浅谈数学建模的认识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈数学建模的认识

我们生活在一个丰富多彩,变化万千的世界中,在这里,人们用智慧和力量去认识、去利用、甚至去改变这个世界。而为了解决各种问题,就出现了各种各样的模型,这些模型是为了简化现实生活中复杂繁琐的实际问题,从而给出正确使用的解决方案而产生。在现代的生活中,各种模型到处可见,而各种模型的存在都在一定程度上离不开数学模型。可见数学模型的重要意义。

通过两个多月对数学建模的学习,我学习到了很多东西,对数学建模有了一定的认识的理解。一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化家假设,应用适当的数学工具,得到的一个数学结构。通俗地讲,数学模型就是为了一定的目的对原型进行一定的模拟,而由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形和算法等。

学习数模之前我以为数模是很难学习和完成的一项任务,但通过这一学期的学习,我对数摸有了全新的认识,数学建模并不是我所想象的那么难学,虽然要建立一个好的数学模型不是那么容易,甚至可以说是相当难的,但在建立模型的过程中,我们需要不断的查阅一些资料,在建立模型中,在查阅资料中不断学习到新的知识,体会到

数学建模的乐趣,也是一件很快乐的事情。经过一段时间的数学建模的学习,我渐渐的发现了建立数学模型是有方法可依的,因为各种模型再怎么不同也跑不出那么几种类型的模型的,大家都大同小异。只要掌握了一定的方法,通过耐心的探索,建立起一个好的数学模型也就不是那么难的一件事情了。

数学建模的一般步骤有如下几步:模型准备,模型假设,模型构成,模型求解,模型分析,模型检验,模型应用。模型准备和模型假设是建模的前提,充分地准备的恰当的假设是建立一个好的数学模型的重要步骤。而模型构成则是一个数学建模的核心,它是根据所作的假设,用数学的语言符号描述对象的内在规律,建立包含常量、变量等的数学模型,数学模型当然也有各种各样,选择一个什么样的模型是这个问题能被解决得怎么样的关键。而模型求解则是对所建立的模型进行求解,从而得出结果。模型分析和模型检验都是最终对这个模型进行评价,看看这个模型是否符合实际要求,如果不符合实际,那么这个模型就是不合格的。最后,当然是要把模型应用到实际中去了,毕竟这是建模的目的。

通过数模的学习,我对数学也有了全新的认识,我们也渐渐地不再只是纸上谈兵了,理论知识对实际应用也是有大用途。数学建模在科学的各个领域都有它的重大应用,可是说是,如果没有数学模型,那么各种科学理论知识都很难与现实世界联系起来,如果可以的话,那也只是很表面的结合,无法达到很深的层次。学习完数模后,让我们看待事物不再是像以往的凭感觉,我们学会了从多方面多个角度去

看待每一件事情,无论怎么样,如果能够用科学的方式去解决它才是完美的。数学建模教给我们的是一种理性看待事物的方法,从问题的本质出发,用一种新颖的思维方式去了解事物。如果我们能够掌握这种能力的华,无论是在那一方面,科学研究领域还是生活中的点点滴滴,都将让我们受益匪浅。

我相信,随着人类的不断进步,数学建模将对我们的生活起着越来越重要的作用,它的地位也将越来越高!

相关文档
最新文档