形全等的基本事实(“边边边”“边角边”和“角边角”)和定理(“角角边”),能判定两个三角形全等.(3)能利用三角形全等证明一些结论.(4)探索并证明角平分线的性质定理,能运用角的平分线的性质.三、本章知识结构图四、课时安排:共安排11课时(仅供参考)12.1 全等三角形 1课时12.2 三角形全等的判定6课时12.3 角的平分线的性质 2课时数学活动小结 2课时五、教学建议1.用研究几何图形的基本思想和方法贯穿本章的教学学生在前面的几何学习中研究了相交线与平行线、三角形等几何图形,对于研究几何图形的基本问题、思路和方法形成了一定的认识,本章在教学中要充分利用学生已有的研究几何图形的思想方法,用几何思想贯穿全章的教学.2.让学生充分经历探究过程本章在编排判定三角形全等的内容时构建了一个完整的探究活动,包括探究的目标、探究的思路和分阶段的探究活动.教学中可以让学生充分经历这个探究过程,在明确探究目标、形成探究思路的前提下,按计划逐步探索两个三角形全等的条件.本章在编排中将画图与探究三角形的全等条件结合起来,既有用尺规画一个三角形与已知三角形全等,又有用技术手段根据已知数据画三角形.教学中要充分利用探索画图方法的过程对形成结论的价值,让学生自主探索画图的步骤、创设多种画法、解释作图依据等,在活动中发现结论.3.重视对学生推理论证能力的培养本章是初中阶段培养逻辑推理能力的重要内容,主要包括证明两个三角形全等,通过证明三角形全等从而证明两条线段或两个角相等.教学中要在学生已有推理论证经验的基础上,利用三角形全等的证明,进一步培养学生推理论证的能力.按照整套教科书对推理能力培养的循序渐进的目标,本章的教学重点是引导学生分析条件与结论的关系,书写严谨的证明格式,对于以文字形式给出的几何命题,从具体问题的证明中总结出证明的一般步骤.六、具体内容 12.1 全等三角形【教学重点】1.理解全等三角形的概念;2.能识别全等三角形中的对应边、对应角; 3.初步掌握并能运用全等三角形的性质. 【教学难点】在全等三角形中正确地找出对应边、对应角. 第一课时:全等三角形 【参考例题】1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.2.如图1,△ADC ≌△AEB , 30,43=∠=∠B A ,求ADC ∠的大小.3.如图2,△EFG ≌△NMH ,∠F 和∠M 是对应角,在△EFG 中,FG 是最长边,在△NMH 中,MH 是最长边,EF =2.1㎝,EH =1.1㎝,HN =3.3㎝.求线段MN 及线段HG 的长度.4.如图3,把△ABC 绕点C 顺时针旋转35度,得到△A ′B ′C ,A ′B ′交AC 于点D ,已知 ∠A ′DC =90°,则∠A = .o OB ACD AB C D AB CDCA B DC A BD O A BC D C BDDA B C D C A B D B C AD FE AB CD E图1 图2图3N B C A D M D F EA B C 练习:1.全等用符号 表示,读作: .2.若△ABC ≌△DEF ,则∠B = ,∠BAC = ,BC = , AC = . 3.判断题1)全等三角形的对应边相等,对应角相等.( ) 2)全等三角形的周长相等.( ) 3)全等三角形的面积不相等.( ) 4.找一找① 若△AOC ≌△BOD ,AC =_______ ∠A =______ ② ②若△ABD ≌△ACE ,BD = ∠BDA =③若△ABC ≌△CDA ,AB = ∠BAC =_____ 5.拼一拼请你利用两个全等三角形画出有公共顶点或公共边或公共角的图形. 有公共边: 有公共点: 6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是A .POB .PQC .MOD .MQ7.如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ABC ≌△ EFD AN =___cm , NM =___cm , ∠NAB =___. 8.△ABC ≌△FED(1)写出图中相等的线段,相等的角;(2)图中线段除相等外,还有什么关系吗.CA DBO B AC D E AD BCB HAD CA DBC12.2 三角形全等的判定 【教学重点】1.探索判定三角形全等的条件; 2.利用三角形全等进行简单的证明. 【教学难点】利用三角形全等的判定方法进行推理论证. 第二课时:三角形全等的判定SSS (一) 【参考例题】1.如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全等的三角形.它们全等的条件是什么.2.如图,已知AB =CD ,BC =DA .你能说明△ABC 与△CDA 全等吗.你能说明AB ∥CD ,AD ∥BC 吗.为什么.练习:1.如图,在四边形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 2.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是A .∠BCA =∠F B. AD =CF C.BC ∥EF D. ∠A =∠EDF3.如图,等腰梯形ABCD 中,点M 是AD 的中点,且MB =MC ,若AD =4,AB =6,BC =8,则梯形ABCD 的周长为A .22B .24C .26D .28 4. (202X 广西玉林)根据图中尺规作图的痕迹,先判断得出结论: ,然后证明你的结论(不要求写已知、求证)ABCDEFDFOE 第三课时:三角形全等的判定SAS (二) 【课堂练习】练习一 :在下列图中找出全等三角形,并把它们用线连起来.【例题】1.如图,AC =BD ,∠CAB = ∠DBA ,你能判断∠C =∠D 吗.说明理由. 2.如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么.练习:1.如图CE =CB ,CD =CA ,∠DCA =∠ECB ,求证:DE =AB .2.如图,AB =AE ,AD =AC ,∠BAD =∠EAC ,BC 、 DE 交于点O . 求证:∠ABC =∠AED .Ⅰر30º8 cm9 cmⅥ30º8 cm8 cmⅣ Ⅳ8cm5 cmⅡ30ºر8cm5 cmⅤ3xm8 cmⅧ8 cm5 cmر30º8cm9 cmⅦⅢر30º8cm8cmⅢ OEDCBAA BCD3.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.求证:(1)△ABD ≌△ACD ,(2)BE =CE4.小明用六根竹签做了一个如图所示的风筝,其中ED =FD ,HE =HF .小明不测量就能知道EO =FO .你知道小明是怎样想的.5. (202X 杭州)如图,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M 、N 分别在AB 、AC 边上,AM =2MB ,AN =2NC ,求证:DM =DN6.(202X 燕山毕业)如图,点E ,F 在线段AC 上,AB ∥CD ,AB =CD ,AE =CF . 求证:BE =DF .7. (202X 丰台一模)已知:如图,点B ,F ,C ,E 在 一条直线上,BF =CE ,AC =DF ,且AC ∥DF . 求证:∠B =∠E .8. (202X 平谷一模)如图,AB =AD ,AC =AE ,∠CAD =∠EAB .求证:BC =DE .C BN M AA B C D E F F D E CB AMDECBA第四课时:三角形全等的判定ASA ,AAS (三) 【参考例题】 1.已知:点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C , 求证:BD =CE . 2.在Rt △ABC 中,∠ACB =90°,BC =2cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5cm ,则AE = cm .3.如图,点A 、B 、D 、E 在同一直线上,AD =EB ,BC ∥DF ,∠C =∠F ,求证:AC =EF .练习:1.如图,在△AEC 和△DFB 中,∠E =∠F ,点A ,B ,C ,D 在同一直线上,有如下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .(1)请用其中两个关系式作为条件,另一个作为结论,写出你认为正确的所有命题(用序号写出命题书写形式:“如果,,那么”) ,(2)选择(1)中你写出的一个命题,说明它正确的理由.2.如图,在△ABC 中,o90C ∠=,点D 是AB 边上一点,DM AB ⊥且DM AC =,过点M 作ME ⊥BC ,交AB 于点E .求证:△ABC ≌△MED .3. (202X 永州)如图,在△ABC 中,已知∠1=∠2,BE =CD ,AB =5,AE =2,则CE = .4. (202X 通辽)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC 与△DEC 全等.DB E AOCFDCBAE5.(202X 海淀一模)如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .6. (202X 门头沟一模)如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .7. 如图,点O 是直线l 上一点,点A 、B 位于直线l 的两侧,且∠AOB =90°,OA =OB ,分别过A 、B 两点作AC ⊥l ,交直线l 于点C ,BD ⊥l ,交直线l 于点D .求证:AC =OD .8. (202X 西城一模)如图,∠C =∠E ,∠EAC =∠DAB ,AB=AD .求证:BC=DE .9. (202X 昌平二模)如图,AB AD ⊥,AE AC ⊥,E C ∠=∠,DE BC =. 求证:AD AB =10. (202X 海淀二模)如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°, BE=BD .求证:∠E =∠D .11. (202X 朝阳二模)已知:如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D . 求证:BE=CD .EA DFB C E D C B ADA C.,,AD BC BD AC AD BD BC AC ==⊥⊥求证:如图,例第五课时 : 全等三角形的判定(四) HL 【参考例题】练习:1.如图,两根长度为12米的绳子,一端系在旗杆上, 另一端分别固定在地面两个木桩上,两个木桩离旗 杆底部的距离相等吗.请说明你的理由. 2.如图,有两个长度相同的滑梯,左边滑梯的高度 AC 与右边滑梯水 平方向的长度DF 相等,两个滑梯的倾斜角∠ABC 和∠DFE 的大小有什么关系.3.求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等. 4.如图6,A ,F 和B 三点在一条直线上,CF ⊥AB 于 F , AF =FH , CF =FB .