理论物理基础教程答案

合集下载

大学物理基础教程答案1-2力-2

大学物理基础教程答案1-2力-2

r α x = ±h tan θ = ±h tan ωt X ωt dx 2 2 h v= = ±hsec ωt ⋅ ω = ±hω / cos ωt dt π 0 0 2π t= 当α = 60 , ωt = θ = 30 , 60 6 3 2π v = ±5×10 / cos2 300 = ±698(m⋅ s−1 ) 60 2 sin ωt −2 & = ±2hω & a=x |α=600 = ±84.4(m⋅ s ) 3 4 cos ωt
r
r vθ
ωt
r v
r v
o
r
& = rωtan ωt, && = rω2 tan2 ωt + rω2tg2ωt Qr r & θ = ω, && = 0, θ && ∴ar = 2rω tan ωt, a0 = 2rθ = 2rω2 tan ωt
2 2
sinωt a = a + a = 2hω 2 cos ωt 注意: ωr = vθ ≠ v
&& = 2, && = 2 && + && = 2 2 (m/ s2 ) (3) Qx y ∴a = x y dv 16 t − 8 t = 2s aτ = = = 2 (m⋅ s-2 ) dt 2 8 t 2 − 8 t + 4
∴an = a − a = 2 (m/ s )
2 2 τ 2
9
一质点沿一圆周按下述规律运动: 式中s 2-10 一质点沿一圆周按下述规律运动:s=t3+2t2,式中s是沿圆周测 得的路程,以米为单位, 以秒为单位,如果当t=2 t=2秒时质点的加 得的路程,以米为单位,t 以秒为单位,如果当t=2秒时质点的加 求圆的半径。 速度为 16 2 米/秒2,求圆的半径。

大学物理基础教程答案2-4热-4

大学物理基础教程答案2-4热-4
B PdV ∂Q SB − SA = ∫ ( )等温 = ∫ ( )等温 A T A T B
(1)
B V
=∫ (
A
B
RdV V )等温 = R ln B = R ln 4 V V A
C C dT B C dT B ∂Q ∂Q P )等压 + ∫ ( V )等容 = SB − SA = ∫ ( )等压 + ∫ ( )等容 ∫A ( C A C T T T T
M ∂Q 1 4.07 ×104 )可逆 = ∆S2 = ( = 6.05×103 J / K 18×10−3 373.15 µ T 的水升温至100 水的过程, (2)00C的水升温至1000C水的过程,可设计为在一个大气压下 的等压准静态过程: 的等压准静态过程: 373C dT 373 M 373∂Q 1 75.3 P ∆S1 = ∫273 T 可逆 = 18×10−3 ∫273 T = 18×10−3 ln 273 µ
4
4-5 证明 (4.28) 式中无论 B>TA,还是TB < TA 都有 S总>0. 式中无论T ,还是 (提示:若TB>TA 则 提示: 提示 证明:由 证明 由 (4.28) 式 得知,只证 (1)若TB>TA 则 若
Q
TB ∫ TA
TB − TA dT TB dT ) > ∫T A = T TB TB
dT dV dS = υCV,m + υR T V 理想气体准静态可逆过程: 解:理想气体准静态可逆过程:
1 dV dW 1 M = dS = + CV dT + pdV T T T µ T M p 1M R ∴ pV = RT ⇒ = T Vµ µ
∴ dS = υCV dT dV + υR T V

理论物理基础教程刘连寿第五篇第二章答案

理论物理基础教程刘连寿第五篇第二章答案


∂ 2ψ 1 ( x) + λ2 xψ 1 ( x) = 0 2 ∂x
由边界条件得ψ 1 ( x) = A sin( λ x x) , A sin( λ x a) = 0 ,
λx = n1π a
( n1 = 1,2,3........ )
2 a
本征函数ψ 1 ( x) = A sin( n1π
a
x) ,归一化后得 A =
nπ nπ nπ 8 sin( 1 z ) sin( 2 y ) sin( 3 z ) abc a b c
2 n2 λ 2 h 2π 2 n12 n2 = ( 2 + 2 + 3 ) 2m 2m a b c2 2
2 2 h ∵ λ2 = λ2 x + λ y + λz ∴ E =
n1 , n 2 , n3 = 1,2,3........
其中 k =
2 mE / h 2

2
x) 2m( E − U ) + ψ ( x) = 0 解:由定态薛定谔方程 d ψ ( 2 2 dx h

′′( x) + ψ1 ′′ ( x ) + ψ2 ′′( x ) + ψ3
2m( E − U 1 ) ψ 1 ( x) = 0 h2 2mE ψ 2 ( x) = 0 h2

ψ 1 ( x) =
nπ 2 sin( 1 x ) a a nπ 2 sin( 3 z ) c c
同理可得ψ 2 ( y) =
nπ 2 sin( 2 y ) ,ψ 3 ( z ) = b b
PDF 文件使用 "pdfFactory" 试用版本创建
ψ ( x, y, z ) =

理论物理基础教程刘连寿第五篇第一章答案

理论物理基础教程刘连寿第五篇第一章答案
+ * *
PDF 文件使用 "pdfFactory" 试用版本创建
ˆ+F ˆ + ]vdτ = v[( F ˆ + )u ]* d τ , F ˆ +F ˆ + 是厄米算符。 所以 ∫ u * [ F ∫ ˆ +F
* ˆ −F ˆ + )]vdτ 同理, ∫ u [i( F + * ˆ ˆvdτ − i u * F ˆ u ) * dτ = i∫ u * F vdτ − i ∫ v( F ∫ ˆ vdτ = i ∫ u F
Axe − λx = ∫ c ( p x )ψ p x dp x
x
( x) =
1 e ipx x / h 2πh
其中
v c ( p x ) = ∫ψ ψ ( x)d r =
* px 3
∫ (e 2πh
0
1

ip x x / h *
) Axe −λx dx
= =
A xe −( λx +ipx x / h ) dx ∫ 2πh 0 h [− xe − ( λ +ip x / h ) x 2πh λh + ip x x
P305
1. 计算下列各种频率的谐振子的能量子: (a)υ = 50HZ 的带电谐振子; (b)υ = 1010 HZ 的微波; (c)υ = 1015 HZ 的光波, 进而指出为什么普通振子的能量不显分立性。 答:(a)
hυ = 6.63 *10 −34 J ⋅ S * 50 HZ = 3.31 * 10 −32 J
因为在 z → ±∞ 时, u , v 都趋于 0,所以第一项和第三项都为 0,所以,上式变为
PDF 文件使用 "pdfFactory" 试用版本创建

理论物理基础教程答案_刘连寿

理论物理基础教程答案_刘连寿

带入拉格朗日方程
d L L dt q q
由L` 和L 得到的运动方程相同。
11.证明一维运动自由质点的拉格朗日函数 [ 1 . 1 . 4 (4 .10) 式 ]满足有限相对速度变换下伽 利略相对性原理的要求。 解:由(4.10)可得自由质点的拉格朗日函数为
L 1 m 2 2
dr l dte AdteX
dr 和 r
M

l
的区别如图所示:
m
x3
M
M
l
r
m
l
x3
m
x3
dr
虚位移和实际位移的主要区别在于 虚位移之和约束有关。
实际位移除了和约束有关以外,还和物体 当前的运动状态有关。
4. 长度同为l 的轻棒四根,相互连接成一个可 以无摩擦的改变顶角的菱形ABCD,AB和AD 两棒无摩擦的支于处于同一水平线上且相距 2a的两根钉上,BD之间用一根轻质棒连接, 在连接点(B和D处),各棒之间可以无摩擦 的转动,C点上系有一重物W,C点和重物受 到约束,只能上下运动,设A点两棒之间的 夹角为2 ,试用虚功原理求平衡时联结棒BD A FT ,讨论的 FT 方向 中的张力 2 l l 2a 与 的大小的关系。问:在 B D 什么情况下有 FT 0,说明其 l l 意义。 C
t2
t2
那么
t1
等号成立的条件是
为常数。
x
O
X
K系 滑块的能量
K’系
1 E m( X x cos ) 2 2 mgx sin
1 2 E MX 2
E
1 m( X V x cos ) 2 2 mgx sin
1 M ( X V )2 2

chap1-1

chap1-1

换为 变为标量方程

(功 ) 即
(能 )
2. 由



中的
作形式上的降阶
注:数学上
分别为二阶和一阶导数,而物理上分
别为加速度和速度。 又 ,则 (函数和反函数)。于是
(I) 式中的右边
因而
注:


将 (1)、(2)、(3) 代入标量方程 (I) 得到
由于 dq1、dq2、dq3 互相独立,所以
分析力学
教材:理论物理基础教程 (刘连寿主编)
——分析力学部分
讲授:吴少平 办公室:9 –email:wsp@ QQ:997682735 2014 年 2 月
参考书 1.力学
朗道 栗弗席兹
高等教育出版社
(2007年4月第5版)
2.Analytical Mechanics
3.

