大学物理(电场)
大学物理 第一章静止电荷的电场(必看)
q2d (A) 2 S 0
Байду номын сангаас
)。
q2d (B) S 0 q2d (D) S 0
q2 F Eq 2S 0
q2d (C) 2 S 0
d
d
q E 2 0 2S 0
q 2d A Fd 2S 0
量等于该闭合面内所包围的电荷代数和除以真空的
介电常数,数学表达式为
1 E ds
s
0 ( s面内)
q
典型电荷的电场
(1)点电荷
E
q 4 0 r
2
er
(2)半径为R 、带电量为Q均匀带电球面
E0
E Q 4 0 r
2
rR
er
rR
(3)均匀带电无限长直线
E 2 0 r
2 ES 2 xS
底面
E
x
0
0
d x 时: 2 q DS
2 ES DS
0
D E 2 0
例 题 15 15、如图所示,一无限长的均匀带电圆柱体,
体电荷密度为 ,截面半径为 R 。
求:
(1)柱内( r R )电场强度分布?
(2)柱外(r R)的电场强度分布?
直线中垂线的P点到带电直线中心o的距离
OP L
时,P点的电场强度大小。 解(1)
dE
E
L 2 L 2
y
L r ax 2
o
x
1 1 ( ) L 4 0 ( a x) 2 4 0 a a L 2
dq 4 0 r 2 dx
大学物理电场教案
课时:2课时教学对象:大学物理专业学生教学目标:1. 理解电场的基本概念和电场线的特点。
2. 掌握电场强度、电势和电势能的计算方法。
3. 能够运用电场强度叠加原理和电势叠加原理解决实际问题。
4. 理解静电场的特性及其应用。
教学内容:一、电场的基本概念1. 电场的定义2. 电场线的特点3. 电场强度及其计算方法二、电势与电势能1. 电势的定义2. 电势的计算方法3. 电势能与电势的关系4. 电势能的计算方法三、电场强度叠加原理与电势叠加原理1. 电场强度叠加原理2. 电势叠加原理3. 应用实例四、静电场的特性与应用1. 静电场的特性2. 静电场中的导体与电介质3. 静电场在生活中的应用教学过程:第一课时:一、导入1. 通过实验演示,让学生观察电荷在电场中的运动情况,引出电场的概念。
2. 介绍电场线的特点,让学生理解电场线的性质。
二、电场的基本概念1. 讲解电场的定义,让学生理解电场的基本概念。
2. 介绍电场线的特点,让学生了解电场线的分布规律。
三、电场强度及其计算方法1. 讲解电场强度的定义,让学生掌握电场强度的计算方法。
2. 通过实例,让学生理解电场强度在物理中的应用。
四、小结1. 总结本节课所学内容,让学生回顾电场的基本概念、电场线的特点、电场强度及其计算方法。
第二课时:一、导入1. 复习上一节课所学内容,让学生回顾电场的基本概念和电场强度。
2. 引入电势与电势能的概念,激发学生的学习兴趣。
二、电势与电势能1. 讲解电势的定义,让学生掌握电势的计算方法。
2. 讲解电势能与电势的关系,让学生理解电势能的计算方法。
三、电场强度叠加原理与电势叠加原理1. 讲解电场强度叠加原理,让学生理解电场强度在多个电荷共存时的计算方法。
2. 讲解电势叠加原理,让学生掌握电势在多个电荷共存时的计算方法。
四、静电场的特性与应用1. 讲解静电场的特性,让学生理解静电场的应用场景。
2. 介绍静电场在生活中的应用,如静电除尘、静电喷涂等。
大学物理第一章 静电场
静止电荷的电场
本章是静电部分重点,主要讨 论如何描述电场,即从电荷在电场 中受力的角度建立电场强度的概念。 重点讨论用两种方法求场强分布。
1
一、基本概念
1. 电荷
(1) 种类 只有两种 (2) 电荷是量子化的(charge quantization ) 自然界物体所带电荷:q = ne (3) 电荷遵从守恒定律 (law of conservation of charge) (4) 电量是相对论不变量
dE
dq 4 o r
e 2 r
13
例2 均匀带电直线,带电量为q,长为L,
求空中任意一点P的场强。
解:
(1)取电荷元
q dq dl dl L
y
dq
(2)电荷元产生 元场强大小 1 dq dE 4 0 r 2
L
dl
r
o
x
P
14
dE
x
方向:与dq到场点的矢径 r
q 1 1 Ey 4 0 L x 2 ( L d )2 x2 d 2
式中:
x是场点到带电线的垂直距离