求证: BE ⊥AC . 第六课时:全等三角形的习题课 【复习小结】全等的常见图形判定两个三角形全等的方法有:______________________________________________.A CAD E D ABEFAC BDEA B OD CABODCAE FCDABED C BACD O F BCADB DCAEBAEDBEACD【练习】1.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).2.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,求AE.3.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.4.如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.5.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.6.(202X宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个12.3 角的平分线的性质(一)【教学重点】1.探索并证明角的平分线的性质定理及其逆定理;2.能用角的平分线的性质解决简单问题.【教学难点】利用角的平分线的性质定理解题. 【参考例题】1.如图1,AB =AC ,BD =CD ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .2.如图2,D 、E 、F 分别是△ABC 的三边上的点,CE =BF ,△DCE 和△DBF 的面积相等. 求证:AD 平分∠BAC . 练习:1.已知△ABC 中,∠A =80°,∠B 和∠C 的角平分线交于O 点,则∠BOC = .2.如图,已知相交直线AB 和CD ,及另一直线EF .如果要在EF 上找出与AB 、CD 距离相等的点,方法是 ,这样的点至少有 个,最多有 个.3.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm ,则△DEB 的周长为 A .9 cmB .5 cmC .6 cmD .不能确定4.如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数 是 . 5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥, 垂足分别为A ,B .下列结论中不一定成立的是E F B C A D 图1AB C D FE 图2APA .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP6. (202X •永州)如图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得S △P AB =S △PCD ,则满足此条件的点P ( ) A .有且只有1个 B .有且只有2个 C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外) 角平分线的性质(二)【复习】1.如图所示,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm .2.如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 . 3.如图,已知BD 是∠ABC 的内角平分线,CD 是∠ACB 的外角平分线,由D 出发,作点D 到BC 、AC 和AB 的垂线DE 、DF 和DG ,垂足分别为E 、F 、G ,则DE 、DF 、DG 的关系是 . 4.AD 是△BAC 的角平分线,自D 向AB 、AC 两边作垂线,垂足为E 、F ,那么下列结论中错误的是 A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF5.如图,已知AB ∥CD ,O 为∠A 、∠C 的角平分线的交点,OE ⊥AC3题图 DCBA于E ,且OE =2,则两平行线间AB 、CD 的距离等于 . 6.到三角形三条边的距离都相等的点是这个三角形的( ) A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点【例题】1.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC +BD •相等吗.请说明理由.2.在△ABC 中,∠B =60°,∠A ,∠C 的角平分线AE ,CF 相交于点O , (1)如图1,若AB =BC ,求证:OE =OF ;(2)如图2,若AB ≠BC ,试判断线段OE 与OF 是否相等,并说明理由练习:1.如图,已知BD ⊥AE 于B ,DC ⊥AF 于C ,且DB =DC ,∠BAC =40o,∠ADG =130o,则∠DGF =_________(1题图) (2题图) (3题图) 2.如图,在△ABC 中,∠C =90o,AM 是∠CAB 的平分线,CM =20cm ,那么M 到AB 的距离为 .3.如图,∠B =∠C =90o,M 是BC 上一点,且∠AMD =90o,DM 平分∠ADC , 求证:AM 平分∠DAB .DCABEABCD EFGM CB AMD CBAEDFCBAFED CBAABCDEONMP CBA DCBA4.如图,BD =CD ,BF ⊥AC ,CE ⊥AB .求证:D 在∠BAC 的角平分线上.(4题图) (5题图) (6题图) 5.已知:如图,Rt △ABC 中,∠C =90o,AC =BC ,AD 为∠BAC 的平分线,AE =BC ,DE ⊥AB 垂足为E ,求证△DBE 的周长等于AB .6.如图,已知P A ⊥ON 于A ,PB ⊥OM 于B ,且P A =PB .∠MON =50o,∠OPC =30o,求∠PCA的大小.专题练习1:常见辅助线 1.倍长中线法【例1】如图,△ABC 中,AD 为中线.(1)求证:AB +AC >2AD ;(2)若AB =5,AC =3,则中线AD 的取值范围是_________________. 【例2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点.试比较BE +CF 与EF 的大小.练习:1.已知:如图,AD 是△ABC 的中线,AB =AE , AC =AF ,∠BAE =∠F AC =90°.试探究线段AD 与EF 数量和位置关系.提示:F2.如图,已知AD 是△ABC 的中线,BE 交AC 于E , 提示:交AD 于F ,且AE =EF .求证:AC =BF2. 截长补短法【例1】如图,AD ∥BC ,EA ,EB 分别平分∠DAB ,∠ABC ,CD 过点E .求证:AB =AD +BC .【例2】如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分ABC ∠,求证: 180A C ︒∠+∠=.练习:1. 已知: 如图,在△ABC 中,AB = AC ,D 为△ABC 外一点, ∠ABD = 60︒,∠ADB = 90︒ -12∠BDC . 求证: AB = BD + DC提示:ABCDEFGAB CE FDDEOEDCBA3.借助角平分线造全等【例1】如图,已知在△ABC 中,∠B =60°,△ABC 的角平分线AD ,CE 相交于点O ,求证:OE =OD【例2】如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F .(1) 说明BE =CF 的理由;(2)如果AB =a ,AC =b ,求AE 、BE 的长. 练习:1.已知△ABC 中,∠B =2∠A ,AB =2BC求证:△ABC 是直角三角形.提示:4.三垂直问题 基本图形:E DGFCBAA B CB 【例1】如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F , 求证:△ABE ≌△CBF练习:如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论. 5.共顶点的两个特殊的图形(手拉手) 基本图形【例1】 已知:如图,ABC ∆中,AB =BC ,90ABC ∠=︒,点D 在 AC 上,90DBE ∠=︒ ,BE =BD .求证:CD =AE .【例2】 如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ,(2)EC ⊥BF练习:如图,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC . 试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.A C ED B ∠1=∠2⇒∠AOC=∠BODA EB M CFAB C D E 21ODCBA七、与中考链接 (一) 基础题1.(06北京) 已知:如图,AB ∥ED ,点F 、点C 在AD 上,AB =DE ,AF =DC . 求证:BC =EF .2. (07北京)已知:如图,OP 是AOC ∠和BOD ∠的平分线,OA OC OB OD ==,.求证:AB CD =.3.(08北京) 已知:如图,C 为BE 上一点, 点A 、D 分别在BE 两侧,AB ∥ED ,AB =CE ,BC =ED . 求证:AC =CD .4.(09北京) 已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =FC .5.(10北京) 已知:如图,点A B C D 、、、在同一条直线上,EA AD ⊥,FD AD ⊥,AE DF =,AB DC =.求证:ACE DBF ∠=∠.6.(11北京) 已知:如图,点A 、C 、B 、D 在同一条直线上,BE //DF ,A F ∠=∠,AB FD =.求证:AE FC =.7. (12北京) 已知:如图,点E ,A ,C 在同一直线上,AB // CD ,AB CE =,AC CD =.BC F EDAEB ACO D P求证:BC ED =.8. (13北京) 已知:如图,D 是AC 上一点,AB =DA ,DE ∥ AB ,B DAE ∠=∠.求证:BC =AE .9. (14北京) 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.10.(15北京)如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .求证:CBE BAD ∠=∠.AB C D E。
新人教版八年级上册数学第十二章《全等三角形》导学案