的计算:
(速度

的关系)


求导得到
(
只是
的函数,不是
的函数)
上两式代入 (4),得到
4.粒子的动能:

5.代入 (5) 式,得到
6.保守力场: 则
由上两式得
因而
令 L = T – U,则
说明:
① 拉格朗日方程是力学系统的基本运动方程。运动方程 在牛顿力学中为牛顿第二定律,在分析力学中为拉格 朗日方程。牛顿方程:矢量方程;拉格朗日方程:标 量方程。
分析力学是理论物理的第一门课程,具有以下理论
思维的一些特点:
理论物理思维方法
实验观察到的现象 例:光的折射定律
理论家问: 工程师问:
为什么? 理论物理思维方法
唯象规律
做什么? 从现象到本质

理论物理基础作业答案

理论物理基础作业答案

理论物理基础作业答案2009理论物理基础作业答案一理论力学部分1.2.8 尖劈A 的质量为m 1,劈角为α,一面靠在光滑竖直墙上,另一面与质量为m 2的光滑棱柱接触。

B 可沿光滑水平面滑动,见下图所示。

利用拉格朗日方程求A 和B 的加速度a A 和a B 。

解:如右图所示建立坐标系,系统的自由度为1,选为y动能22212121x m y m T += 势能V =-m 1gy (由于B 的重力势能不变,故不考虑) 约束条件αtan =dydxαtan y x= 拉格朗日函数g m y m y m gy m x m y m L 12222112221tan 21212121++=++=α 根据拉格朗日方程0=??-???? ????y L yL dt d ? ()g m y m m 1221tan =+ α 故α2211tan m m g m ya A +== ααα2211t a n t a nt a n m m g m y x a B +=== 1.2.11 一质量为m 的光滑小楔子,沿质量为M ,且与水平面成α角的斜面滑动。

求斜面可沿水平面做无摩擦滑动时的拉格朗日方程。

解:如右图所示,系统只做平面运动,故其坐标数n =4而约束条件为()=-=0tan 2211y x x y α(将小楔子视为质点) 因而约束数k =2,故系统自由度s =n -k =2,将广义坐标选为x 1,x 2。

动能()()()()()21222221222222121222121tan tan 21tan 12121tan 212121x x m x m M xm x M x x x m x M y x m T αααα-+++=+-+=++=势能()αtan 211x x mg mgy V -== 故拉格朗日函数为:()()()ααααtan tan tan 21tan 12121212222212x x mg x xm x m M x m V T L ---+++=-= mMαx 1y 1x 2ABαx将上式代入拉格朗日方程0=??-???? ????ii x L x L dt d (i =1,2) 可得()()=--+=+-+0tan tan tan 0tan tan tan 112222212ααααααm g x m x m M m g x m x m 解上面的方程可得加速度??+=+-=αααααα2221sin cos sin sin cos sin m M m g xm M Mg x1.6.3 光滑水平面上有一弹簧,一端固定于o 点,另一端连着一质量为m 的滑块。

理论物理基础教程答案_刘连寿

理论物理基础教程答案_刘连寿
L maX cos ma 2 L maX sin mga sin
O
X
那么
L m( X a cos ) MX X L 0 X

则对应的拉格朗日方程为
d m( X a cos ) MX 0 dt d maX cos ma 2 ma sin X mga sin dt
N
Lz e ra Az
a 1 N
N
Lz e xa Aya ya Axa
a 1
2.质量为M 半径为a 的半球形碗,放在光滑的水平桌面上,如图1 。 有一个质量为 m的滑块沿碗的内壁无摩擦的滑下。用 表示滑块位 置与球心连线和竖直方向的夹角。这个系统起始时静止且 0 。 求滑块滑到 1时 的值。
解:系统具有xy平面内的平移对称性,所以动量的x,y分量守恒:
p1x p2 x , p1y p1y
又系统的能量守恒,则有
2 p12 p2 E1 E2 U0 2m 2m
那么,则有
而散射前后动量与z轴的 夹角之比为
sin 1 p1 p2 p2 1 U0 / E sin 2 p2 p1 p1
csc2 2 g cot
m 2 J (Constant)
(3) (4)
L 0
由(4)式可得

J m 2
2
(1)
带入(3)式可得
J2 2 csc 2 4 g cot 0 m
d d d d dt d dt d

1 M 1 m 2 1 m a cos m a sin M a cos 2 mM 2 mM 2

理论物理基础试题及答案

理论物理基础试题及答案

理论物理基础试题及答案一、单项选择题(每题3分,共30分)1. 根据相对论,时间膨胀效应表明,相对于静止观察者,运动中的观察者经历的时间会变慢。

以下哪个选项正确描述了这一效应?A. 时间膨胀效应仅在接近光速时显著B. 时间膨胀效应在任何速度下都存在,但仅在接近光速时变得显著C. 时间膨胀效应仅在超过光速时显著D. 时间膨胀效应在任何速度下都不存在答案:B2. 量子力学中的波函数坍缩是指什么?A. 测量前粒子的状态是确定的B. 测量后粒子的状态是确定的C. 测量前粒子的状态是不确定的,测量后变为确定D. 测量前后粒子的状态都是确定的答案:C3. 以下哪个选项正确描述了海森堡不确定性原理?A. 粒子的位置和动量可以同时被精确测量B. 粒子的位置和动量不能同时被精确测量C. 粒子的能量和时间可以同时被精确测量D. 粒子的能量和时间不能同时被精确测量答案:B4. 根据热力学第二定律,以下哪个选项是正确的?A. 熵总是减少的B. 熵总是增加的C. 熵可以减少也可以增加D. 熵在孤立系统中总是增加的答案:D5. 以下哪个选项正确描述了黑洞的事件视界?A. 黑洞内部的区域,任何事物都不能逃逸B. 黑洞外部的区域,任何事物都不能逃逸C. 黑洞的边界,光线可以逃逸D. 黑洞的边界,光线不能逃逸答案:D6. 弦理论中的基本对象是什么?A. 点粒子B. 一维的弦C. 二维的膜D. 三维的块答案:B7. 以下哪个选项正确描述了宇宙大爆炸理论?A. 宇宙从一个奇点开始,然后不断扩张B. 宇宙从一个奇点开始,然后不断收缩C. 宇宙从一个大爆炸开始,然后不断扩张D. 宇宙从一个大爆炸开始,然后不断收缩答案:C8. 以下哪个选项正确描述了量子纠缠?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用,即使它们相隔很远C. 两个粒子之间的量子相互作用,但仅在它们相邻时D. 两个粒子之间的经典相互作用,即使它们相隔很远答案:B9. 根据广义相对论,引力是由什么引起的?A. 物质和能量的分布B. 空间和时间的曲率C. 物质和能量的曲率D. 空间和时间的分布答案:B10. 以下哪个选项正确描述了暗物质?A. 一种不发光、不发热的物质,但可以通过引力效应被探测到B. 一种发光、发热的物质,但可以通过引力效应被探测到C. 一种不发光、不发热的物质,且无法通过任何方式被探测到D. 一种发光、发热的物质,且无法通过任何方式被探测到答案:A二、多项选择题(每题4分,共20分)11. 以下哪些选项是量子力学的基本原理?A. 波粒二象性B. 测不准原理C. 相对性原理D. 叠加原理答案:ABD12. 以下哪些选项是广义相对论的预言?A. 光线在引力场中的弯曲B. 时间膨胀C. 宇宙背景辐射D. 黑洞的存在答案:ABD13. 以下哪些选项是热力学第一定律的内容?A. 能量守恒B. 熵增原理C. 能量可以转化为热D. 热可以转化为能量答案:ACD14. 以下哪些选项是弦理论的特点?A. 基本对象是一维的弦B. 需要额外的空间维度C. 描述了所有基本粒子和力D. 可以解释暗物质和暗能量答案:ABC15. 以下哪些选项是宇宙学的主要问题?A. 宇宙的起源B. 宇宙的结构和演化C. 宇宙的最终命运D. 宇宙中的物质和能量分布答案:ABCD三、简答题(每题10分,共40分)16. 简述相对论中的时间膨胀效应及其物理意义。