d 是垂足到直线下端点的距离(取绝对值)
17
(5)长直带电线周围任一点电场强度
大小:
E E E E E E
2 x 2 y 2 z 2 x
2. 数学表达式:
q1q2 F k 2 er r
er :
单位矢径
大小:等于1 方向:从施力电荷(场源) 指向受力电荷(场点) 3
1 k 8.988 1012 Nm 2 / c 2 4 o
o 8.8510 12 C 2 / Nm 2
大学物理常用公式(电场磁场 热力学)
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
大学物理电场磁场电磁感应公式总结
对未来学习或研究方向展望
深入学习电磁理论
在大学物理的基础上,可以进一步深入学习电磁场理论,了解电磁波的传播、辐射和散射等现象,为后续的 学术研究或工程应用打下基础。
拓展应用领域
电磁场理论在各个领域都有广泛的应用,如无线通信、电子技术、材料科学等。未来可以将所学的电磁场理 论知识应用到相关领域中,解决实际问题。
交流电的有效值是根据电流的热效应来规定的,对于正弦 交流电,有效值$I = frac{I_m}{sqrt{2}}$。
交流电路中电场、磁场关系分析
电场与磁场相互垂直
在交流电路中,电场和磁场是相 互垂直的,且都垂直于电流的传 播方向。
电磁感应定律
变化的磁场会产生电场,从而产 生感应电动势,感应电动势的大 小与磁通量变化的快慢成正比, 即$e = -n frac{dPhi}{dt}$。
电感和电容
在交流电路中,电感对电流的变 化有阻碍作用,电容对电压的变 化有阻碍作用。电感和电容都是 储能元件,它们在交流电路中的 特性与其在直流电路中的特性有 很大不同。
变压器原理和应用举例
变压器原理
变压器是利用电磁感应原理来改变交流电压的装置。它由两个或多个匝数不同的线圈绕在同一个铁芯上制 成。当原线圈中加上交流电压时,在铁芯中就会产生交变磁通,从而在副线圈中产生感应电动势。
电场
电场强度、电势、高斯定理、静 电场的环路定理等概念和公式, 以及它们在求解电场分布、电势 能和电场力等问题中的应用。
磁场
磁感应强度、磁场线、磁通量、 安培环路定律等概念和公式,以 及它们在求解磁场分布、磁力和 磁矩等问题中的应用。
电磁感应
法拉第电磁感应定律、楞次定律、 自感和互感等概念和公式,以及 它们在求解感应电动势、感应电 流和磁场能量等问题中的应用。
大学物理电场与电势
大学物理电场与电势电场与电势是大学物理学习过程中的重要内容,它们在电学领域的研究中发挥着重要的作用。
本文将对电场与电势的概念、性质以及应用进行全面的介绍。
一、电场的概念与性质电场是指电荷周围所产生的一种物理场。
当电荷处于一个点上时,它会产生一个以该点为中心的电场。
电场的性质如下:1. 电场的定义:电场是指在某一点上,单位正电荷所受到的电力。
2. 电场的方向:电场的方向是正电荷所受力的方向。
3. 电场的性质:电场具有叠加性,即多个电荷所产生的电场可以叠加。
二、电势的概念与性质电势是描述电场中某一点的电场能的物理量。
电势的概念与性质如下:1. 电势的定义:电势是单位正电荷在电场中所具有的电势能。
2. 电势的关系:电势与电荷之间的距离成反比,与电荷的大小成正比。
3. 电势的性质:电势具有可加性,即总的电势等于各个点电势的代数和。
三、电场与电势的关系电场与电势有着紧密的联系,它们之间的关系可以通过如下几个方面来说明:1. 电场与电势的变化关系:电场的强度是电势在空间上的梯度。
即电场的方向是电势变化最快的方向。
2. 电势与电场能量的关系:单位正电荷在电势差为1伏特的电场中所具有的能量称为电势能,即qΔV。
电势能等于电荷所受电势力所做的功。
3. 电场与电势的衡量:电场可以通过在点电荷周围放置试验电荷的方式来测量;而电势则可以通过除以试验电荷量来衡量。
四、电场与电势的应用电场与电势在现实生活中有着广泛的应用,下面将介绍几个例子:1. 静电除尘器:静电除尘器利用电场力将空气中的灰尘粒子吸附在带电板上,通过调节电场的强度和方向,可以实现对灰尘的捕捉和清除。
2. 电容器:电容器利用电势差储存电能,常用于电子设备中的能量储存和传输。
3. 电势计:电势计是测量电势的一种仪器,常被用于测量电池的电势、电路中的电压等。