新人教版八年级上册数学第十二章《全等三角形》导学案学习目标、重点、难点【学习目标】1、知道什么是全等形、全等三角形及全等三角形的对应元素;2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;3、能熟练找出两个全等三角形的对应角、对应边.【重点难点】1、找全等三角形的对应边、对应角.2、全等三角形的性质.知识概览图新课导引如右图所示,把△ABC 绕点A 旋转一定角度,得到△ADE .【问题探究】这个图形中有哪些线段相等?哪些角相等?为什么? 【解析】相等的线段:AB 和AD ,AC 和AE ,BC 和DE ,相等的角:∠B 和∠D ,∠C 和∠E .∠BAC 和∠DAE ,∠DAB 和∠EAC .教材精华知识点1全等三角形的有关概念能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.“全等”用“≌”表示,读作“全等于”,如△ABC ≌△A ′B ′C ′.当两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 定义:能够完全重合的两个三角形叫做全等三角形对应边相等 对应角相等 全等三角形性质规律方法小结在全等三角形中找出对应角和对应边,关键是先找出对应顶点,然后按对应顶点的字母顺序记两个三角形全等,再按顺序写出对应边和对应角.全等三角形的面积一定相等,但是面积相等的两个三角形不一定是全等三角形.√常见的全等三角形的基本图形有平移型、旋转型和翻折型.(1)平移型:如图11-2和11-3所示,△ABC向右平移,得到△DEF,则△ABC≌△DEF.(2)旋转型:如图11-4所示的两对三角形的全等属于旋转型,图形的特点是:图11-4(1)的旋转中心为点A,有公共部分∠1;图11-4(2)的旋转中心为点O,有一对对顶角∠1和∠2.(3)翻折型:如图11-5所示,两对三角形的全等属于翻折型,其中图11-5(1)中有公共边AB,图11-5(2)中有公共角∠A.知识点2全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.拓展(1)全等三角形的性质是以后我们证明线段相等或角相等的常用依据.(2)全等三角形的对应边上的中线、高线及对应角的平分线也相等.(3)全等三角形的周长和面积相等.规律方法小结在寻找全等三角形的对应边和对应角时,常用的方法有:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;(4)全等三角形中一对最短的边(或最小的角)是对应边(或对应角).课堂检测基本概念题1、如图11-6所示的两个三角形全等.(1)若按对应顶点写在对应位置上,应写为△ABC≌;(2)找出对应边和对应角:AB=,BC=,CA=,∠ABC=,∠ACB=,∠BAC=.基础知识应用题2、如图11-9所示,已知△ABD≌△ACE.试说明BE=CD,∠DCO=∠EBO.综合应用题3、如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A.15°B.20°C.25°D.30°4、如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.探索创新题5、如图所示,将△ABC绕其顶点A顺时针旋转30°后,得到△AEF.(1)△ABC与△AEF的关系如何?(2)求∠EAB的度数;(3)△ABC绕其顶点A顺时针旋转多少度时,旋转后的△AEF的顶点F和△ABC的顶点C和A 在同一条直线上?体验中考1、如图11-18所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有( )A.1个B.2个C.3个D.4个2、如图11-19所示,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数为( )A.20°B.30°C.35°D.40°学后反思附:课堂检测及体验中考答案课堂检测1、分析本题考查三角形全等的符号表示,以及全等三角形中的对应边、对应角.答案:(1)△CDA(2)CD DA AC∠CDA∠CAD∠DCA【解题策略】(1)对于全等三角形的书写,要注意通常把表示对应顶点的字母写在对应的位置上,再根据顶点的对应关系写对应边或对应角.(2)表示角时一般用三个大写字母.2、分析本题主要考查全等三角形的性质及应用.解:∵△ABD≌△ACE(已知).∴AD=AE,AB=AC,∠D=∠E(全等三角形的性质).∵AD-AC=AE-AB(等式的性质),即DC=BE.又∵∠DCO=∠A+∠E,∠EBO=∠A+∠D(三角形的外角的性质),∴∠DCO=∠EBO.规律·方法全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的周长相等;(4)全等三角形的面积相等;(5)全等三角形中,对应边上的中线、对应边上的高、对应角的平分线也分别相等.3、分析本题主要考查全等三角形的性质:全等三角形的对应角相等.∵△ADB≌△EDB≌△EDC,∴∠ABD=∠EBD=∠C,∠A=∠BED=∠DEC.又∵∠BED+∠DEC=180°,∴∠BED=∠DEC=90°,∴∠A=90°.在△ABC中,∠ABD+∠DBE+∠C=90°,∴3∠C=90°,∴∠C=30°.故选D.4、分析本题主要考查全等三角形的性质与平行线的综合应用.由图形可以初步判断AD和BC的位置关系是平行,欲说明AD∥BC,需说明∠3=∠4,要说明∠3=∠4,需要利用三角形外角的性质.解:AD与BC的位置关系是AD∥BC.理由如下:∵△ADF≌△CBE(已知),∴∠1=∠2,∠F=∠E.又∵点E,B,D,F在一条直线上,∴∠3=∠1+∠F,∠4=∠2+∠E(三角形的外角的性质),∴∠3=∠4(等量代换).∴AD∥BC(内错角相等,两直线平行).5、分析本题主要考查全等三角形的定义及灵活应用.解:(1)∵△AEF是由△ABC绕其顶点A旋转形成的,∴△ABC≌△AEF(全等三角形的定义).(2)∵△ABC≌△AEF(已证),∴∠BAC=∠EAF(全等三角形的性质).∴∠BAC-∠BAF=∠EAF-∠BAF(等式的性质),即∠FAC=∠EAB.又∵∠FAC=30°(已知),∴∠EAB=30°(等量代换).(3)当△AEF的顶点F和△ABC的顶点A和C在同一条直线上时,△ABC应绕其顶点A顺时针旋转180°.体验中考1、分析本题考查全等三角形的概念.与△ABC全等的三角形共有4个,分别为△CDA,△DCB,△DCE,△BAD.故选D.2、分析本题考查全等三角形的性质.由△ACB≌△A′CB′,得∠BCA=∠B′CA′,∴∠ACA′=∠BCB′=30°.故选B12.2全等三角形的判定学习目标、重点、难点【学习目标】1、掌握两个三角形全等的判定方法SAS.2、掌握尺规作图:已知两边及夹角作三角形.3、掌握用SAS 的判定证明两个三角形全等,掌握证明三角形全等的书写格式.4、通过探索三角形全等的判定过程,体会探索研究问题的方法,培养分类讨论的数学思想.【重点难点】1、探索两个三角形全等的判定方法SAS ;2、用SAS 的方法证明两个三角形全等,进而证明角相等、线段相等与平行及证明三角形全等时的书写格式.知识概览图 新课导引由全等三角形的性质可知:当两个三角形全等时,它们的三组对应边、三组对应角分别相等. 那么,如果两个三角形△ABC 和△A ’B ’C ’满足三条边对应相等,三个角对应相等,即:AB=A ’B ’,AC=A ’C ’,BC=B ’C ’,∠A=∠A ’,∠B=∠B ’,∠C=∠C ’这六个条件,能保证这两个三角形全等吗?(能)提问:两个三角形全等,是否一定需要六个条件?如果只满足上述六个条件的一部分,是否也能保证两个三角形全等呢?(学生讨论各种情况,并加以总结) 定义:能够完全重合的两个三角形叫做全等三角形对应边相等 对应角相等 全等三角形性质A A'1、满足一个条件⎩⎨⎧一角对应相等一边对应相等)2()1(2、满足两个条件⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧角对应相等②一边及这条边所对的一个角对应相等①一边及与这边相邻的一边、一角对应相等两角对应相等两边对应相等)3()2()1(3、满足三个条件⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧对边对应相等②两角和其中一个角的应相等①两角和它们的夹边对两角及一边对应相等的角对应相等②两边及其中一边所对等①两边及其夹角对应相两边及一角对应相等三角对应相等三边对应相等)4()3()2()1( 列出一种情况,就通过画图讨论是否成立.教材精华知识点1全等三角形的判定1——SSS判定1:三边对应相等的两个三角形全等(简写:SSS ).注意:1. 证明三角形全等的书写格式. 2. 两个三角形的对应顶点应写在对应位置上.知识点2全等三角形的判定2——SAS判定2:两边和它们的夹角对应相等的两个三角形全等(简写:SAS ).② 反例:知识点3全等三角形的判定3——ASA判定3:两角和它们的公共边对应相等的两个三角形全等(简写:ASA ).AC D E注:在一个图形中,有多个垂直关系时,常用“同角或等角的余角相等”来证明两角相等,或用“等量代换”证明垂直关系.说明:(1)连结公共边是一种常用的辅助线;(2)原则是尽量不拆分待证元素.知识点4全等三角形的判定4——AAS知识点5全等三角形的判定5——HL判定:斜边和一条直角边对应相等的两个直角三角形全等(简写:HL)[强调] 1. HL只对直角三角形适用.2. 判定两个直角三角形全等的方法共有5种:SSS,SAS,ASA,AAS,HL.首选HL,再选其它方法.课堂检测基本概念题1、判定两个三角形全等的方法:、、、2、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)若∠A=∠D,AB=DE,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(2)若∠A=∠D,BC=EF,则△ABC与△DEF (填“全等”或“不全等”)根据(用简写法)(3)若AB=DE ,BC=EF ,则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法) (4)若AB=DE ,BC=EF ,AC=DF则△ABC 与△DEF (填“全等”或“不全等” ) 根据 (用简写法)基础知识应用题例1、如图,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD证明:∵D 是BC 中点(已知) …… (1)准备条件 ∴BD=CD (中点定义)在△ABD 和△ACD 中, …… (2)指明范围⎪⎩⎪⎨⎧===(公共边)(已证)(已知)AD AD CD BD AC AB …… (3)列齐条件∴ △ABD ≌△ACD (SSS )…… (4)得出结论提问:此题还能得到哪些结论?① 三组角对应相等;② AD 平分∠BAC ;③ AD ⊥BC. 注意:1. 证明三角形全等的书写格式. 2. 两个三角形的对应顶点应写在对应位置上. 例2、如图,AC=EF ,BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB. 