《物理学基本教程》课后答案 第七章 热力学基础

《物理学基本教程》课后答案 第七章  热力学基础

第七章 热力学基础7-1 假设火箭中的气体为单原子理想气体,温度为2000 K ,当气体离开喷口时,温度为1000 K ,(1)设气体原子质量为4个原子质量单位,求气体分子原来的方均根速率2v .已知一个原子质量单位=1.6605×10-27 kg ;(2)假设气体离开喷口时的流速(即分子定向运动速度)大小相等,均沿同一方向,求这速度的大小,已知气体总的能量不变.分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度.当气体的内能转化为定向运动的动能时,即表现为平均平动动能的减少,也就是温度的降低.解 (1)由气体动理论的能量公式kT m 23212=v ,得m/s 3530.7m/s 106605.1420001038.13327232=⨯⨯⨯⨯⨯==--m kTv (2)气体总的能量不变,气体内能的减少应等于定向运动动能的增量,就气体分子而言,即分子的平均平动动能的减少应等于定向运动动能的增量.若分子定向运动速度为d v ,则有212d 232321kT kT m -=v m/s 2496.6m/s 106605.14)10002000(1038.13)(3272321d =⨯⨯-⨯⨯⨯=-=--m T T k v7-2 单原子理想气体从状态a 经过程abcd 到状态d ,如图7-2所示.已知Pa 10013.15⨯==d a p p ,Pa 10026.25⨯==c b p p ,L 1=a V ,L 5.1=b V ,L 3=c V ,(1)试计算气体在abcd 过程中作的功,内能的变化和吸收的热量;(2)如果气体从状态d 保持压强不变到a 状态,如图中虚线所示,问以上三项计算变成多少?(3)若过程沿曲线从a 到c 状态,已知该过程吸热257 cal ,求该过程中气体所作的功.分析 理想气体从体积1V 膨胀到体积2V 的过程中所作的功为⎰21d )(V V V V p ,其量值为V p -图上过程曲线下的面积.如果过程曲线下是规则的几何图形,通常可以直接计算面积获得该过程中气体所作的功.解 (1)气体在abcd 过程中作的功应等于过程曲线下的面积,得Pa531.8 Pa 10)5.13(10013121103100131 353514=⨯+⨯⨯⨯+⨯⨯⨯=+=--..S S W adcbda abcd 内能改变为J455.9J )101104(10013.123)(23)(23)(335m V,=⨯-⨯⨯⨯⨯=-=-=-=---a d a a d a d a d V V p T T R M m T T C M m E E应用热力学第一定律,系统吸热为J 987.7J 455.9J 8.531=+=-+=a d abcd E E W Q(2)气体在等压过程da 中作的功为J -303.9J 10)41(10013.1)(35=⨯-⨯⨯=-=-d a a da V V p W0 1 1.5 3 4 V /L图7-2内能改变为 J 455.9-=-a d E E系统吸热为 J 9.875J 455.9-J 9.303-=-=-+=d a da E E W Q(3)若沿过程曲线从a 到c 状态,内能改变为J8.759J 1010013.1)1132(23)(23)(23)(35m V,=⨯⨯⨯⨯-⨯⨯=-=-=-=--a a c c a c a c a c V p V p T T R M m T T C M m E E应用热力学第一定律,系统所作的功为J 5.314J 759.8-J 18.4257=⨯=-+=a c ac ac E E Q W7-3 2 mol 的氮气从标准状态加热到373 K ,如果加热时(1)体积不变;(2)压强不变,问在这两种情况下气体吸热分别是多少?哪个过程吸热较多?为什么?分析 根据热力学第一定律,系统从外界吸收的热量,一部分用于增加系统的内能,另一部分用于对外作功.理想气体的内能是温度的单值函数,在常温和常压下氮气可视为理想气体,无论经过什么样的准静态过程从标准状态加热到373 K ,其内能的变化都相同.在等体过程中气体对外不作功,系统从外界吸收的热量,全部用于系统的内能的增加,而在等压过程中,除增加内能外,还要用于系统对外作功,因此吸热量要多些.解 (1)氮气可视为双原子理想气体,5=i .在等体过程中,系统吸热为J 4155J )273373(31.8252)(212V =-⨯⨯⨯=-=T T R i M m Q(2)在等压过程中,系统吸热为J 5817J )273373(31.8272)(2212p =-⨯⨯⨯=-+=T T R i M m Q7-4 10 g 氧在p = 3×105 Pa 时温度为t = C 10︒,等压地膨胀到10 L ,求(1)气体在此过程中吸收的热量;(2)内能的变化;(3)系统所作的功.分析 气体在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,其中1T 已知,2T 可以通过气体状态方程由已知的该状态的压强和体积求出.用同样的方法可以计算内能的变化.再应用热力学第一定律计算出系统所作的功.解 (1)气体在等压过程中吸收的热量为J8792J )28331.832101010103(27 )(22)(22351212p =⨯⨯-⨯⨯⨯⨯=-+=-+=-RT MmpV i T T R i M m Q(2)内能的变化为J5663J )28331.832101010103(25 )(2)(235121212=⨯⨯-⨯⨯⨯⨯=-=-=--RT MmpV i T T R i M m E E(3)应用热力学第一定律,系统所作的功为J 2265J 5663-J 792812==-+=E E Q W7-5 双原子理想气体在等压膨胀过程中吸收了500 cal 的热量,试求在这个过程中气体所作的功.解 双原子理想气体在等压膨胀过程中吸热为)(22)(221212p V V p i T T R i M m Q -+=-+=所作的功为J 597J 18.450025222)(p 12p =⨯⨯+=+=-=Q i V V p W 7-6一定质量的氧气在状态A 时V 1 = 3 L ,p 1 = 8.2×105 Pa ,在状态B 时V 2 = 4.5 L ,p 2 = 6×105 Pa ,分别计算在如图7-6所示的两个过程中气体吸收的热量,完成的功和内能的改变:(1)经ACB 过程;(2)经ADB 过程.分析 在热力学中,应该学会充分利用V p -图分析和解题.从图7-6所示的V p -图可以看出,AC 和DB 过程为等体过程,AD 和CB 过程为等压过程.理想气体的内能是温度的单值函数,在常温和常压下氧气可视为理想气体,只要始末状态相同,无论经过什么样的准静态过程,其内能的变化都相同.但是气体吸收的热量和完成的功则与过程有关,在等压过程中吸收的热量为)(2212p T T R i M m Q -+=,在等体过程中吸收的热量为)(212V T T R iM m Q -=,其中温度值可以利用状态方程代换为已知的压强和体积参量.解 (1)经ACB 过程,即经等体和等压过程,气体吸热为J1500 J103106J 103102.825J 105.4106225 222 )(22)(2353535121122p V =⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯+=--+=-++-=+=---V p V p iV p i V p V p i V p V p i Q Q Q C C B B A A C C ACB 所作的功为J 900J 10)35.4(106)(35122=⨯-⨯⨯=-==-V V p W W CB ACB应用热力学第一定律,系统内能改变为J 600J 900-J 1500==-=-ACB ACB A B W Q E E(2)经ADB 过程,所作的功为J 1230J 10)35.4(102.8)(35121=⨯-⨯⨯=-==-V V p W W AD ADB系统内能改变为 J 600=-A B E Ep pO V 1 V 2 V图7-6应用热力学第一定律,气体吸热为J 1830J 600J 123012=+=-+=E E W Q ADB ADB7-7 1 g 氮气在密封的容器中,容器上端为一活塞,如图7-7所示.求(1)把氮气的温度升高10°C 所需要的热量;(2)温度升高10°C 时,活塞升高了多少?已知活塞质量为1 kg ,横截面积为10 cm 2,外部压强为Pa 10013.15⨯.分析 可以上下自由运动的活塞加在气体上的压强为大气压与气体上表面单位面积上承受的活塞重力之和.利用理想气体状态方程,气体对外所作的功,也可以用温度的变化表示,即T R MmV p ∆=∆. 解 (1)因外部压强和活塞质量不变,系统经历等压过程,压强为Pa 101.111Pa 10108.91Pa 10013.1545⨯=⨯⨯+⨯=-p J 4.10J 1031.822528122p =⨯⨯+⨯=∆+=T R i M m Q(2)系统作功为T R Mmh pS V p W ∆=∆=∆=p 则 m 102.67m 101010111.11031.82812-45⨯=⨯⨯⨯⨯⨯=∆=∆-pS T R m m h 7-8 10 g 某种理想气体,等温地从V 1膨胀到V 2 = 2 V 1,作功575 J ,求在相同温度下该气体的2v .分析 气体动理论的能量公式表明,气体的温度是气体分子平均平动动能的量度,而且定义了方均根速率2v .只要温度不变,无论经历什么样的过程,方均根速率都不变.本题中,可以通过等温过程中系统所作的功的表达式确定该过程中系统的温度.图7-7解 等温过程中系统所作的功为12T ln V V RT M mW =m/s 499m/s 2ln 10105753ln33312T2=⨯⨯⨯===-V V m W MRTv 7-9 2 m 3的气体等温地膨胀,压强从Pa 10065.551⨯=p 变到Pa 10052.451⨯=p ,求完成的功.解 等温过程中系统所作的功为J 102.26J 10052.410065.5ln210065.5 ln ln 5555121112T ⨯=⨯⨯⨯⨯⨯===p p V p p p RT M mW7-10 在圆筒中的活塞下密闭空间中有空气,如图7-10所示.如果空气柱最初的高度h 0 = 15 cm ,圆筒内外的压强最初均为Pa 10013.150⨯=p ,问如要将活塞提高h = 10 cm ,需作多少功?已知活塞面积S = 10 cm 2,活塞质量可以忽略不计,筒内温度保持不变.分析 因筒内温度保持不变,这是一个等温过程.由于过程必须是准静态过程,则在过程进行中的任一时刻,系统都处于平衡状态.过程进行中,活塞受到向上的拉力F ,筒外空气向下的压力S p 0,筒内气柱向上的压力pS ,在这些力的作用下处于平衡状态.由力的平衡条件,可以确定活塞向上位移外力所作的元功,并联系气体等温过程方程求解.解 取圆筒底面为原点,竖直向上为x 轴正向,如图7-10所示.设活塞位于x 处时,筒内压强为p ,筒内外的压强差为p p -0,在准静态过程中提高活塞O图7-10所需的向上外力为S p p F )(0-=,此时活塞向上位移x d 外力所作的元功为x S p p x F W d )(d d 0-==因等温过程有00V p pV =,Sx V =,则要将活塞提高h ,需作的功为J2.37J )15.015.010.0ln15.010.0(10101.013 )ln (d )1(d )(3500000000=+-⨯⨯⨯=+-=-=-=-++⎰⎰h h h h h S p x x h S p x S p p W h h h h h h7-11 今有温度为27°C ,压强为Pa 10013.15⨯,质量为2.8g 的氮气,首先在等压的情况下加热,使体积增加一倍,其次在体积不变的情况下加热,使压强增加一倍,最后等温膨胀使压力降回到Pa 10013.15⨯,(1)作出过程的p —V 图;(2)求在三个过程中气体吸收的热量,所作的功和内能的改变.分析 本题中涉及到三个等值过程,利用已导出的各等值过程中系统作功、吸热和内能变化表达式和热力学第一定律求解.解 (1)过程的p —V 图如图7-11所示. (2)1~2,等压过程J249J 30031.8288.2 )(111121p =⨯⨯===-=RT MmV p V V p WJ872J 2492252222 )(22)(22p 112112p =⨯+=+=+=-+=-+=W i pV i V V p i T T R i M m QJ 623J 249J 872p p =-=-=∆W Q E2~3,等体过程, 0V =WpppO V 1 V 2 V 4 V图7-11J 1245J 24952)(2)(2p 112121323V =⨯====-=-==∆iW V p i V p iV p p iT T R i M m Q E3~4,等温过程, 0=∆EJ690J 2ln 24942ln 4 2ln 42ln 2lnp 11131333T T =⨯⨯======W V p V p p p V p W Q7-12 双原子气体V 1 = 0.5 L ,Pa 10065.541⨯=p ,先绝热压缩到一定的体积V 2和一定的压强p 2,然后等容地冷却到原来的温度,且压强降到Pa 10013.150⨯=p .(1)作出过程的p -V 图;(2)求V 2 = ?p 2 = ?分析 对于双原子理想气体,热容比4.1=γ.不论经历什么过程,只要初终态气体的温度相同,就可以应用理想气体状态方程,建立类似于等温过程中初态和终态压强和体积之间的关系.解 (1)过程的p —V 图如图7-12所示.(2)因初态和终态温度相同,应用理想气体状态方程,有1120V p V p =L 0.25L 10013.15.010065.5540112=⨯⨯⨯==p V p V 由绝热过程方程γγ1122V p V p =,得Pa 101.337Pa 25.05.010065.554.142112⨯=⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫ ⎝⎛=γVV p p 7-13 推证质量为m ,摩尔质量为M 的理想气体,由初状态(p 1、V 1、T 1)pp p pO V 2 V 1 V图7-12绝热膨胀到p 2、V 2时气体所作的功为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--=-1211221111)(11γγγV V RT M m V p V p W 分析证 对于绝热过程,有⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--=-=-=∆-=-121121121112211221122112111111 11)(11)(2)(2γγγγγγV VRT M m V V V V RT M mV p V p V p V p V p V p V p iT T R i M m E W7-14 32 g 氧气处于标准状态,后分别经下二过程被压缩至5.6×10-3 m 3,(1)等温压缩;(2)绝热压缩,试在同一个p -V 图上作出两过程曲线,并分别计算两过程最终的温度以及所需要的外功.分析 32 g 氧气恰好为1 mol ,标准状态下体积和温度都有确定值. 解 两过程的p —V 图如图7-14所示. (1)32 g 氧气为 1 mol ,体积为331m 104.22-⨯=V ,温度为K 2731=T ,且等温压缩过程K 27312==T T ,所作的功为J -3146J 4.226.5ln104.2210013.1 ln351211T =⨯⨯⨯⨯==-V V V p W(2)绝热压缩过程γγ1122V p V p =,得K 475K )106.5()104.22(31.810013.14.034.1351211222=⨯⨯⨯⨯===---γγV V R p R V p Tpp 1O V 2 V 1 V图7-14利用上题结果,绝热压缩过程所作的功为J -4204J 6.54.2214.0104.2210013.1 114.03512111=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-⨯⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγVV V p W7-15 体积为V 1 = 1 L 的双原子理想气体,压强p 1 =Pa 10013.15⨯,使之在下述条件下膨胀到V 2 = 2 L ,(1)等温膨胀;(2)绝热膨胀,试在同一p -V 图中作出两过程曲线,并分别计算两种情况下气体吸收的热量,所作的功及内能的变化.分析 等温过程中气体内能不变,所吸收的热量等于对外所作的功;绝热过程中气体吸热为零,对外所作的功等于内能的减少.解 两过程的p —V 图如图7-15所示.(1)等温膨胀 0=∆EJ 2.70J 2ln 1010013.1 ln351211T T =⨯⨯⨯===-V V V p W Q(2)绝热膨胀 0=QJ61.3J )5.01(4.01010013.1 114.03512111=-⨯⨯⨯=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=--γγV V V p W J 3.61-=-=∆W E7-16 0.1 mol 单原子理想气体,由状态A 经直线AB 所表示的过程到状态B ,如图7-16所示,已知V A = 1 L ,V B = 3 L ,p A =Pa 10039.35⨯,p B =Pa 10013.15⨯。