4. 高压线路安全:通过在高压线路上设置带电线路塔,形成较大的电势差,可以有效地防止人员触电。
通过以上几个应用的介绍,可以看出,电场与电势不仅仅只是在理论研究中起到重要的作用,更在实际生活中发挥着重要的作用。
大学物理电场高斯定理
(2) 库仑力满足牛顿第三定律;
F12
1 4πε0
q1q2 r2
rˆ21
(3) F电 F万 e.g. 两个粒子
m 6.64 1027 kg q 3.2 1019 C
F电 F万
kq2 / r 2 Gm2 / r 2
9 109 (3.2 1019 )2 6.67 1011 (6.64 1027 )2
E
2p
4πε0r3
例10.2 均匀带电细直棒,与棒垂直距离为 a 的P点的
场强。已知电荷线密度为,棒两端到P点的连线与X
轴的夹角分别为1和 2
dE dE
y
Y
dE x P
ar 1
解场:强建为立:坐解 标轴: d如E图, x41x+0ddrx2电qe荷r1元dλx产d生x的
2
dE xdE coθs4π0εr2 coθs
②改为均匀带电的半圆环,线电荷密度
为0,结果?
Y
O
X
[例] 均匀带电(Q)直线段延长线上一点的场强.
L O x x+dx
a X
p
解:建立坐标轴如图
xx+dx电荷元在P点产生的场强:
dE
dq
4 0r2
i
QL dx
40(Lax)2
i
P点的总场强:
E dE i4Q 0L0 L(Ld ax x)2
q2
q1
r2 q0 r1
F1
F2
10.2 静电场 电场强度
早期:电磁理论是超距作用理论 电荷
电荷
后来: 法拉第提出近距作用,并提出力线和场的概念
电荷 电场 电荷
一、电场 (electric field)
大学物理(工科) 6—1 电场强度
dEx
=
40
x
sin
d
dEy
=
40
x
cos
d
►考虑导线上所有点电荷的贡献,对上两式积分
Ex
=
dEx
=
2
1
40 x
sin d
Ey
=
dEy
=
2 1
40 x
cos d
►场强的矢量式为 E = Ex i + Ey j
大小为 E = (Ex2 + Ey2)1/2
和x轴的夹角大小为
= tg -1 Ey
Ex
讨论
•如果P点在导线的中垂线上,则2 = - 1
Ex
=
20
x
Ey = 0
cos1
L/2
cos1 =
[(L/2)2 +x2]1/2
•如果带电导线为“无限长”直导线,则1=0,
Ex =
20 x
Ey = 0
例7 均匀带电半圆环在圆心处场强。线密度为λ,半
径为R
解:►建立坐标
y
dq
►取电荷元dq= λdl dq,
2.库仑定律表述
►在真空中, 两个静止点电荷之间的相互作用力大小 ,与它们的电量的乘积成正比,与它们之间距离的平 方成反比;作用力的方向沿着它们的联线,同号电荷 相斥,异号电荷相吸。
3.库仑定律公式表示
q1 r12
F21
q2
F12 d
F21
q1
r12
q2
F12
F12
k
q1q2 r122
直导线 柱面 柱体
•
点电荷
大平板
q (x r0
i 2)2
大学物理常用公式(电场磁场-热力学)
第四章 电 场一、常见带电体的场强、电势分布 1)点电荷:2014q E r πε=04q U rπε=2)均匀带电球面(球面半径R )的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3)无限长均匀带电直线(电荷线密度为λ):02E rλπε=,方向:垂直于带电直线。
4)无限长均匀带电圆柱面(电荷线密度为λ): 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。
二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场。
q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E ⊥表表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。
3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。
大学物理电场电场强度
Q1
d
r
Байду номын сангаас观察点
.P
库仑定律: • 1785年,法国库仑(C.A.Coulomb) 库仑