求证:∠C=∠E证明:∵AD=FB (已知) …… (1)准备条件 ∴AD+DB=FB+DB 即AB=FD在△ABC 和△FDE 中, …… (2)指明范围⎪⎩⎪⎨⎧===(已证)(已知)(已知)FD AB DE BC EF AC …… (3)列齐条件ABFECD ACD∴△ABC ≌△FDE (SSS ) …… (4)得出结论 ∴∠C=∠E (全等三角形的对应角相等)提问:此题还能得到哪些结论?① 另两组角对应相等;② AC ∥EF ;③BC ∥DE.小结:证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.例2、如图,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2. 求证:∠B=∠C分析:先看∠B 、∠C 分别在哪两个三角形中,再证那两个三角形全等.证明:方法1、(证△ABE ≌△ACD ,过程略) 方法2、(证△ABD ≌△ACE ) ∵D 、E 在BC 上∴∠1+∠3=180º,∠2+∠4=180º(邻补角定义) ∵∠1=∠2(已知)∴∠3=∠4(等角的补角相等) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)CE BD 43AE AD ∴△ABD ≌△ACE(SAS)∴∠B=∠C (全等三角形的对应角相等)提问:此题还能得到哪些结论?①AB=AC ;②∠BAD=∠CAE ;③∠BAE=∠CAD.例1、如图,AC ⊥BC ,BD ⊥AD ,AC=BD. 求证:BC=AD.证明:∵AC ⊥BC ,BD ⊥AD (已知)∴∠C=∠D=90º(垂直定义) 在Rt △ABC 和Rt △BAD 中,3421BADEADC⎩⎨⎧==(已知)(公共边)BD AC BA AB∴ Rt △ABC ≌Rt △BAD (HL ) ∴ BC=AD (全等三角形的对应边相等)例2、已知:如图,在△ABC 和△A ’B ’C ’中,∠ACB=∠A ’C ’B ’,CD 和C ’D ’都是高,且AC=A ’C ’,CD=C ’D ’. 求证:△ABC ≌△A ’B ’C ’ 证明:∵CD 和C ’D ’是高 ∴∠ADC=∠A ’D ’C ’=90º 在Rt △ADC 和Rt △A ’D ’C ’中⎩⎨⎧==(已知)(已知)'D'C CD 'C 'A AC∴ Rt △ADC ≌Rt △A ’D ’C ’(HL ) ∴∠A=∠A ’ 在△ABC 和△A ’B ’C ’中⎪⎩⎪⎨⎧∠=∠=∠=∠'A A 'C 'A AC 'B 'C 'A ACB∴△ABC ≌△A ’B ’C ’ (ASA )综合应用题1、已知:如图,AD =BE ,AC =BC ,CD =CE. 求证:△AEC ≌△BDC证明:AD BE = AD DE BE DE ∴+=+ 即AE BD =在AEC ∆和BDC ∆中AE BD AC BC CE CD =⎧⎪=⎨⎪=⎩ AEC BDC ∴∆≅∆ (SSS ) *还能得到什么结论(相等关系)? 2、已知:如图,AB=DC ,AD=BC. 求证:(1)∠A=∠C ;CABABCDA'B'C'D'D CB A(2) AB ∥CD ,AD ∥BC .分析:连BD (或AC )证三角形全等即可,只需证明ABD CDB ∆≅∆ (SSS ) 即可得A C ∠=∠(全等三角形对应角相等)说明:(1)连结公共边是一种常用的辅助线;(2)原则是尽量不拆分待证元素.例1、如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B的点C ,连接AC 并延长到D ,使CD=CA. 连接BC 并延长到E ,使CE=CB. 连接DE ,那么量出DE 的长就是A 、B 的距离. 为什么?分析:要证AB=DE ,只需证△ABC ≌△DEC. 在△ABC 和△DEC 中,已知CA=CD ,CB=CE ,又隐含了∠1=∠2,故全等条件具备,可证. 证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧=∠=∠=(已知)(对顶角相等)(已知)CE CB 21CD CA ∴ △ABC ≌△DEC (SAS )∴ AB=DE (全等三角形的对应边相等)提问:此题还能得到哪些结论?①另两组角对应相等;②AB ∥DE.小结:1、SAS ——两边及夹角对应相等. 大括号中的条件应按SAS 的顺序书写.2、证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.3、在实际生活中,常利用三角形全等原理,把不能直接度量的物体“移到”可以直接度量的位置上来度量.例2、如图,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2. 求证:∠B=∠C分析:先看∠B 、∠C 分别在哪两个三角形中,再证那两个三角形全等.证明:方法1、(证△ABE ≌△ACD ,过程略) 方法2、(证△ABD ≌△ACE )BA21C3421ACDE∵D 、E 在BC 上∴∠1+∠3=180º,∠2+∠4=180º(邻补角定义) ∵∠1=∠2(已知)∴∠3=∠4(等角的补角相等) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)CE BD 43AE AD ∴△ABD ≌△ACE(SAS)∴∠B=∠C (全等三角形的对应角相等)提问:此题还能得到哪些结论?①AB=AC ;②∠BAD=∠CAE ;③∠BAE=∠CAD.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E , AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由答: 理由:∵ AF ⊥BC ,DE ⊥BC (已知)∴ ∠AFB=∠DEC= °(垂直的定义) 在Rt △ 和Rt △ 中⎩⎨⎧==_______________________________ ∴ ≌ ( )[中@#国教育出~&版*网] ∴∠ = ∠ ( ) ∴ (内错角相等,两直线平行)例3、如图,线段AC 、BD 交于点O ,AB=CD ,BF ⊥AC 于F ,DE ⊥AC 于E ,AE=CF.求证:BO=OD 证明:(以图1为例)∵BF ⊥AC ,DE ⊥AC (已知)∴∠1=∠2=90º(垂直定义)AFBE CO 4321∵AE=CF (已知) ∴AE+EF=CF+EF 即AF=CE在Rt △ABF 和Rt △CDE 中,⎩⎨⎧==(已证)(已知)CE AF CD AB∴ Rt △ABF ≌Rt △CDE (HL ) ∴ BF=DE (全等三角形的对应边相等)在△BFO 和△DEO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠(已证)(对顶角相等)(已证)DE BF 4321 ∴ △BFO ≌△DEO (AAS ) ∴ BO=DO (全等三角形的对应边相等)例1、如图,DC=EA ,EC=BA ,DC ⊥AC ,BA ⊥AC ,垂足分别是C 、A. 求证:BE ⊥DE.证明:∵DC ⊥AC ,BA ⊥AC (已知)∴∠A=∠C=90º(垂直定义) 在△AEB 和△CDE 中⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)DC EA C A EC BA ∴△AEB ≌△CDE(SAS)∴∠B=∠2(全等三角形的对应角相等) ∵∠A =90º ∴∠B+∠1=90º ∵∠B=∠2(已证) ∴∠1+∠2=90º(等量代换) ∵∠AEC=180º ∴∠BED=90º∴BE ⊥DE (垂直定义)例2、如图,在Rt △ABC 中,AB=AC ,∠BAC=90º,AN 是过A 的任一条直线,BD ⊥AN 于D ,CE ⊥AN 于E. 求证:DE=BD -CE. 证明:∵BD ⊥ANAFBECDO 653421图1图2AD32AEDBC21∴∠ADB =90º(垂直定义) ∴∠1+∠2=90º ∵∠BAC=90º∴∠2+∠3=90º∴∠1=∠3(同角的余角相等) ∵BD ⊥AN ,CE ⊥AN∴∠ADB=∠CEA=90º(垂直定义) 在△ABD 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠(已知)(已证)(已证)C A B A EA C DB A 31 ∴△ABD ≌△CAE (AAS)∴AE=BD ,CE=AD (全等三角形的对应边相等)∵DE=AE -AD∴DE=BD -CE (等量代换)注:在一个图形中,有多个垂直关系时,常用“同角或等角的余角相等”来证明两角相等,或用“等量代换”证明垂直关系.例3、如图,两条直线AC 、BD 相交于O ,AB ∥CD ,AB=CD ,直线EF 过点O 且分别交BC 、AD 于点E 、F. 求证:OE=OF 证明:∵AB ∥CD (已知)∴∠B=∠D (两直线平行,内错角相等) 在△ABO 和△CDO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠(已知)(对顶角相等)(已证)CD AB COD AOB D B∴ △ABO ≌△CDO (AAS )∴ BO=DO (全等三角形的对应边相等) 在△EBO 和△FDO 中,EBD AFOC21⎪⎩⎪⎨⎧∠=∠=∠=∠(对顶角相等)(已证)(已证)21DO BO D B∴△EBO ≌△FDO (ASA )∴OE=OF (全等三角形的对应边相等)例4、如图,AB=CD ,AD=BC ,DE=BF. 求证:BE=DF 分析:可连接公共边构造全等. 证明:连接DB在△ABD 和△CDB 中⎪⎩⎪⎨⎧===(公共边)(已知)(已知)BD DB CD AB CB AD∴△ABD ≌△CDB (SSS )∴∠ADB=∠CBD (全等三角形的对应角相等) ∵∠ADB+∠EDB=180°,∠CBD+∠FBD=180° ∴∠EDB=∠FBD (等角的补角相等) 在△EDB 和△FBD 中⎪⎩⎪⎨⎧=∠=∠=(公共边)(已证)(已知)BD DB FBD EDB BF DE∴△EDB ≌△FBD (SAS )∴BE=DF (全等三角形的对应边相等)注:连接公共边构造全等是一种常用的添加辅助线的方法.探索创新题2、已知:如图,AB=AC ,AD=AE ,∠1=∠2.A B21CBADEF求证:△ABD ≌△ACE(本题主要是让学生能结合图形挖掘“公共角”的隐含条件,为证明全等提供依据)3、已知:如图,AD 为ABC ∆的中线.求证:2AB AC AD +>. 证明:延长AD 至E ,使DE AD =. 则有ADC EDB ∆≅∆ (SAS ) BE AC ∴=在ABE ∆中,AB BE AE +>,即2AB AC AD +>例2、求证:两边及其中一边上的中线对应相等的两个三角形全等.(P27 12)已知:在△ABC 和△A ’B ’C ’中,AB=A ’B ’,BC=B ’C ’,AD 、A ’D ’分别是BC 、B ’C ’边上的中线,AD=A ’D ’.