大学物理基础教程答案第05章习题分析与解答

大学物理基础教程答案第05章习题分析与解答

5-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常数,R 为摩尔气体常数,则该理想气体的分子数为( )。

(A )PV m (B )PV kT (C )PV RT (D ) PVmT解:由N p nkT kT V ==得,pVN kT=,故选B 5-2 两个体积相同的容器,分别储有氢气和氧气(视为刚性气体),以1E 和2E 分别表示氢气和氧气的内能,若它们的压强相同,则( )。

(A )12E E = (B )12E E > (C )12E E < (D ) 无法确定 解:pV RT ν=,式中ν为摩尔数,由于两种气体的压强和体积相同,则T ν相同。

又刚性双原子气体的内能52RT ν,所以氢气和氧气的内能相等,故选A 5-3 两瓶不同种类的气体,分子平均平动动能相同,但气体分子数密度不同,则下列说法正确的是( )。

(A )温度和压强都相同 (B )温度相同,压强不同 (C )温度和压强都不同(D )温度相同,内能也一定相等解:所有气体分子的平均平动动能均为32kT ,平均平动动能相同则温度相同,又由p nkT =可知,温度相同,分子数密度不同,则压强不同,故选B5-4 两个容器中分别装有氦气和水蒸气,它们的温度相同,则下列各量中相同的量是( )。

(A )分子平均动能 (B )分子平均速率 (C )分子平均平动动能 (D )最概然速率解:分子的平均速率和最概然速率均与温度的平方根成正比,与气体摩尔质量的平方根成反比,两种气体温度相同,摩尔质量不同的气体,所以B 和D 不正确。

分子的平均动能2i kT ε=,两种气体温度相同,自由度不同,平均动能则不同,故A 也不正确。

而所有分子的平均平动动能均为k 32kT ε=,只要温度相同,平均平动动能就相同,如选C 5-5 理想气体的压强公式 ,从气体动理论的观点看,气体对器壁所作用的压强是大量气体分子对器壁不断碰撞的结果。

理论物理整理习题答案

理论物理整理习题答案

2 0


1 r / a0 1 d 2 d r / a0 2 e [r (e )]r sin drd d 3 2 a0 r dr dr

2
2 a
2
3 0

3 0

0
sin d d
0
2

0
r 2 2r 2r / a0 ( 2 )e dr a0 a0
2
d 2 (r ) 可改写为 Er 2 2 dr
2
令f (r ) r
代入上式,得
d 2 f (r ) Ef (r ) 2 2 dr
2
令k
2
2 E
2
上式可化为
d 2 f (r ) 2 k f (r ) 0 2 dr 方程的通解为 f (r ) A sin(kr ) B cos(kr )
d2 1 2 2 [ x ] ( x) 2 2 dx 2
2 4 2 2
2
利用
2

1 ( x 5 ) ( x) 2 x 2 ( x) 2 2 5 5 ( x ) 则此态下能量的本征值为 2 2
3.解(1)动能的平均值
2 1 ˆ ˆ2 T p 2 2 2
+ 1
=
+
-
d 1 ( ) 2 d dx
不是厄米算符
(3)设ψ1和ψ2为任意波函数
2 2 d + d 2 d - 1 dx2 2 = dydz - 1 dx2 dx +
d d 2 = dydz ( )dx - dx dx d 2 + + d d 2 1 = dydz 1 dx

理论物理基础教程答案_刘连寿50页PPT

理论物理基础教程答案_刘连寿50页PPT

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思

大学物理基础教程答案第04章习题分析与解答

大学物理基础教程答案第04章习题分析与解答

A∙ 习题4-6图第四章 流体力学基础习题解答4-1 关于压强的下列说法正确的是( )。

A 、压强是矢量;B 、容器内液体作用在容器底部的压力等于流体的重力;C 、静止流体内高度差为h 的两点间的压强差为gh P o ρ+;D 、在地球表面一个盛有流体的容器以加速度a 竖直向上运动,则流体内深度为h处的压强为0)(P a g h P ++=ρ。

解:D4-2 海水的密度为33m /kg 1003.1⨯=ρ,海平面以下100m 处的压强为( )。

A 、Pa 1011.16⨯;B 、Pa 1011.15⨯C 、Pa 1001.16⨯;D 、Pa 1001.15⨯。

解:A4-3 两个半径不同的肥皂泡,用一细导管连通后,肥皂泡将会( )。

A 、两个肥皂泡最终一样大;B 、大泡变大,小泡变小C 、大泡变小,小泡变大;D 、不能判断。

解:B4-4 两个完全相同的毛细管,插在两个不同的液体中,两个毛细管( )。

A 、两管液体上升高度相同;B 、两管液体上升高度不同;C 、一个上升,一个下降; D、不能判断。

解:B4-5 一半径为r 的毛细管,插入密度为ρ的液体中,设毛细管壁与液体接触角为θ,则液体在毛细管中上升高度为h= ( ) 。

(设液体的表面张力系数为α)解:grh ρθα=cos 2 4-6 如图所示的液面。

液面下A点处压强是( ) 。

设弯曲液面是球面的一部分,液面曲率半径为R,大气压强是0P ,表面张力系数是α。

解:RP P α+=20 4-7 当接触角2πθ<时,液体( )固体,0=θ时,液体( )固体;当2πθ>时,液体( )固体,πθ=,液体( )固体。

习题4-10图习题4-11解:润湿,完全润湿,不润湿,完全不润湿。

4-8 不可压缩的、没有粘滞性的流体称为( )。

解:理想流体4-9 一球形泡,直径等于m 100.15-⨯,刚处在水面下,水面上的气压为aP P 100.150⨯=,水的表面张力系数为N/m 103.72-⨯=α,求泡内的压强是多少? 解:由于气泡刚处在水面下,所以泡外是液体,压强等于水面上方的大气压,则泡内压强为)P (1034.1101103.72100.1255250a R p p ⨯=⨯⨯⨯+⨯=+=--α 4-10 如图所示,盛有水的U形管中,两粗细不同的毛细管底部相互连通,两管水面的高度差h=0.08m 。

大学物理基础教程答案1-4力-4-PPT

大学物理基础教程答案1-4力-4-PPT

31
(m2 2 m 2 m1)
T1'
r
Hale Waihona Puke m 1T 2'
T2
m2
m2g
3 T1 2 ma 35(N)
T2 m2(g a) 37.3(N)
12
4-13 一根长为 l 、质量为m的均匀细杆可绕其一端的水平轴O 自由摆动。当被一发质量为m’的子弹在离O点的a处水平方向击
中后,子弹埋入杆内,杆的最大偏转角为 ,求子弹的初速度。 已知 l =1.0米,m =2千克,m’ =20千克,a=0.7米, =60o
v
2 0
2
3
m'2 a2
v0 186(m s1 )
13
4-14 质量为m长为l的匀质细杆,可绕端点O的固定水平轴转动,
把杆抬平后无初速地释放,当杆摆至竖直位置时刚好和光滑水平 桌面上的小球相碰。小球的转动不计,它的质量和杆相同,并且
碰撞是完全弹性的,轴上摩擦也忽略不计,求碰后小球的速度v。
解:下摆(定轴转动)能量守恒,
上缀一个质量m2=0.51千克的物体。试计算施在圆盘上的力矩从
静止开始,在2秒之内所作的功和2秒时物体m2的动能。
5
解: mgRdt mgRt L mRv 1 MR2 v
2
R
mgt
v m M 2
R m1
Ek ,m
1 mv2 2
1 mgt 2 m(m M
)2
8.2J
m2
2
RT W 1 I2 1 ( 1 MR2 )( v )2 M( mgt )2 20.2(J)
mg l 1 ( 1 ml 2 )2 2 23
( 1 ml2 ) ( 1 ml2 )'m' vl