库仑定律
真空中两个静止的点电荷之间的作用力(静电力), 与它们所带电量的乘积成正比,与它们之间的距离的平方 成反比,作用力沿着这两个点电荷的连线。
F21 ——电荷q1作用于电荷q2的力。
q1q2 F21 F12 k 2 r0 r 1 k 4 0
F31 1 40 q1q3 r2
F3
q3 0.3m j q2
F31
0.6m
9.0 109 140 N
6.5 10 8.6 10 N
5 5
0.62
i
0.52m
q1
x
力 F31 沿x轴和y轴的分量分别为
Fx F31 cos 30 120N
引力
q1q2 1 q1q2 注意:只适用两 r0 r 2 3 个点电荷之间 4 0 r 4 0 r
静电力的叠加原理 作用于某电荷上的总静电力等于其他点电荷单独 存在时作用于该电荷的静电力的矢量和。 数学表达式
离散状态
N F Fi i 1
r10
ri 0
dF
A q0 B
q0
A
FB
(1)点电荷的电场
3.电场强度的计算
(2)场强叠加原理和点电荷系的电场 (3)连续分布电荷的电场
(1)点电荷的电场
1 q0 q F r 3 4 0 r
E
F 1 q E r 3 q0 40 r
E
q 源点
q0
E
场点
大学物理 电场
电磁学(Electromagnetism) ·电磁学是经典物理学的一部分。
·电磁学研究:(1)电磁现象的基本概念和基本规律电荷、电流产生电场、磁场的规律,电场和磁场的相互联系,电磁场对电荷、电流的作用,电磁场对物质的各种效应。
(2)处理电磁学问题的基本观点和方法。
·电磁学内容:静电学恒定电流恒定电流的磁场电磁感应电磁场与电磁波第一章 真空中的静电场(Electrostatic Field in Vacuum)静电场—静止或低速( υ << c )电荷产生的 电场。
§1 电荷 库仑定律一.电荷(Electric charge)二.电荷守恒(Charge conservation)三.库仑定律(Coulomb’s Law)1.库仑定律F 1 ∙ ∙ F 2 q 1 r q 2适用条件:·点电荷—理想模型若带电体的线度<<带电体间的距离,则带电体可看成点电荷。
·真空·电荷静止(或低速)★约定:电荷不说负就算正(以后均如此)。
2.有理化米—千克—秒—安培制(1)国际单位制(SI)·q—库仑(C);F—牛顿(N);r—米(m) ·实验定出,k = 8.9880⨯109 N⋅m2/C2k≈ 9⨯109N⋅m2/C2(2)有理化·引入常数ε0 ,使k =14πε0·ε0—真空介电常数(真空电容率)(Permittivity of vacuum)ε0 = 8.85⨯10-12 C 2/N ⋅m 2·库仑定律:§2 电场 电场强度一.电场(Electric field)1.电荷产生电场2.电场性质(1)力的性质:对处于电场中的其它带电体有 作用力;(2)能量的性质:在电场中移动其它带电体 时,电场力要对它作功。
ε0 = 1 4π k二.电场强度(Electric field intensity)定义 q 0—检验电荷(电量小、线度小)三.点电荷场强公式·求点电荷q (源电荷)在p 点(场点)产生的电 场·在p 点放一检验电荷q 0,·由库仑定律和场强 定义,有 q 0受力p 点场强点电荷场强公式 ∙ q r ·p q 0 E(♥) F = 1 4πε0 ( )( qq 0 r 2 ) r r E = F q 0(♥--典型结果,要记在“♥”中)§3 场强叠加原理 电场强度的计算一.场强叠加原理(Superposition principle of electric field intensity)·源电荷:q 1 、 q 2、…、q i 、…·p 点放检验电荷q 0, 则q 0受力F = F 1 + F 2 + … + F i + …(F i 为q i 和q 0间的作用力)·p 点场强场强叠加原理:电场中某点的场强等于每 个电荷单独在该点产生的场强的叠加(矢 量和)。
大学物理电场 电场强度
R2 )3
2
E
4π
qx
0(x2
R2 )3
2
讨论
1) x REFra bibliotek4πq
0x2
点电荷电场强度
2) x 0, E0 0
2R E
2
3) dE 0, x 2 R
o 2R x
dx
2
2
例5 均匀带电薄圆盘轴线上的电场强度.