求证:△ABC ≌△A ’B ’C ’证明:∵AD 、A ’D ’分别是BC 、B ’C ’边上的中线∴BD=21BC ,B ’D ’=21B ’C ’∵BC=B ’C ’ ∴BD=B ’D ’在△ABD 和△A ’B ’D ’中⎪⎩⎪⎨⎧===(已知)(已证)(已知)'D 'A AD 'D 'B BD 'B 'A AB ∴△ABD ≌△A ’B ’D ’(SSS )∴∠B=∠B ’(全等三角形的对应角相等) 在△ABC 和△A ’B ’C ’中ADC BEABCDA'B'C'D'⎪⎩⎪⎨⎧=∠=∠=(已知)(已证)(已知)'C 'B BC 'B B 'B 'A AB ∴△ABC ≌△A ’B ’C ’(SAS ) 小结:证明几何命题的的一般步骤:(P21)①明确命题中的已知和求证;②根据题意,画出图形,并结合图形,用数学符号表示已知和求证; ③经过分析,找出由已知推出求证的途径,写出证明的过程.例3、已知如图,ΔABC 中,D 是BC 中点,DE ⊥DF ,试判断BE +CF 与EF 的大小关系,并证明你的结论.分析:有中点,就有等长的线段, 故可通过旋转180°构造全等.结论:BE +CF>EF证明:延长FD 至点G ,使DG=DF ,连接EG 、BG. ∵D 是BC 中点∴BD=DC在△BGD 和△CFD 中⎪⎩⎪⎨⎧=∠=∠=DF DG CDF BDG CD BD ∴△BGD ≌△CFD (SAS) ∴BG=CF∵DE ⊥DF ∴∠EDG=∠EDF=90° 在△EDG 和△EDF 中⎪⎩⎪⎨⎧=∠=∠=DF DG EDF EDG EDED∴△EDG ≌△EDF ∴EG=EFFDAC EHF D ABCE∵在△EBG中,BE+BG>EG ∴BE+CF>EF 注:有中点、中线时,可通过旋转180°构造全等体验中考学后反思12.3等腰三角形学习目标、重点、难点【学习目标】1、等腰三角形的定义、性质和判定;2、等边三角形的定义、性质和判定;3、直角三角形的性质; 【重点难点】1、等腰三角形的定义、性质和判定;2、等边三角形的定义、性质和判定;3、直角三角形的性质;知识概览图新课导引如右图所示,在海上A ,B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A =∠B ,如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?【问题探究】 若想判断能否同时到达出事地点,就是要判断OA 与OB 是否相等,如何判断OA 与OB 的大小呢?【解析】 如右图所示,过点O 作OC ⊥AB ,C 为垂足,则在△AOC 与△BOC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,OC OC BCO ACO B A 故△AOC ≌△BOC (AAS),故AD =BO .定义:有两条边相等的三角形,叫做等腰三角形 (1)等腰三角形的两个底角相等(等边对等角)(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一)判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)等边三角形直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半定义:三条边都相等的三角形,叫做等边三角形性质:等边三角形的三个内角都相等,并且每一个角都等于60° (1)三个角都相等的三角形是等边三角形 (2)有一个角是60°的等腰三角形是等边三角形等腰三角形性质判定教材精华知识点1等腰三角形的概念有两条边相等的三角形,叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.知识点2等腰三角形的性质性质1:等腰三角形是轴对称图形.性质2:等腰三角形的两个底角相等(简写成“等边对等角”).性质3:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称等腰三角形“三线合一”).拓展(1)当等腰三角形的顶角为90°时,则此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.(2)利用等腰三角形的性质2,可以证明两个角相等.(3)利用等腰三角形“三线合一”可以证明线段相等、垂直或角相等.(4)另外,等腰三角形还有以下性质:①等腰三角形两腰上的中线、高线相等.②等腰三角形两底角的平分线相等.③等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.知识点3 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).拓展(1)等腰三角形的判定有以下几种方法:①定义.②判定定理.③垂直平分线的性质.(2)“等边对等角”是等腰三角形的性质,先有边相等,进而得出角相等.“等角对等边”是判定三角形为等腰三角形的依据,先有角相等,进而得出边相等,即为等腰三角形.“等边对等角”或“等角对等边”只限于在同一个三角形中,若在两个不同的三角形中,此结论不成立.(3)等腰三角形的底角只能是锐角,顶角可以是锐角、直角或钝角.(4)由三角形两边之和大于第三边可知等腰三角形的腰长大于底边的一半.知识点4 等边三角形定义:三条边都相等的三角形叫做等边三角形.性质:等边三角形的三边都相等,三个内角都相等,并且每一个角都等于60°.判定:(1)三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有两个角是60°的三角形是等边三角形.(4)有一个角是60°的等腰三角形是等边三角形.拓展等边三角形的判定条件不相同,选择的方法也不相同.四种方法要灵活选用.知识点5 含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.拓展此性质的大前提是“在直角三角形中”,如果没有这个条件,即使有30°角,结论也不成立.课堂检测基础知识应用题1、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()A.20°B.120°C.20°或120°D.36°2、已知等腰三角形ABC中,AB=AC,∠B=60°,则∠A=.综合应用题3、如图12-74所示.在等腰三角形ABC中,CH是底边上的高线.点P 是线段CH上不与端点重合的任意一点.连接AP交BC于点E,连接BP交AC 于点F.(1)求证∠CAE=∠CBF;(2)求证AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G).记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.探索创新题4、如图12-78所示,在△ABC中,∠ACB=90°,BD=BC,AE=AC.判断∠DCE的大小是否与∠A有关.如果有关,说明理由;如果无关,求∠DCE的度数.体验中考1、如图所示,△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是( )A.0<x<3 B.x>3C.3<x<6 D.x>62、下列性质中,等腰三角形具有而直角三角形不一定具有的是( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°3、如图所示,在等边三角形ABC 的AC 边上取中点D ,在BC 的延长线上取一点E ,使CE =CD .求证BD =DE .学后反思附: 课堂检测及体验中考答案 课堂检测1、分析 此题应分两种情况:当顶角与底角度数之比为1∶4时,三个角的度数之比为1∶4∶4,因此三个内角分别为180°×91=20°,180°×94=80°,180°×94=80°.当顶角与底角度数之比为4∶1时,同理可求得三个内角度数分别为120°,30°,30°.因此这个等腰三角形的顶角为120°或20°.故选C .本题考查了三角形内角和定理以及等腰三角形的性质,也可用排除法,因为有两种情况,所以可直接选C .2、分析 本题考查等腰三角形的性质和三角形内角和定理的综合应用.因为AB =AC ,所以∠B =∠C =60°,因为∠A =180°-∠B -∠C ,所以∠A =180°-60°-60°=60°.故填60°.3、分析本题考查了等腰三角形与全等三角形的综合应用.第(3)问应注意进行分类讨论. 证明:(1)∵△ABC 是等腰三角形,CH 是底边上的高线, ∴AC =BC ,∠ACP =∠BCP .又∵CP =CP ,∴△ACP ≌△BCP , ∴∠CAP =∠CBP ,即∠CAE =∠CBF .(2)∵∠ACE =∠BCF ,∠CAE =∠CBF ,AC =BC , ∴△ACE ≌△BCF ,∴AE =BF .解:(3)由(2)知△ABG 是以AB 为底边的等腰三角形, ∴S △ABC =S △ABG 等价于AE =AC .①当∠ACB 为直角或钝角时,在△ACE 中,不论点P 在CH 何处,均有AE >AC ,∴结论不成立.②当∠ACB 为锐角时,∠BAC =90°-21∠ACB ,而∠CAE <∠BAC , 要使AE =AC ,只需使∠ACB =∠CEA , 此时,∠CAE =180°-2∠ACB , 只需180°-2∠ACB <90°-21∠ACB , 解得60°<∠ACB <90°.4、分析 本题主要考查利用等腰三角形的性质探索问题的能力. 解:∠DCE 的大小与∠A 无关,∠DCE =45°.理由如下: ∵BD =BC ,∴∠BDC =∠BCD . ∴∠BDC =21 (180°-∠B )=90°-21∠B . 又∵AE =AC ,∴∠AEC =∠ACE .∴∠AEC =21 (180°-∠A )=90°-21∠A . ∴∠AEC +∠BDC =(90°-21∠A )+(90°-21∠B )=180°-21(∠A +∠B ). 又∵∠ACB =90°,∴∠BDC +∠AEC =180°-21×90°=135°. ∴∠DCE =45°.体验中考1、分析 本题考查等腰三角形中三边之间的关系,由底边BC =6,两腰长为x 可知2x >6,所以x >3.故选B .2、分析 本题主要考查等腰三角形特有的“三线合一”的性质,选项A 和选项D 是所有三角形都具有的;选项C 是直角三角形独有的;选项B 是等腰三角形独有的.故选B .3、分析 本题主要考查等边三角形的性质和等腰三角形的判定. 证明:∵△ABC 为等边三角形,∴∠ABC =∠ACB =60°. ∵D 是AC 的中点,∴BD 平分∠ABC .∴∠CBD =21∠ABC =21×60°=30°. ∵CD =CE ,∴∠E =∠CDE .又∵∠E +∠CDE =∠ACB =60°,∴∠E =30°.∴∠CBD =∠E .∴BD =DE .12.3角的平分线的性质学习目标、重点、难点【学习目标】1、熟练掌握角平分线的尺规作图.2、能应用三角形全等的知识,解释尺规作角平分线的原理.3、掌握几种基本的三角形作图.【重点难点】1、利用尺规作已知角的平分线.2、角平分线的性质.知识概览图新课导引如右图所示,需在S 区建一个集贸市场,使它到公路、铁路的距离相等,并且使集贸市场离公路与铁路交叉点A 处500米.则这个集贸市场应建在何处(在图上标出它的位置,比例尺为1∶20000)?【问题探究】要使集贸市场到公路、铁路的距离相等,则可连接S 区与公路、铁路的交叉点,利用三角形全等的知识找到两个全等的直角三角形,进而找到集贸市场的位置,可证出连接集贸市场与公路、铁路交叉点A 的直线平分公路与铁路的夹角,问题可求.【解析】作出公路与铁路夹角的平分线,以其顶点为端点,作出一条长为2.5厘米的线段,则这条线段的另一端点即为所求.教材精华知识点1 角平分线的作法已知∠AOB ,求作∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径画弧,交OA 于M ,交OB 于N . (2)分别以M ,N 为圆心,大于21MN 的长为半径画弧,两弧在∠AOB 的内部交于点C .(3)画射线OC ,射线OC 即为∠AOB 的平分线.拓展 (1)这是最常见的尺规作图,也是最基本的作图之一,必须掌握.(条件) 点在角的平分线上(结论) (结论) 点到角的两边的距离相等 (条件)判定性质。