理论物理基础教程答案

理论物理基础教程答案

理论物理基础教程答案【篇一:物理学教程(第二版)上册课后答案7】7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(a) 温度,压强均不相同 (b) 温度相同,但氦气压强大于氮气的压强(c) 温度,压强都相同(d) 温度相同,但氦气压强小于氮气的压强分析与解理想气体分子的平均平动动能k?3kt/2,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程p?nkt,当两者分子数密度n 相同时,它们压强也相同.故选(c).7-2 三个容器a、b、c 中装有同种理想气体,其分子数密度n相同,方均根速率之比?:??:??21/2a21/2b21/2c?1:2:4,则其压强之比pa:pb:pc为( )(a) 1∶2∶4 (b) 1∶4∶8 (c) 1∶4∶16 (d) 4∶2∶1 分析与解分子的方均根速率为2?3rt/m,因此对同种理想气体有同时,得p1:p2:p3?t1:t2:t3?1:4:16.故选(c).7-3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为t0时,气体分子的平均速率为0,分子平均碰撞次数为0,平均自由程为0,当气体温度升高为4t0时,气体分子的平均速率、平均碰撞频率和平均自由程分别为( ) (a) ?40,?40,?40 (b) ?20,?20,?0 (c)?20,?20,?40 (d)?40,?20,?0碰撞频率变为20;而平均自由程?1,n不变,则?也不变.因此正确答案为(b). 27-4 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果(vp)o2和(vp)h2分别表示氧气和氢气的最概然速率,则( )(a) 图中a表示氧气分子的速率分布曲线且(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h2?4 ?1 41 42(b) 图中a表示氧气分子的速率分布曲线且22(c) 图中b表示氧气分子的速率分布曲线且2?2(d) 图中b表示氧气分子的速率分布曲线且2?42分析与解由vp?2rt可知,在相同温度下,由于不同气体的摩尔质量不同,它们的m 最概然速率vp也就不同.因mh2?mo,故氧气比氢气的vp要小,由此可判定图中曲线a2应是对应于氧气分子的速率分布曲线.又因(b).mhmo2?2(vp)o1?,所以16(vp)h22mhmo2?21.故选4题 7-4 图7-5 有一个体积为1.0?105m3的空气泡由水面下50.0m深的湖底处(温度为4.0oc)升到湖面上来.若湖面的温度为17.0oc,求气泡到达湖面的体积.(取大气压强为p0?1.013?105pa)分析将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式解设气泡在湖底和湖面的状态参量分别为(p1,v1,t1 )和(p2 ,v2,t2 ).由分析知湖底处压p1v1p2v2?t1t2可得空气泡到达湖面的体积为v2?p1t2v1?p0??gh?t2v1??6.11?10?5m3 p2t1p0t17-6 一容器内储有氧气,其压强为1.01?105pa,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为v0?3,由数密度的含意可知v0?1/n,即可求出.解 (1) 单位体积分子数n?(2) 氧气的密度p?2.44?1025m3 kt??m/v?(3) 氧气分子的平均平动动能pm?1.30kg?m-3 rtk?3kt/2?6.21?10?21j(4) 氧气分子的平均距离?/n?3.45?10?9m通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.分析理想气体的温度是由分子的平均平动动能决定的,即k?3kt/2.因此,根据题中m?给出的条件,通过物态方程pv =rt,求出容器内氢气的温度即可得k.m解由分析知氢气的温度t?mpv,则氢气分子的平均平动动能为 mr323pvmk?3.89?10?22j2m?rk?kt?分析将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度i=3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系m/2?3kt/2,可得方均根速率2.解 (1) 由分析可得质子的平均动能为2k?2/2?3kt/2?2.07?10?15j(2) 质子的方均根速率为2?63kt?1.58?106m?s-1 m3kt?9.5?106m?s?1 me平均动能k?3kt/2?4.1?10?17j222mirt,对刚性双原子分子而言,i=5.由上述内能m2公式和理想气体物态方程pv =?rt可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p=nkt可求气体温度.气体分子的平均平动动能可由k?3kt/2求出.i解 (1) 由e??rt和pv=?rt可得气体压强2p?2e?1.35?105pa iv(2) 分子数密度n =n/v,则该气体的温度t?p/?nk??pv/?nk??3.62?102k气体分子的平均平动动能为k?3kt/2?7.49?10?21j7-11 当温度为0?c时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平?3均动能和平均转动动能;(2)4.0?10能.kg氧气的内能;(3)4.0?10?3kg氦气的内分析(1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由3度和2个转动自由度.根据能量均分定理,平均平动动能kt?kt,平均转动动能2kr?kt?kt.(2)对一定量理想气体,其内能为e?22m?irt,它是温度的单值函m2数.其中i为分子自由度,这里氧气i=5、氦气i=3.而m?为气体质量,m为气体摩尔质量,其中氧气m的内能.解根据分析当气体温度为t=273 k时,可得(1)氧分子的平均平动动能为?32?10?3kg?mol?1;氦气m?4.0?10?3kg?mol?1.代入数据即可求解它们kt?kt?5.7?10?21j氧分子的平均转动动能为32kr?kt?3.8?10?21j(2)氧气的内能为22【篇二:物理实验习题答案(第二版教材)(1)】什么是基本单位和导出单位? 2。