度为有.一求半通径过为盘R心,0电且荷垂均直匀盘分面布的的轴薄线圆上盘任,意其一电点荷处面的密
整理后得: E E1 E2
n
En
i 1
1
4 0
qi ri3
ri
场强叠加原理: 电场中某点的场强等于每个电荷单 独在该点产生的场强的叠加(矢量和)。
9.2.3 连续分布的带电体产生的场强
取电荷元 dq,由点电荷的场强公式:
dE
dq
dE
r
4 0r3
E
dE
V
V
dq
4 0r3 r
★ 注意:是矢量积分
x R0
RdR
2 0 0 ( x2 R 2 )3/ 2
zR0
R
o
dR
P
dE
x
x 1
1
E (
)
20 x2 x2 R02
E x ( 1 1 ) 20 x2 x2 R02
讨论
x R0
E 2 0
无限大均匀带电 平面的电场强度
x R0
E
4π
q
0x2
点电荷电场强度
(1
R2 1 )0 2
P
r dq q
电
体密度
dq
大学物理电场的性质教案
教学对象:大学物理专业学生教学目标:1. 理解电场的基本概念,掌握电场强度的定义和计算方法。
2. 了解电场的性质,包括电场的叠加原理、保守场性质和有源场性质。
3. 掌握电场线的基本概念和绘制方法。
4. 通过实例分析,培养学生运用电场知识解决实际问题的能力。
教学重点:1. 电场强度的定义和计算方法。
2. 电场的性质,包括叠加原理、保守场性质和有源场性质。
3. 电场线的概念和绘制方法。
教学难点:1. 电场强度的概念和计算方法。
2. 电场的性质的理解和应用。
教学准备:1. 教学课件。
2. 多媒体设备。
3. 实验器材(如点电荷、电场板、电场计等)。
教学过程:一、导入1. 提问:什么是电场?电场有哪些性质?2. 学生回答,教师总结。
二、电场强度的定义和计算方法1. 教师讲解电场强度的定义:电场中某点的电场强度等于该点放入试验电荷所受电场力与试验电荷电量的比值。
2. 学生跟随教师一起推导电场强度的计算公式:E = F/q。
3. 通过实例分析,让学生掌握电场强度的计算方法。
三、电场的性质1. 电场的叠加原理:电场是矢量场,电场强度遵循矢量叠加原理。
2. 保守场性质:电场力做功与路径无关,只与初末位置有关,因此电场是保守场。
3. 有源场性质:电场是由电荷产生的,因此电场是有源场。
四、电场线1. 教师讲解电场线的概念:电场线是表示电场强度大小和方向的曲线。
2. 教师演示电场线的绘制方法,让学生跟随操作。
3. 通过实例分析,让学生掌握电场线的绘制方法。
五、实例分析1. 教师展示一些实际应用案例,如静电屏蔽、静电感应等。
2. 学生分组讨论,分析案例中电场的性质和规律。
3. 学生汇报讨论结果,教师点评并总结。
六、总结1. 教师总结本节课的重点内容,强调电场的基本概念、性质和计算方法。
2. 学生回顾课堂所学内容,提出疑问,教师解答。
教学反思:1. 本节课通过理论讲解、实例分析和实验演示等多种教学手段,使学生较好地掌握了电场的基本概念、性质和计算方法。
大学物理电场电场强度
(等量异号电荷+q、-q ,相距为l (l<<r) ,该带电体
系被称为电偶极子)
解:建立如右图的坐标系
E E 4π 1 0r2(q l/2)2
Q点的场强 E 的y分量为零, x 分量
E
Q
E
E
r
是 E+ 和 E- 在x方向分量的代数和:
E E x E x E co E scosq l q
3. 电场强度符合叠加原理,也就是所有电荷产生的总场强等 于每个电荷所产生场强的矢量和。
4. 点电荷产生的场强为:
E
1
4π 0
q r3
r
,多个点电荷
可用此式分别算出各个点电荷的场强,然后叠加。
5. 连续带电体产生的场强为:E
dE
1
dqr ,dq可
4π0 r3
根据电荷分布形式用 d,ld,sd 表示。
21
10:56
cosl/{ 2r2(l/2)2} 代入上式
11
10:56
EEx4π10(r2lq2/l4)3/2
用定义l 表 电示 偶从 极矩为q到:Pqe的矢ql量,
rl
r2l2/43/2r3
E 4πp0r3
E
E
Q
E
r
l
q
Pe
q
结论:电偶极子中垂线上,距离中心较远处一点