八年级数学上册-人教版八年级上册数学 12小结与复习第十二章全等三角形总复习导学案
八年级数学上册$第十二章全等三角形总复习 导学案 一、全等三角形的概念及其性质1、全等三角形的定义:能够完全 的两个三角形叫做全等三角形 。
2、全等三角形性质:(1) (2) (3) (4) 例1.已知如图(1),A B C∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,对应角:_____与_____,____与_____,____与_____. (图1) 例2.如图(2),若B O D∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边;若ADO∆≌AEO ∆,指出这两个三角形的对应角。
(图2) ( 图3)例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.二、全等三角形的判定方法1、三边对应相等的两个三角形全等 ( SSS )例1.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
例2.如图,AB=AC,BE 和CD 相交于P ,PB=PC, 求证:PD=PE.例3. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 。
求证:MB=MC2、两边和夹角对应相等的两个三角形全等( SAS ) 例4.如图,AD 与BC 相交于O,OC=OD,OA=OB, 求证:DBA CAB ∠=∠3、两角和夹边对应相等的两个三角形全等 ( ASA )例5.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F求证:ABE ∆≌FCE ∆4、两角和夹边对应相等的两个三角形全等 ( AAS ) 例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、 AC 边上。
人教版八年级数学上册第十二章全等三角形知识点总结及复习
全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
人教版八年级数学上册第十二章12.1全等三角形导学案
人教版八年级数学上册第十二章12.1 全等三角形导学案教学目标1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.预习反馈阅读教材P31~32,完成下列内容.1.全等形、全等三角形的概念:能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.如下列图形中的全等形是e与h、d与g.2.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如图,△ABC与△DEF能重合,则记作:△ABC≌△DEF,对应顶点:点A与点D、点B 与点E、点C与点F;对应边:AB与DE、AC与DF、BC与EF;对应角:∠A与∠D、∠B与∠E、∠C与∠F.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.如上图,△ABC≌△DEF,则AB=DE,AC=DF,BC=EF;∠A=∠D,∠B=∠E,∠C=∠F.例题讲解类型1 全等形的识别例1如图,在4个正方形图案中,与如图所示正方形图案全等的图案是(C)【方法归纳】判断全等形的方法:两个图形同时满足形状相同和大小相同才能称为全等形,并且全等形与它们的位置和方向无关.【跟踪训练1】在下列每组图形中,是全等形的是(C)类型2 找全等三角形的对应元素例2 如图,△ABC≌△DEF,点A与点D,点B和点E是对应顶点,写出这两个三角形的对应边和对应角.解:由△ABC≌△DEF可得AC的对应边是DF,BC的对应边是EF,AB的对应边是DE,∠ABC的对应角是∠DEF,∠A的对应角是∠D,∠ACB的对应角是∠DFE.【方法归纳】确定全等三角形对应元素的三种方法:1.字母顺序法:根据书写规范,按照对应顶点确定对应边,对应角.如:△ABC≌△DEF,则AB与DE,AC与DF,BC与EF是对应边,∠A和∠D,∠B和∠E,∠C和∠F是对应角.2.图形位置法:①公共边一定是对应边;②公共角一定是对应角;③对顶角一定是对应角.3.图形大小法:两个全等三角形的最大的边(角)是对应边(角),最小的边(角)是对应边(角).【跟踪训练2】如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.解:对应边:AN与AM,BN与CM;对应角:∠BAN与∠CAM,∠ANB与∠AMC.类型3 运用全等三角形的性质解决问题例3 如图所示,△ABC绕着点B顺时针旋转90°得到△DBE,且∠ABC=90°.(1)△ABC和△DBE是否全等?若全等,指出对应边和对应角;(2)直线CD,DE有怎样的位置关系?解:(1)∵△ABC绕着点B沿顺时针方向旋转90°得到△DBE,∴△ABC≌△DBE.∴∠BAC的对应角为∠BDE,∠ACB的对应角为∠DEB,∠ABC的对应角为∠DBE;AB的对应边为DB,BC的对应边为BE,AC的对应边为DE.(2)AC⊥DE.理由:延长AC,交DE于点F.∵∠ABC=90°,∴∠A+∠1=90°.又∵△ABC≌△DBE,∴∠D=∠A.又∵∠2=∠1,∴∠2+∠D=90°.∴AC⊥DE.【方法归纳】全等三角形的性质的用途全等三角形的性质⎩⎪⎨⎪⎧角相等⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫证两角相等求某角的度数判断两直线的位置关系边相等⎩⎪⎨⎪⎧证线段相等求线段的长度【跟踪训练3】 如图,把△ABC 沿直线BA 翻折至△ABD ,那么△ABC 和△ABD 是全等图形(填“是”或“不是”).若CB =5,则DB =5;若△ABC 的面积为10,则△ABD 的面积为10.巩固训练1.下列关于全等三角形的说法,不正确的是(A)A .形状相同的三角形是全等三角形B .全等三角形的形状相同C .全等三角形的大小相等D .全等三角形的对应边相等2.如图,已知△ABC ≌△CDE ,其中AB =CD ,那么下列结论中,不正确的是(C)A .AC =CEB .∠BAC =∠ECD C .∠ACB =∠ECDD .∠B =∠D3.如图,若△OAD ≌△OBC ,∠COD =65°,∠C =20°,则∠OAD 的度数为(D)A .65°B .75°C .85°D .95°4.已知△ABC≌△A′B′C′,点A与A′,点B与B′是对应点,△A′B′C′周长为9 cm,AB=3 cm,BC=4 cm,则A′C′=2__cm.5.如图,在图中的两个三角形是全等三角形,其中点A和D、点B和E是对应点.(1)用符号表示两个三角形全等,并写出图中相等的线段;(2)写出图中一组平行的线段,并说明理由.解:(1)△ABC≌△DEF,AB=DE,BC=EF,AC=DF,AF=DC.(2)∵△ABC≌△DEF,∴∠A=∠D,∴AB∥DE.6.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.若DE=7,BC=4,∠D=35°,∠C=60°.(1)求线段AE的长;(2)求∠DFA的度数.解:(1)∵△ABC≌△DEB,∴DE=AB,BE=BC.∵AE=AB-BE,∴AE=DE-BC=7-4=3.(2)∵△ABC≌△DEB,∴∠A=∠D,∠C=∠DBE.∴∠DEA=∠D+∠DBE=95°.∴∠DFA=∠DEA+∠A=130°.课堂小结1.全等三角形的概念:能够完全重合的两个图形叫做全等形.平移、翻折、旋转前后的图形全等.2.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应元素:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:“全等”用“≌”表示,读作“全等于”,表示两个三角形全等时,通常把表示对顶点的字母写在对应的位置上.3.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.。
新人教版数学八年级上册第十二章《全等三角形》全单元导学案
课题: 12.1 全等三角形导学案班级:姓名:【学习目标】1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己。
【教学重点】:全等三角形的性质及寻找全等三角形的对应边、对应角。
【教学难点】:寻找全等三角形的对应边、对应角。
【学习过程】一、自主学习1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子 ? 同一张底片洗出的同大小照片是能够完全重合的(如图);能够完全重合的两个图形叫做.(1)一个图形经过平移,翻转,旋转后,位置变化了,但和都没有改变,即平移,翻转,旋转前后的图形。
(2)如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是和2、全等三角形。
能够完全重合的两个三角形叫做(如下图)。
A A1B C B1C1“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC≌△ A1 B1C1叫对应顶点, A←→ A1 ,B ←→ B1,C←→ C1叫对应边, AB←→ A1B1,AC←→,←→ B1C1叫对应角 , ∠ A←→∠ A1, ∠B←→∠ ,∠C←→∠注意:书写全等式时要求把对应顶点字母放在的位置上。
3、全等三角形的性质。
全等三角形的相等,相等。
用符号表示为∵△ ABC≌△ A1 B1C1∴AB=A1 B1, BC=B1 C1, AC=A1C1(全等三角形的)∴ ∠ A= ∠ A 1,∠ B=∠B1,∠ C= ∠C1(全等三角形的)AA1B CB C11二、学以致用1、如图△ ABC≌ △ ADE,若∠ D=∠ B,∠C= ∠ AED,则∠ DAE=;∠DAB=。
2、如图 , △ABC≌△ AED,AB是△ ABC的最大边,AE是△ AED的最大边 ,∠BAC与∠ EAD对应角,且∠ BAC=25°,∠ B=35° ,AB=3cm,BC=1cm,求出∠ E, ∠ ADE 的度数和线段 DE,AE 的长度。