《物理学基本教程》课后答案 第六章 气体动理论

《物理学基本教程》课后答案 第六章  气体动理论

第六章 气体动理论6-1 一束分子垂直射向真空室的一平板,设分子束的定向速度为v ,单位体积分子数为n ,分子的质量为m ,求分子与平板碰撞产生的压强.分析 器壁单位面积所受的正压力称为气体的压强.由于压强是大量气体分子与器壁碰撞产生的平均效果,所以推导压强公式时,应计算器壁单位面积在单位时间内受到气体分子碰撞的平均冲力.解 以面积为S 的平板面为底面,取长度等于分子束定向速度v 的柱体如图6-1所示,单位时间内与平板碰撞的分子都在此柱体内.柱体内的分子数为nSv .每个分子与平板碰撞时,作用在平板上的冲力为2mv ,单位时间内平板所受到的冲力为v v nS m F ⋅=2根据压强的定义,分子与平板碰撞产生的压强为22v nm SFp ==6-2 一球形容器,直径为2R ,内盛理想气体,分子数密度为n ,每个分子的质量为m ,(1)若某分子速率为v i ,与器壁法向成θ角射向器壁进行完全弹性碰撞,问该分子在连续两次碰撞间运动了多长的距离?(2)该分子每秒钟撞击容器多少次?(3)每一次给予器壁的冲量是多大?(4)由上结果导出气体的压强公式.分析 任一时刻容器中气体分子的速率各不相同,运动方向也不相同,由于压强是大量气体分子与器壁碰撞产生的平均效果,气体压强公式的推导过程为:首先任意选取某一速率和运动方向的分子,计算单位时间内它与器壁碰撞给予器壁的冲力,再对容器中所有分子统计求和.v图6-1解 (1)如图6-2所示,速率为v i 的分子以θ角与器壁碰撞,因入射角与反射角都相同,连续两次碰撞间运动的距离都是同样的弦长,为θcos 2R AB =(2)该分子每秒钟撞击容器次数为θcos 2R AB ii v v =(3)每一次撞击给予器壁的冲量为θcos 2i m v(4)该分子每秒钟给予器壁的冲力为Rm R m i i i 2cos 2cos 2v v v =θθ由于结果与该分子的运动方向无关,只与速率有关,因此可得容器中所有分子每秒钟给予器壁的冲量为21212222221v v v v v v v RmN N N R m R m R m R m R m R m N i i N i i N i ===+++++∑∑== 其中n R N 334π=.根据压强的定义,分子与器壁碰撞产生的压强为W n m n nm R R m Np 3221323142222=⎪⎭⎫ ⎝⎛===v v vπ 其中W 为分子的平均平动动能.6-3 容积为10 L 的容器内有1 mol CO 2气体,其方均根速率为1440 km/h ,求CO 2气体的压强(CO 2的摩尔质量为31044-⨯kg/mol ).分析 在常温常压下可以将气体视为理想气体,理想气体压强公式中引入了统计平均量----方均根速率2v 和分子数密度n ,1 mol 的气体中分子数为阿伏图6-2伽德罗常量N A ,根据这些关系可求出压强.解 容积为V 的容器中有1 mol CO 2气体,则分子总数为N A ,摩尔质量为M ,则分子数密度为V N A ,分子质量为A N M,因此由气体压强公式得22A A 2313131v v v VM N M V N nm p ===代入数字得Pa 102.35Pa 3600101440101010443131523332⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯==--v V M p 6-4 在实验室中能够获得的最佳真空相当于大约Pa 10013.19-⨯,试问在室温(273K )下在这样的“真空”中每立方厘米内有多少个分子?分析 引入玻尔兹曼常量k 和分子数密度n 后,理想气体状态方程可以表示为nkT p =.解 由理想气体状态方程nkT p =得3-113-239m 1069.2m 2731038.110013.1⨯=⨯⨯⨯==--kT p n 6-5 已知气体密度为1 kg/m 3,压强为Pa 10013.15⨯,(1)求气体分子的方均根速率;(2)设气体为氧,求温度.分析 气体密度ρ是单位体积中气体的质量,因此与分子数密度n 和分子质量m 的关系为nm =ρ.解 压强公式可写为 223131v v ρ==nm p(1)分子的方均根速率m/s 551m/s 110013.13352=⨯⨯==ρpv(2)氧的摩尔质量M =31032-⨯kg/mol ,由定义MRT32=v ,则 K 390K 31.8310325513322=⨯⨯⨯==-R M T v6-6 体积为10-3 m 3,压强为Pa 10013.15⨯的气体,所有分子的平均平动动能的总和是多少?分析 气体动理论的能量公式给出了微观量气体分子的平均平动动能和宏观量气体温度之间的关系.分子的平均平动动能是大量分子的统计平均值,是每个分子平均占有的平动动能量值.解 由气体动理论的能量公式,分子的平均平动动能为kT m 23212=v 容器中分子数nV N =,又由压强公式nkT p =,可得容器中所有分子的平均平动动能的总和为J152J 1010013.123232321352=⨯⨯⨯===-pV kT nV m Nv6-7 一容器内贮有氧气,其压强为Pa 10013.15⨯=p ,温度T =C 27︒,求(1)单位体积内的分子数;(2)氧气的密度;(3)氧分子的质量;(4)分子间的平均距离;(5)分子的平均平动动能;(6)若容器是边长为0.30 m 的立方体,当一个分子下降的高度等于容壁的边长时,其重力势能改变多少?并将重力势能的改变与其平均平动动能相比较.分析 常温和常压下,氧气可视为理想气体.从宏观的角度,可以认为气体是空间均匀分布的,因此分子间的平均距离的立方就是每个分子平均占有的体积.通过本题的计算,可以得到气体动理论中常用到的物理量的量级概念.解 (1) 由理想气体的状态方程nkT p =,可得单位体积内的分子数为3-253-235m 1045.2m 3001038.110013.1⨯=⨯⨯⨯==-kT p n (2) 利用理想气体的状态方程RT MmpV =,氧气的密度为 3335kg/m 3.1kg/m 30031.8103210013.1=⨯⨯⨯⨯===-RT pM V m ρ(3) 氧分子的质量为kg 105.3kg 1045.23.126-25⨯=⨯==nm ρ(4) 分子平均占有的空间开方等于分子间的平均距离m 10443m 1045.21193253.n d -⨯=⨯== (5) 分子的平均平动动能J 10.216J 3001038.123232121-232⨯=⨯⨯⨯==-kT m v(6) 一个氧分子下降的高度等于容壁的边长时,其重力势能改变为J 101.56J 30.08.9103.5-2526⨯=⨯⨯⨯=-mgh与分子平均平动动能相比较,有4252121098.31056.11021.621⨯=⨯⨯=--mgh m v 6-8 在什么温度时,气体分子的平均平动动能等于一个电子由静止通过1 V 电位差的加速作用所得到的动能(即1eV 的能量).解 根据题意,气体分子的平均平动动能J 10260.1eV 12321192-⨯===kT m v 则 K 7739K 1038.1310602.122319=⨯⨯⨯⨯=--T 6-9 1 mol 氢气,在温度C 27︒时,求(1)具有若干平动动能;(2)具有若干转动动能;(3)温度每升高C 1︒时增加的总动能是多少?分析 氢气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,根据能量按自由度均分原则可以求出平均平动动能和平均转动动能.解 (1) 1 mol 氢气的平动动能为J 10.743J 30031.82323233A⨯=⨯⨯==RT kT N(2) 1 mol 氢气的转动动能为J 10.492J 30031.8223A⨯=⨯==RT kT N(3) 温度每升高C 1︒,1 mol 氢气增加的总动能为J 8.02J 131.8252525A=⨯⨯=∆=∆T R T k N 6-10 1 mol 单原子理想气体和1 mol 双原子理想气体,温度升高C 1︒时,其内能各增加多少?1 g 氧气和1 g 氢气温度升高C 1︒时,其内能各增加多少?分析 一定量理想气体的内能T R iM m E ∆=2,对于单原子理想气体3=i ,对于双原子理想气体5=i ,对于1 mol 理想气体1=Mm.氧气和氢气都是双原子气体,氧气的摩尔质量kg/mol 10323-⨯=M .解 1 mol 单原子理想气体温度升高C 1︒,内能增量为J 5.12J 131.8232=⨯⨯=∆T R i1 mol 双原子理想气体温度升高C 1︒,内能增量为J 8.02J 131.8252=⨯⨯=∆T R i1 g 氧气温度升高C 1︒,内能增量为J 65.0J 131.8251032101233=⨯⨯⨯⨯⨯=∆--T R i M m 1 g 氢气温度升高C 1︒,内能增量为J 4.01J 131.825102101233=⨯⨯⨯⨯⨯=∆⋅--T R i M m 6-11 计算:(1)氧分子在C 0︒时的平均平动动能和平均转动动能;(2)在此温度下,4 g 氧的内能.分析 氧气是双原子分子气体,如果作为刚性分子看待,就具有3个平动自由度和2个转动自由度,5=i .解 (1) 氧分子在C 0︒时的平均平动动能为J 10.655J 2731038.1232321-23⨯=⨯⨯⨯=-kT 平均转动动能为J 10.773J 2731038.12221-23⨯=⨯⨯==-kT kT(2) 4 g 氧在C 0︒时的内能为J 709J 27331.8251032104233=⨯⨯⨯⨯⨯=⋅--RT i M m 6-12 有40个粒子速率分布如下表所示 (其中速率单位为m/s):速率区间100以下100~200 200~300 300~400 400~500 500~600 600~700 700~800 800~900 900以上粒子数 1 4 6 8 6 5 4 3 2 1若以各区间的中值速率标志处于该区间内的粒子速率值,试求这40个粒子的平均速率v 、方均根速率2v 和最概然速率p v ,并计算出p v 所在区间的粒子数占总粒子数的百分率.分析 为了更深入地理解麦克斯韦速率分布律以及气体动理论中引入的平均速率v 、方均根速率2v 和最概然速率p v 的统计意义,有必要通过实际例子,经过计算,体验速率分布规律和统计方法.解 这40个粒子分成了10个速率区间,若取1000 m/s 为粒子速率在900 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s448.75 m/s )1100028503750465055506450 835062504150150(4011101=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为m/s 499.9 m/s )]1100028503750465055506450 835062504150150(401[121222222222210122=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N Nv v 最概然速率m/s 350p =v .p v 所在区间的粒子数占总粒子数的百分率为%20%100408p =⨯=∆NN 6-13上题所给分布情况,若以200m/s 为间隔作重新统计,列出分布情况表,计算出相应的v 、2v 和p v ,以及p v 所在区间的粒子数占总粒子数的百分率,并与上题结果进行比较.分析 通过本题和上题计算结果可以看出,在某一速率区间中的分子数和所计算的三种速率不但与速率区间位置有关,还与速率区间的宽度有关.只有当所统计的分子总数足够大,划分的速率区间足够小时,才可能获得处于平衡状态的气体分子速率的一个确定的分布函数,三种速率也才有确定值.解 以200m/s 为间隔对上题粒子速率作重新统计,速率分布情况为(其中速率单位为m/s):速率区间 200以下 200~400 400~600 600~800 800以上 粒子数 5 14 11 7 3这40个粒子分成了5个速率区间,若取900 m/s 为粒子速率在800 m/s 以上的速率区间的中值速率,则根据定义,其平均速率v 为m/s445 m/s)3900770011500143005100(401151=⨯+⨯+⨯+⨯+⨯⨯==∑=i i i N N v v 方均根速率2v 为498m/sm/s )]39007700 11500143005100(401[121222225122=⨯+⨯+⨯+⨯+⨯⨯==∑=i i iN Nvv最概然速率m/s 300p =v .p v 所在区间的粒子数占总粒子数的百分率为%35%1004014p =⨯=∆NN 6-14 N 个假想的气体分子,速率分布如图6-14所示.(1)用N 和v 0表示出a 的值;(2)求最概然速率p v ;(3)以v 0为间隔等分为三个速率区间求各区间中分子数占总分子数的百分率.分析 速率分布函数)(v f 表示气体分子速率在v 值附近单位速率区间内的分子数占总分子数的百分率.本题给出了一个特殊的分布情况,通过计算,理解速率分布函数和最概然速率的物理意义,以及各速率区间中分子数占总分子数的百分率的计算方法.解 (1) 由图6-14可见,分布函数与气体分子总数N 的乘积曲线下的总面积应等于气体分子总数N ,即000302322121d )(0v v v v v v a a a f N =⋅+==⎰则 032v Na =Nf (v )a0 v 0 2 v 0 3 v 0 v图6-14(2) 最概然速率 0p v v =(3) 以v 0为间隔等分为三个速率区间,分子数占总分子数的百分率分别为%3.3331211d )(10010==⋅==⎰v v v v a N f N N N %5021431d )(10220==⋅==⎰v v v v v a N f N N N %7.1661411d )(103230==⋅==⎰v v v v v a N f NN N *6-15在速率区间1v ~2v 内麦克斯韦速率分布曲线下的面积等于分布在此区间内的分子数的百分率.应用(6-17)式和麦克斯韦速率分布函数表示式(6-18)式,求在速率区间v p ~1.01v p 内的气体分子数占总分子数的比率.分析 麦克斯韦速率分布律表明,由速率分布函数)(v f 可得气体分子速率在v ~v v ∆+速率区间内的分子数占分子总数的百分率为v v ∆=∆)(f NN. 解 麦克斯韦速率分布函数22232e24)(v v v kT m kT m f -⎪⎭⎫ ⎝⎛=ππ,因mkT2p =v ,则分布函数可写为1p 2p223p2p22p2e4e4)(----==v v v v v v v v v v ππππf 速率区间v p ~1.01v p 内的气体分子数占总分子数的比率为%83.001.01e 4e4e 4)(1p 2p223p 2p22p2=⨯⨯⨯=∆=∆=∆=∆----πππv v v v v v v v v v v v v f N N *6-16应用平均速率表示式(6-20)*式、麦克斯韦速率分布函数表示式(6-18)式以及积分公式bb 21d e23=-∞⎰v v v 求v 的值.分析 这里采用的是数学中加权求某量值的平均值的方法,权重就是麦克斯韦速率分布函数)(v f .如果要计算方均根速率2v ,可先求速率平方的平均值,只需将积分式中的v 改为2v ,即v v)v v d 022⎰∞=f(,再将积分结果开方.解 麦克斯韦速率分布函数表示式(6-18)式和平均速率表示式(6-20)*式给出v v v v)v v v d e24d 0322302⎰⎰∞-∞⎪⎭⎫⎝⎛==kTm kT m f(ππ利用积分公式bb 21d e 23=-∞⎰v v v 得 mkTkT m kT m f(πππ822124d 2230=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛==⎰∞v v)v v *6-17 试由麦克斯韦速率分布律推出相应的平动动能分布律,并求出最概然能量E p ,它是否就等于2p 21v m .分析 要找出分子按平动动能的分布规律,即求出分布在平动动能区间E k ~E k +d E k 中的分子数占总分子数的百分率.解 速率为v 的分子的平动动能为E k = 221v m ,则v v d d k m E =,麦克斯韦速率分布律可改写为kk k k 232212232223d )(d e12 d e 2112 d e 24d )(d k 22E E f E E kT m m kT kT m f N N kTE kT m kT m =⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛==---ππππv v v v v v v v v即分子按平动动能分布律,其中分布函数kTE E kT E f k e12)(k 23k -⎪⎭⎫⎝⎛=π参考最概然速率的定义,令0d )(d kk =E E f ,由上式得最概然动能 kT E 21k p =因m kT 2p =v ,则 k p 2p 221E kT m ==v 6-18 飞机起飞前机舱中的压强计指示为Pa 10013.15⨯,温度为C 27︒.起飞后压强计指示为Pa 1010.84⨯,温度仍为C 27︒.试计算飞机此时距地面的高度.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和压强公式nkT p =,在高度1h 和2h 的压强分别为1p 和2p ,则有kT h h mg p p /)(2121e --=得m 100.2m 1010.810013.1ln 8.9102930031.8 ln ln 3453212112⨯=⨯⨯⨯⨯⨯⨯==+=-p p Mg RTp p mg kT h h6-19 设地球大气是等温的,温度为C 17︒,海平面上的气压为Pa 100.150⨯=p ,已知某地的海拔高度为h = 2000 m ,空气的摩尔质量kg/m ol 10293-⨯=M ,求该地的气压值.解 根据玻尔兹曼分子数密度按高度分布公式kT mgh n n /0e -=和理想气体状态方程nkT p =,在高度h 处的压强p 为Pa 107.90Pa e100.1e 429031.820008.910295/03⨯=⨯⨯==⨯⨯⨯⨯---RT Mgh p p6-20 在某一粒子加速器中,质子在Pa 10333.14-⨯的压强和273 K 的温度的真空室内沿圆形轨道运动.(1)估计在此压强下每立方厘米内的气体分子数;(2)如果分子有效直径为2.0×10-8 cm .则在此条件下气体分子的平均自由程为多大?分析 由理想气体状态方程nkT p =可得压强和分子数密度的关系,并由此可计算平均自由程.解 (1) 由理想气体状态方程可得3103163234cm 1054.3m 1054.3m 2731038.110333.1----⨯=⨯=⨯⨯⨯==-kT p n (2) 由定义,平均自由程为cm 101.59m )102(1054.32121428102⨯=⨯⨯⨯⨯⨯==-ππλnd6-21设电子管内温度为300 K ,如果要管内分子的平均自由程大于10 cm时,则应将它抽到多大压强?(分子有效直径约为3.0×10-8 cm ).分析 由平均自由程定义和理想气体状态方程可建立压强与平均自由程以及温度之间的关系.解 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得Pa 0.1035Pa 1.0)103(23001038.12210232=⨯⨯⨯⨯⨯==--πλπd kT p6-22 计算:(1)在标准状态下,一个氮分子在1 s 内与其它分子的平均碰撞次数;(2)容积为4 L 的容器,贮有标准状况下的氮气,求1 s 内氮分子间的总碰撞次数.(氮分子的有效直径为3.76×10-8 cm .)解 (1) 因平均速率MRTπ8=v ,标准状态下22.4 L 中的分子数为A N ,则平均碰撞次数1-91-32321033-A 22s 1067.7 s 104.2210023.6)1076.3(102827331.816 1022.4162⨯=⨯⨯⨯⨯⨯⨯⨯⨯=⨯==---πππN d M RT n d Z v(2) 4 L 氮的分子数N =A 4.224N ,分子间的总碰撞次数为1321923s 10125.4s 1067.710023.64.2242121-⨯=⨯⨯⨯⨯⨯=-Z N 6-23 假设氦气分子的有效直径为10-10 m ,压强为Pa 10013.15⨯,温度为300 K ,(1)计算氦气分子的平均自由程λ和飞行一个平均自由程所需要的时间τ;(2)如果有一个带基本电荷的氦离子在垂直于电场的方向上运动,电场强度为104 V/m ,试计算氦离子在电场中飞行τ时间内沿电场方向移动的距离s 及s 与λ的比值;(3)气体分子热运动的平均速率与氦离子在电场方向的平均速率的比值;(4)气体分子热运动的平均平动动能与氦离子在电场中飞行一个λ远的距离所获得的能量和它们的比值.解 (1) 由平均自由程定义221ndπλ=和理想气体状态方程nkT p =,得m 1029m 10013.1)10(23001038.1275210232-.pd kT ⨯=⨯⨯⨯⨯⨯==--ππλ 平均速率 m/s 1260m/s 10430031.8883=⨯⨯⨯⨯==-ππM RT v 则 s 107.3s 1260102.910-7⨯=⨯==-v λτ (2) 氦离子质量为A N M m =,沿电场方向受到的电场力为eE ,加速度meE a =,在τ时间内沿电场方向移动的距离为m 106.4m 1042103.710023.610106.1 2218-310234192A 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯===---M eEN a s ττ 14.4104.6102.987=⨯⨯=--s λ(3) 氦离子沿电场方向的平均速率为m/s 87.7m/s 103.7104.6108E =⨯⨯==--τsv 14.4E==s λv v(4) 氦气分子平均平动动能为J 106.21J 3001038.1232321-23⨯=⨯⨯⨯=-kT 氦离子在电场中飞行一个λ远的距离所获得的能量为J 101.472J 102.910106.1-217419⨯=⨯⨯⨯⨯=--λeE二者之比为 22.410472.11021.62121=⨯⨯-- *6-24用范德瓦耳斯方程计算压强为Pa 10013.18⨯,体积为0.050 L 的1 mol氧气的温度,如果用理想气体状态方程计算,将引起怎样的相对误差?已知氧的范德瓦耳斯常数为:225/mol L Pa 10378.1⋅⨯=a ;L/mol 0318.0=b .解 由范德瓦耳斯方程得K 342.6K 10)0318.0050.0(050.010378.110013.131.81 )(13258020=⨯-⨯⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯=-⎪⎪⎭⎫⎝⎛+=-b V V a p R T由理想气体状态方程得K .5609K 31.810050.010013.138=⨯⨯⨯==-R pV T相对误差为%7878.06.3426.3425.609==-*6-25在C 27︒时,2 mol 氮气的体积为0.1 L ,分别用范德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气224/mol L Pa 1039.8⋅⨯=a ,L/mol 1005.32-⨯=b .解 范德瓦耳斯方程)(222RT M m b V V a M m p =-⎪⎪⎭⎫ ⎝⎛+,得Pa 109.43Pa 101039.82Pa 1005.321030031.82 782254222⨯=⨯⨯-⨯⨯-⨯⨯=--=----V a M m bMm V RTM m p 由理想气体状态方程得Pa 104.99Pa 1030031.8274⨯=⨯⨯==-V RT M m p 结果表明由理想气体状态方程计算出的压强小于由范德瓦耳斯方程的计算值.*6-26实验测知C 0︒时氧的粘滞系数1.92×10-4 s)g/(cm ⋅,试用它来求标准状态下氧分子的平均自由程和分子的有效直径.解 粘滞系数 v λρη31= 其中密度Vm=ρ.又由理想气体状态方程 RT Mm pV =平均速率MRTπ8=v ,联立可得m109.49 m 1032827331.810013.11092.138338-355⨯=⨯⨯⨯⨯⨯⨯⨯⨯===--ππηρηλM RT p v 分子的有效直径为m 102.97m 1049.910013.122731038.1 210-8523⨯=⨯⨯⨯⨯⨯⨯⨯==--πλπp kT d*6-27实验测知氮气C 0︒时热传导系数为23.7×10-3 W/(m ·K),定体摩尔热容为20.9 J/(mol ·K),试由此计算氮分子的有效直径.解 热传导系数 λρκv MC mV,31=其中密度A N nM =ρ,平均速率MRTπ8=v ,平均自由程221nd πλ=,则2Am V,132dM RT N C ππκ=m 102.23m 1102827331.810023.6107.2339.202 13210-4343233434Am V,⨯=⨯⨯⋅⨯⨯⨯⨯⨯=⋅=--ππκM RT N C d。