2024年人教版八年级数学上册教案及教学反思第12章12.1 全等三角形
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
人教版八年级数学上册第12章 全等三角形全章复习和巩固导学案
全等三角形全章复习与巩固(基础)【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2. 证明角相等的方法:SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.1、下列每组中的两个图形,是全等图形的为()A. B.C.D.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【答案与解析】对应边:AN与AM,BN与CM对应角:∠BAN与∠CAM,∠ANB与∠AMC3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB=∠________=________°.【思路点拨】由旋转的定义,△ABD≌△EBC,∠ADB 与∠ECB是对应角,通过计算得出结论.【答案】55;ABD,EBC;ECB,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、如图,已知AD,BC相交于点O,OB=OD,∠ABD=∠CDB求证:△AOB≌△COD.【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.已知:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【变式】已知:如图,AE⊥AB,BC⊥AB,(2)由∠ADB=∠CBDAE=AB,ED=AC.求证:ED⊥AC.。
八年级数学上册 第十二章 全等三角形综合复习导学案(新版)新人教版
全等三角形一、知识结构图角平分线的判定二、课堂练习:1、如图1所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A 、 SSSB 、SASC 、 AASD 、 ASA图1 图2 图32、如图2,∠B=∠C ,添加一个条件使ABD ∆≌ACE ∆,(不添加新的字母,不添加新的线段),你添加的条件是 。
3、如图3,已知AB=AD ,那么添加下列一个条件后,仍无法判定ABC ∆≌ADC ∆的是( )A 、 CD=CB B 、∠BAC=∠DAC C 、∠BCA=∠DCAD 、∠B=∠D=900图4 图54、如图4,已知AC=DB ,AO=DO ,CD=100m ,则A ,B 两点间的距离( )A 、大于100mB 、等于100mC 、小于100mD 、无法确定5、如图5,在△ABC 中,∠C=900,DE ⊥AB 于D ,BC=BD 。
如果AC=3cm ,那么AE+DE=( )D B C A AE D B C 性质 判定B C E ADB C6、已知,如图,AC //BD ,AC =BD ,在AB 上取两点E 、F ,AE =BF .请 你判断DE 、CF 有何关系?并说明理由.7、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE. 求证:△ACD ≌△CBE.8、(1)如图①,已知AB=CD ,AD=BC ,O 为AC 的中点,过点O 的直线分别与AD ,BC 相交于点M ,N ,那么∠1与∠2有什么关系?请说明理由。
(2)如果将过点O 的直线旋转至如图②、③所示的情况,其他条件不变,那么∠1与∠2的关系仍然成立吗?(二)角平分线的性质与判定应用9、如图9,在Rt △ABC 中, AD 是∠BAC 的角平分线,DE ⊥AB 于点E ,若BD=5cm,DE=3cm,则BC= 。
10、如图10,在△ACB 中,∠C=90°, AM 平分∠CAB,CM=2cm, AB=3cm 。
第十二章 全等三角形小结复习导学案
第十二章全等三角形小结复习导学案一、新课导入1、导入课题:在这一章,我们深入的研究了全等三角形的性质、判定以及相关的应用,这节课我们把这章的知识整体回顾一下。
2、学习目标:(1)知道全等三角形的性质、判定;(2)能说出角平分线性质、判定以及它与全等三角形知识的联系;(3)灵活运用全等三角形的性质、判定解决问题。
3、学习重难点重点:全等三角形的性质、判定难点:全等三角形的性质、判定的应用二、分层学习第一层次自学1、自学指导(1)自学内容:自学P31页--- P56页的内容.(2)自学时间:10分钟.(3)自学方法:回顾、反思.(4)自学参考提纲:知识回顾:请你带着下面的问题,复习一下全章的内容:①你能举出一些实际生活中全等形的例子吗?②全等三角形有什么性质?③全等三角形的判定有哪些?试着说说这些判定之间的区别。
④学习本章内容之后,你对角平分线有哪些新认识,你能用全等三角形的相关知识进行证明吗?⑤说说证明几何问题的一般步骤有哪些?2.自学:同学们可结合自学指导进行复习.3.助学:师助生:(1)明了学情:通过本章的学习,了解学生是否学会了利用证明三角形全等来得到线段相等、角相等,利用全等三角形证明角的平分线的性质。
(2)差异指导:引导学生总结证明线段相等、角相等的方法是证明三角形全等来完成的。
生助生:学生之间相互交流帮助。
4. 强化复述全等三角形的性质、判定。
第二层次自学1、自学指导(1)自学内容:参考提纲中的例题.(2)自学时间:10分钟.(3)自学方法:动手完成.(4)自学参考提纲:①巧添辅助线构造全等三角形例1:如图,在△ABC 中,AB=12,AC=8,AD 是BC 边上的中线,求AD 的取值范围。
AB D C②利用三角形全等解决开放与探究问题例2:如图,在△ABC 和△ACE 中,有下列四个条件:①AB=AC ,②AD=AE ,③∠1=∠2,④BD=CE请你以其中三个条件为题设,余下的作为结论,写出一个真命题(要求写出已知、求证、及证明过程)2、自学:先动手独立完成,不会的小组合作。
八年级数学上册12全等三角形复习导学案新版新人教版
全等三角形复习一、复习目标1、掌握全等三角形的概念及其性质;2、会灵活运用全等三角形的判定方法解决问题;3、掌握角平分线的性质并能灵活运用。
二、知识再现1、全等三角形的概念及其性质1)全等三角形的定义: 2)全等三角形性质:(1) (2) (3)周长相等 (4)面积相等 例1.如图1, ABC ∆≌ADE ∆,BC 的延长线交DA 于F , 交DE 于G,105=∠=∠AED ACB , 25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.例题反思:2、 全等三角形的判定方法:例2.如图2,AD 与BC 相交于O,OC=O D,OA=OB,求证:DBA CAB ∠=∠例题反思:例3.如图3,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。
且B ADE ∠=∠,AD=DE 求证:ADB ∆≌DEC ∆.图1图23、角平分线例4.如图4,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FC例题反思:三、双基检测1、下列命题中正确的( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等 2、下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边 3、完成下列证明过程.如图5,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE ,=DEF B ∠∠ 求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知),∴EBD FCE △≌△( ).∴ED =EF ( ).图4ADECBF图5如图6⑴,AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由。
新人教版八年级数学上册第十二章全等三角形导学案
C 1B 1CABA 1新人教版八年级数学上册第十二章全等三角形导学案【学习目标】1、能记住全等形及全等三角形的概念。
2、能说出全等三角形的性质。
3、能够准确辩认全等三角形的对应元素。
【教学重点】: 全等三角形的性质,并会运用其进行简单的推理和计算. 【教学难点】:找全等三角形的对应边、对应角.【自习自疑文】预习导航:阅读教材P31-32,完成以下练习1:你能发现这两个图形在形状和大小有什么特殊关系吗?2:同学们能举出现实生活中能够完全重合的图形的例子吗?结论:1、 叫全等形。
2、全等三角形的性质:全等三角形的 相等, 相等.3、记两个三角形全等时,通常把表示___ __的字母写在__ ___上. 【预习评估】如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.【自主探究文】活动一:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .(指出对应关系)乙DCAB甲DCABF丙DC ABE 平移翻折旋转DCABO1、从上面的图形变化中,各图中的两个三角形全等吗?还有哪些变化形式?结论:一个图形经过、、后,位置变化了,•但、都没有改变,所以、、前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 2、观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)结论:全等三角形的相等;相等。
活动二:如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,•指出其他的对应边和对应角.分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.【自结自测文】1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题(1)全等三角形的对应边相等,对应角相等。
新版新人教版2020年八年级数学上册第十二章全等三角形12.1全等三角形导学案