理论物理基础教程刘连寿第七篇答案

理论物理基础教程刘连寿第七篇答案

第七篇第一章统计理论基础1.试求理想气体的定压膨胀系数和等温紧缩系数。

1.解:假设咱们考察的系统是n mol的理想气体,由于理想气体状态方程为:(1)(2)故定压膨胀系数:而等压紧缩系数:综上有理想气体(n mol):2.某气体的定压膨胀系数和等温紧缩系数,,其中都是常数,试求此气体的状态方程。

2.解:依照题意:把体积看成是数并微分有:两边同时积分有:由极限情形下:,故:取得:3.一弹性棒的热力学状态可用它的长度L,应力描述f和温度T关系,即为其状态方程,今设此弹性棒发生一微小转变,从一平稳态变到另一平稳态,试证明:其中为棒横截面积,为线膨胀系数,为杨氏模量。

3.证明:杨氏模量的概念:与类比线胀系数:对长度积分有:证毕4.对气体的膨胀系数和紧缩系数进行测量的结果取得一下方程:,其中是常数,只是的函数.证明:(a)(b) 状态方程:4.证明:(a)由:(1)又由:(2)(2)式两边对求导(T一按时):此式与比较可知:f(P)=(因与T无关也与P无关)(b) 将带入(1)式有:当时,,故5.试给出半径为的维球体积:5.证明:在半径为1的维球区域内积分为:以另一种方式求上述积分有:由两式可知:证毕6.利用附录给出的斯特林公式:证明上题中的系数知足下式:6.证明:第一部份:只要将上题中解答进程的(3)式中的换成即得。

故关键是证明第二部份由于(1)由于:即有(1)式成立,故待证命题成立。

证毕第二章统计热力学基础1.单原子晶体中可占据一个格点或一个间隙点。

原子占据格点时的能量比占据间隙点时高。

设格点数和间隙点数相等。

且等于晶体中的原子数。

(a)考虑有个原子占据间隙点的宏观态,计算系统处于此宏观态的熵(b)设系统达到平稳,问晶体在此态的温度是多少?(c)若,晶体的温度时300K,处于间隙点的原子所占的比例是多少?解:(a)依照题意假设一个原子占据间隙点时能量,那么占据格点时能量。

现有个原子占据间隙点故有个占据格点。

大学物理基础教程答案1-6力-6学习教案

大学物理基础教程答案1-6力-6学习教案
xAsin(t)A( 1co2s(t))
1.0(ms1) (4)Fkxm2x4.01 04x(N)
Fm2Acost()8.0cos6.3(103t3 )
第2页/共30页
第三页,编辑于星期一:二十一点 五十八分。
6-3如图所示,一重力作用下的弹簧振子,振子 静止 时弹簧 伸长l= 10厘米;将振子 向下拉 一段距 离厘米 ,并在 位移方 向给 它一个 向下的 初始 速度 v0= 10厘米/秒,任其运动,不计空 气阻力,试求: (1)振动频率; (2)振幅A; (3)初相位; (4)振动表达式.(g=10米/秒2)
5
第五页,编辑于星期一:二十一点 五十八分。
6-4一只鸟落在树枝上每4秒摆动6次,鸟飞走 后,用一 千克砝 码系在 鸟呆过地方树枝弯下12厘米,问这只鸟 的质量 是多少 ?
解:树技与乌组成一个谐振子
kmg81.66(k /gm) T2
l
3
k29.42(ra)d mT
6-5如图所示,有一弹簧振子,弹簧的倔强系数为k,振子的质 量为m’开始时 处于 静止平 衡状态 ,有一 发质量 为m的子 弹以速 度v0沿弹簧方 向飞来 ,击中 振子并 卡在其 中,试以击中 为时间 零点, 写出此 系统的 振动表 达式.
t2ln2
t
AA0e
A0e3ln2A 80
t3ln2
第12页/共30页
AA0,AA0, 16 3132
第十三页,编辑于星期一:二十一点 五十八分 。
6-9 火车在铁轨上行驶,每经过铁轨接轨处 即受一 次震动 , 使装在弹簧上面的车厢上下振动 。设每 段铁轨 长米 ,弹簧
平均负重吨,而弹簧每受吨力将压缩1 6毫米 。试问 ,火 车速度多大时,振动特别强?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论物理基础教程答案【篇一:物理学教程(第二版)上册课后答案7】7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(a) 温度,压强均不相同 (b) 温度相同,但氦气压强大于氮气的压强(c) 温度,压强都相同(d) 温度相同,但氦气压强小于氮气的压强分析与解理想气体分子的平均平动动能k?3kt/2,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程p?nkt,当两者分子数密度n 相同时,它们压强也相同.故选(c).7-2 三个容器a、b、c 中装有同种理想气体,其分子数密度n相同,方均根速率之比?:??:??21/2a21/2b21/2c?1:2:4,则其压强之比pa:pb:pc为( )(a) 1∶2∶4 (b) 1∶4∶8 (c) 1∶4∶16 (d) 4∶2∶1 分析与解分子的方均根速率为2?3rt/m,因此对同种理想气体有同时,得p1:p2:p3?t1:t2:t3?1:4:16.故选(c).7-3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为t0时,气体分子的平均速率为0,分子平均碰撞次数为0,平均自由程为0,当气体温度升高为4t0时,气体分子的平均速率、平均碰撞频率和平均自由程分别为( ) (a) ?40,?40,?40 (b) ?20,?20,?0 (c)?20,?20,?40 (d)?40,?20,?0碰撞频率变为20;而平均自由程?1,n不变,则?也不变.因此正确答案为(b). 27-4 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果(vp)o2和(vp)h2分别表示氧气和氢气的最概然速率,则( )(a) 图中a表示氧气分子的速率分布曲线且(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h2?4 ?1 41 42(b) 图中a表示氧气分子的速率分布曲线且22(c) 图中b表示氧气分子的速率分布曲线且2?2(d) 图中b表示氧气分子的速率分布曲线且2?42分析与解由vp?2rt可知,在相同温度下,由于不同气体的摩尔质量不同,它们的m 最概然速率vp也就不同.因mh2?mo,故氧气比氢气的vp要小,由此可判定图中曲线a2应是对应于氧气分子的速率分布曲线.又因(b).mhmo2?2(vp)o1?,所以16(vp)h22mhmo2?21.故选4题 7-4 图7-5 有一个体积为1.0?105m3的空气泡由水面下50.0m深的湖底处(温度为4.0oc)升到湖面上来.若湖面的温度为17.0oc,求气泡到达湖面的体积.(取大气压强为p0?1.013?105pa)分析将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式解设气泡在湖底和湖面的状态参量分别为(p1,v1,t1 )和(p2 ,v2,t2 ).由分析知湖底处压p1v1p2v2?t1t2可得空气泡到达湖面的体积为v2?p1t2v1?p0??gh?t2v1??6.11?10?5m3 p2t1p0t17-6 一容器内储有氧气,其压强为1.01?105pa,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为v0?3,由数密度的含意可知v0?1/n,即可求出.解 (1) 单位体积分子数n?(2) 氧气的密度p?2.44?1025m3 kt??m/v?(3) 氧气分子的平均平动动能pm?1.30kg?m-3 rtk?3kt/2?6.21?10?21j(4) 氧气分子的平均距离?/n?3.45?10?9m通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.分析理想气体的温度是由分子的平均平动动能决定的,即k?3kt/2.因此,根据题中m?给出的条件,通过物态方程pv =rt,求出容器内氢气的温度即可得k.m解由分析知氢气的温度t?mpv,则氢气分子的平均平动动能为 mr323pvmk?3.89?10?22j2m?rk?kt?分析将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度i=3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系m/2?3kt/2,可得方均根速率2.解 (1) 由分析可得质子的平均动能为2k?2/2?3kt/2?2.07?10?15j(2) 质子的方均根速率为2?63kt?1.58?106m?s-1 m3kt?9.5?106m?s?1 me平均动能k?3kt/2?4.1?10?17j222mirt,对刚性双原子分子而言,i=5.由上述内能m2公式和理想气体物态方程pv =?rt可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p=nkt可求气体温度.气体分子的平均平动动能可由k?3kt/2求出.i解 (1) 由e??rt和pv=?rt可得气体压强2p?2e?1.35?105pa iv(2) 分子数密度n =n/v,则该气体的温度t?p/?nk??pv/?nk??3.62?102k气体分子的平均平动动能为k?3kt/2?7.49?10?21j7-11 当温度为0?c时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平?3均动能和平均转动动能;(2)4.0?10能.kg氧气的内能;(3)4.0?10?3kg氦气的内分析(1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由3度和2个转动自由度.根据能量均分定理,平均平动动能kt?kt,平均转动动能2kr?kt?kt.(2)对一定量理想气体,其内能为e?22m?irt,它是温度的单值函m2数.其中i为分子自由度,这里氧气i=5、氦气i=3.而m?为气体质量,m为气体摩尔质量,其中氧气m的内能.解根据分析当气体温度为t=273 k时,可得(1)氧分子的平均平动动能为?32?10?3kg?mol?1;氦气m?4.0?10?3kg?mol?1.代入数据即可求解它们kt?kt?5.7?10?21j氧分子的平均转动动能为32kr?kt?3.8?10?21j(2)氧气的内能为22【篇二:物理实验习题答案(第二版教材)(1)】什么是基本单位和导出单位? 2。

什么是基本量与导出量?(教材p10)物理学中独立定义的单位叫做基本单位,所对应的物理量叫做基本量。

由基本单位导出的单位叫做导出单位,对应的物理量叫做导出量。

2. 哪些物理量为基本物理量,它们的基本单位、符号、定义是什么?(教材p10)在国际单位制中,长度、质量、时间、电流强度、热力学温度、物质的量和发光强度等七个物理量为基本物理量,它们的单位分别为“米”、“千克”、“秒”、“安培”、“开尔文”、“摩尔”和“坎德拉”,它们的单位符号分别为“m”、“kg”、“s”、“a”、“k”、“mol”和“cd”,它们的单位定位分别详见教材p10表1-1 。

3. 物理实验中有哪些常用的长度测量器具?(教材p11)物理实验中,测量长度的常用工具有:钢直尺、钢卷尺、游标卡尺、千分尺、千分表、测微目镜、读数显微镜、电涡流传感器、电容传感器、电感传感器、光栅传感器、激光干涉仪等。

4. 物理实验中有哪些常用的质量测量工具?(教材p11)物理实验中,质量测量最常用的仪器有电子秤、弹簧秤、物理天平、分析天平等。

5. 物理实验中常用的时间测量工具有哪些?(教材p12)物理实验中常用的时间测量仪器有:秒表(停表),指针式机械表、数字显示式电子表、数字毫秒计等。

6. 物理实验中常用的温度测量工具有哪些?(教材p12)物理实验中常用的温度测量仪器有水银温度计、热电偶和光测温度计等。

7. 物理实验中有哪些常用的电流测量仪表?(教材p12)物理实验中电流测量常用仪器有安培表、检流计、表头、灵敏电流计、万用电表、钳表等。

9.(1)力学、热学实验操作过程中应注意什么?(2)力学实验的基本功有哪些?(1)略(教材p13)。

(2)仪器的零位校准,水平和铅直调整等调节是力学实验的基本功,务必熟练掌握。

10.(1)电磁学实验操作过程中应注意什么?(2)电磁学实验的基本功是什么?(1)略(教材p13)。

(2)回路法接线是电磁学实验的基本功,务必熟练掌握。

11.(1)光学实验操作过程中应注意什么?(2)光学实验的基本功有哪些?(1)略(教材p14)。

(2)“等高共轴”的调节、成像清晰位置的判断、消视差的调节是光学实验的基本功,务必熟练掌握。

12.常用的物理实验测量方法有哪几种?(教材p14-17)常用的物理实验测量方法有比较法、转换法、放大法、模拟法、补偿法、干涉法和衍射法等。

13.物理实验中应掌握哪些基本调节技术?(教材p18-20)物理实验中应掌握的基本调节技术有:仪器初态与安全位置的调节、回路接线法、跃接法、零位(零点)调整、水平、铅直调整、等高共轴调整、调焦、消视差调整、逐次逼近调整、空程误差消除的调节、先定性后定量原则等。

14.计算机和计算器在物理实验中有哪些基本应用?(教材p20-21)计算器的基本应用:测量数据的统计处理;图形的简单处理等。

计算机的基本应用:实验数据处理、模拟与仿真实验、实时测量、利用物理实验课程网站进行物理实验的辅助教学和教学管理等。

15. 指出几种利用机械放大作用来提高测量仪器分辨率的测量工具。

(教材p15)游标卡尺、螺旋测微器、迈克尔逊干涉仪等。

16. 指出一种能进行微小变化量的放大的方法;指出两种能进行视角放大的仪器。

(教材p15)光杠杆放大法(测金属丝的微波伸长量);放大镜、显微镜、望远镜等。

17. 为什么说采用视角放大法不会增加误差?(教材p15)在视角放大中,被观察的物理量只是在观察场中放大视角,实际尺寸并没有发生变化,所以不会增加误差。

18. 补偿法(或称均衡法)的优点是什么?举出几种补偿法(或称均衡法)应用的实际例子。

(教材p16)优点:可以免去一些附加的系统误差,当系统具有高精度的标准量具和平衡指示器时,可获得较高的分辨率、灵敏度及测量的精确度。

例子:等臂天平称重、惠更斯电桥测电阻、电位差计测电压以及各种平衡电桥的测量等。

19. 举出物理模拟法与数学模拟法的实际例子。

(教材p17)物理模拟法例子:用光测弹性法模拟工件内部应力分布情况;用“风洞”中的飞机模型模拟实际飞机在大气中的飞行等。

相关文档
最新文档