第十二章全等三角形12.1 全等三角形1.知道什么是全等形、全等三角形及全等三角形的对应元素.2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.3.能熟练找出两个全等三角形的对应角、对应边.重点:掌握全等三角形的对应元素和性质的应用.难点:全等三角形性质的应用.一、自学指导自学:自学课本P31-32页“探究、思考1、思考2”,理解“全等形”“全等三角形”的概念及其对应元素,掌握全等三角形的性质及应用,完成填空.(5分钟) 总结归纳:(1)形状、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的对应边相等,全等三角形的对应角相等.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.下列图形中的全等图形是d与g,e与h.2.如图,△ABC与△DEF能重合,则记作△ABC≌△DEF,读作△ABC全等于△DEF,对应顶点是:点A与点D,点B与点E,点C与点F;对应边是:AB与DE,AC与DF,BC与EF;对应角是:∠A与∠D,∠B与∠E,∠C与∠F.,第2题图),第3题图) 3.如图,△OCA≌△OBD,C和B,A和D是对应顶点,相等的边有AC=DB,AO=DO,CO =BO,相等的角有∠A=∠D,∠C=∠B,∠COA=∠BOD.点拨精讲:通常把对应顶点的字母写在对应的位置上.4.已知△OCA≌△OBD,若OC=3 cm,BD=4 cm,OD=6 cm.则△OCA的周长为13_cm;若∠C=110°,∠A=30°,则∠BOD=40°.点拨精讲:全等三角形的对应边、对应角、周长分别对应相等.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 如图,下面各图的两个三角形全等,指出它们的对应顶点、对应边、对应角,其中△ABC可以经过怎样的变换得到另一个三角形?点拨精讲:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是寻求全等的一种策略.解:①△ABC≌△DEF,A和D,B和E,C和F是对应顶点,AB与DE,AC与DF,BC与EF是对应边,∠A与∠D,∠B与∠E,∠C与∠F是对应角,△DEF是△ABC经过平移得到的.②△ABC≌△DBC,A和D,B和B,C和C是对应顶点,AB与DB,AC与DC,BC与BC是对应边,∠A与∠D,∠ABC与∠DBC,∠ACB与∠DCB是对应角,△DBC是△ABC沿BC所在直线向下翻折得到的.③△ABC≌△AED,A和A,B和E,C和D是对应顶点,AB与AE,AC与AD,BC与ED是对应边,∠BAC与∠EAD,∠B与∠E,∠C与∠D是对应角,△AED是△ABC绕点A旋转180°得到的.探究2 如图,△ABC≌△DEF,AB=DE,AC=DF,且点B,E,C,F在同一条直线上.(1)求证:BE=CF,AC∥DF;(2)若∠D+∠F=90°,试判断AB与BC的位置关系.解:(1)证明:∵△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴AC∥DF,BC-EC=EF-EC,∴BE=CF.(2)结论:AB⊥BC.证明:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠F,∵∠D+∠F=90°,∴∠A+∠ACB =90°,∴∠B=90°,∴AB⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,△ABC≌△CDA,求证:AB∥CD.证明:∵△ABC≌△CDA,∴∠BAC=∠DCA,∴AB∥CD.2.如图,△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.解:对应边有AB与AC,AE与AD,BE与CD,对应角有∠BAE=∠CAD.(3分钟)找对应元素的常用方法有两种:(一)从运动角度看1.翻折法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一个三角形重合,从而发现对应元素.3.平移法:沿某一方向平移使两个三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)1、在最软入的时候,你会想起谁。
八年级数学上册《第12章 全等三角形》导学案(新版)新人教版
八年级数学上册《第12章全等三角形》导学案(新版)新人教版【学习目标】知识与技能:掌握全等形、全等三角形及相关概念和全等三角形性质。
过程与方法:理解“平移、翻折、旋转”前后的图形全等,确定全等三角形的对应元素。
情感态度与价值观:培养学生对三角形的认识及推理论证能力。
【学习重点】掌握全等形、全等三角形及相关概念。
【学习难点】全等三角形性质。
【自学展示】自学课本P31-32页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
【合作学习】1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
【质疑导学】1、课本P32练习1、22、如图1,若△ABC≌△EFC,且CF=3cm,∠EFC=64,则BC=_____cm,∠B=___、毛图1 图23、如图2,△ABC≌△DEF,求证:AD=BE、【学习检测】1、如图1,△ABC≌△DEF,对应顶点是____对应角是____________,对应边是__________2、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角________________3、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC、图3 图44、如图4,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?【学后反思】板书设计:课题:12、2三角形全等的判定(1)【学习目标】知识与技能:掌握三角形全等的判定(SSS)过程与方法:初步体会尺规作图,掌握简单的证明格式情感态度与价值观:初步体会三角形全等的认识,从而提高对几何图形的推理论证能力。
新人教版八年级上册第十二章-全等三角形复习 导学案 共6页
新人教版八年级数学上册第十二章 《全等三角形》复习导学案知识结构一、全等三角形1)全等形___________________________。
全等三角形___________________________。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2)全等三角形的性质___________________________。
注意:全等 的记法___ 二、全等三角形的判定直角三角形ABC 与直角三角形DBCSSS 已知: SAS 已知: 求证: 求证: 证明: 证明:ASA 已知: AAS 已知: 求证: 求证: 证明: 证明:全等三角形对应边相等 对应角相等 三角形全等的判定(SSS 、SAS 、ASA 、AAS 、HL )解决问题角平分线上点到两边的距离相等到角两边的距离相等的点在角平分线上全等形_____________________(可简写为边边边或SSS ) ____________________(可简写为边角边或SAS ) ____________________(可简写为角边角或ASA ) ____________________(可简写为角角边或AAS )___________________(可简写为斜边直角边或HL )HL 已知: 求证: 证明:注意:1不存在SSA 2证明格式要规范三、角平分线的性质1)角平分线的性质 2)角的平分线的判定_______________ _____________3)三角形角平分线的交点性质:_________________4)用尺规作角的平分线.(保留作图痕迹)典型例题1.如图,AB ∥CD , BC ∥AD , AE ∥CF ,则图中全等三角形有( ) A 3对 B 4对 C 5对 D 6对第一题 第二题 第四题BADCEFBCDEF A 角平分线的性质 ∵∴角平分线的判定 ∵ ∴2.如图,AD 平分∠BAC ,AB=AC , 连结BD 、CD 并延长交AC 、AB 于E 、F ,则图中全等三角形有( )A 3对B 4对C 5对D 6对3.若△ABC ≌ △DEF,且△ABC 的周为12cm, AB=3cm,BC=4cm,则DF=______.4.如图,已知点B 、C 、F 、E 在同一直线上,∠1=∠2,AC=DF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是 _________.(只需写出一个)5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离为6.已知:如图,在△ABC 中,∠B=∠C=70°,BE=CD ,BD=CF ,则∠EDF= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级数学上册导学案:第十二章全等三角形复习(一)
一、复习目标
1. 全等三角形的概念和性质。
2.掌握全等三角形的判定条件,并能进行简单的证明和计算。
3.掌握角平分线的性质定理及逆定理,并能灵活应用。
题组练习一(问题习题化)
1.已知图中的两个三角形全等,则∠α度数是()
(1题)
A.72°
B.60°
C.58°
D.50°
2.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个)
(2题) (3题)
3.如图,在等腰梯形ABCD中,AB=DC,AC、BD交于点O,则图中全等三角形共有()
A.2对
B.3对
C.4对
D.5对
4. 如图,AB∥CD,点P到AB,BC,CD距离都相等,
则∠
P=
(4题)
二、梳理知识点
1.全等三角形性质有:
2.判定方法有:
3.角平分线的性质及判定定理是
题组练习二(知识网络化)
1.如图,ACB A C B
'''
△≌△,BCB
∠'=30,
则ACA'
∠的度数为( )
A.20° B.30°C.35° D.40°A D
O
C
B
B'
A'
2.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )
A .∠BCA=∠F B.∠B=∠E C .BC∥EF D .∠A=∠EDF
3.如图,在四边形ABCD 中,AB=AD ,CB=CD . ∠B=∠D.
教师点拨:1.证边角相等可转化为证三角形
全等, 若它们所在的三角形不全等,可找中间量或作辅助线构造全等三角形证明.
题组练习三(中考链接)
1.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB =4,则AC 长是( )
2.在Rt△ABC 中,∠ACB=90°,BC=2c m ,CD⊥AB,
在AC 上取一点E ,使EC=BC ,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm ,求AE 的长.
3.在△ABC 中,AB=AC ,点E ,F 分别在AB ,AC 上,AE=AF ,BF 与CE 相交于点P .求证:PB=PC ,并直接写出图中其他相等的线段.
4.(1)问题发现
如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE
填空:(1)∠AEB 的度数为 ;(2)线段AD 、BE 之间的数量关系是 .
(2)拓展探究
如图2,△ACB 和△DCE 均为等边三角形,∠ACB =∠DCE =900, 点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE 。
请判断∠AEB 的度数及线段CM 、AE 、BE 之
间的数量关系,并说明理由。