的场强,与电偶极子的电矩成正比,与该点离中心 的距离的三次方成反比,方向与电偶极矩方向相反 。
轴垂直,把带电平面分成一系列平
行于z轴的无限长窄条,阴影部分
在p点产生场强为(无限长均匀带
电直线结果):
dE
dy
2p0r 2p0r
p p dx E dc E o s dy 1 20x 2 y 22
大学物理电场(总结)
大学物理电场(总结)电场是一个物理学概念,用于描述由电荷产生的静电作用力场。
电场是一个矢量场,可用于确定在某个点处,一个测试电荷所受到的电力大小和方向。
电场大小的单位是伏特每米( V/m )。
电场常数是电场的基本属性,它取决于真空介电常数ε0。
ε0是物质介电系数(相对于真空)除以空气介电常数。
电场常数的值是8.85乘以10的负12次方库仑每平方米。
电势是电场的另一个概念,它描述了测试电荷在电场中沿电场线路径从一点到另一点时所经过的电势差。
测试电荷在从一点到另一点的过程中没有发生加速,所以其动能也没有发生改变,故两点之间电势差为零,则电场在该区域是恒定的。
电势的单位是伏(V)。
当电荷在电场中受力,系统的势能就发生了变化。
在势能守恒的条件下,两个卡仑静电势(Electric Potential) 之间的差就是能量变化的量。
电势差的单位是伏。
高斯定理是物理学中重要的工具,它描述了任何封闭电荷系所产生的电场之间的关系。
高斯定理是一个矢量恒等式,将闭合曲线电荷等效为点电荷的总电场视为系统周围任意几何形状上完整的守恒电场,描述了电场穿过确定表面的总通量等于包含在表面内的总电荷,除以真空介质的介电常数。
“闭合曲线电荷”是指,在所考虑的三维空间内的某个平面区域内,包含所有电荷的所有悬浮粒子的总和等于任何一个空间体积中的总电荷。
因此,对于给定的封闭曲面,它在围内的总电量等于一围面上的总电通量,即电通量 = 电荷 / 介质常数。
库仑定律是电场中两个点电荷之间的电荷静力学作用规律。
库仑定律被定义为同电荷(相互排斥)之间的吸引力;异电荷(相互吸引)之间的吸引力。
两个点之间受力的大小与它们之间距离的平方成反比,并与它们之间点电荷的电量成正比。
这个定律适用于静电学,即与时间无关的电荷分布,电场也不随时间变化而变化。
在空气中,库仑定数的值是9.0乘以10的9次方牛顿乘方米二分之一。
总起来说,电场的研究是电学研究的基础,城许多物理现象都与电场有密切的关系。
大学物理电磁学部分02 电场强度
P
E y
l /2 cos r 1 ql / 2 E 2 x 4 0 r2 r 1 ql 场强的大小为: E 3 40 r 写成矢量式: E 1 p 3 4 0 r
E
r
p 3 4 0 r
q
pq l
o
x
l
q
9
y dy 2 解:线电荷密度λ dq 1 dy 1 dq er d E e 2 2 r 4 r 4 r dq 0 0 y r 1 dy
讨论: 1. 无限长均匀带电直线, θ1= 0, θ2=。
Ex , Ey 0 20a E Ex 2 0a
y 2
2. 设棒长为l ,a>>l 无穷远点场强, 相当于点电荷的电场。
o
1 a
L E 2 2 4 0 a 4 0 a
q
x
12
例3:均匀带电圆环半径为R,带电量为q,求:圆环轴 线上一点的场强。 dq 解:电荷元dq的场
2.确定电荷密度: 体 , 面 , 线 3.求电荷元电量;
1 dq E e 4.确定电荷元的场 d 2 r 4 0 r
5.求场强分量Ex、Ey、EZ。
E E x dE x,E y dEy , Z
2 2 2 求总场 E E E E x y Z
dE
Z
8
电场 电场强度
1
一、电场
电荷是通过电场来作用的。 电场的基本性质:对处在其中的其它电荷会产生作 用力,该力称为电场力。 电荷q1 电场E 电荷q2
电场是电荷周围存在的一种特殊物质。 场的物质性体现在: 电场与实物有 何不同? a.给电场中的带电体施以力的作用。
大学物理-第1章 电场强度 高斯定理
+的场强 视为点电荷 dq
r r
P
Q
分解
dq
Q
r dE
设带电体的电荷体密度为, dq在 P 点产生的场强为 叠加
则 d q dV
r dE
r 1 r dV 3 4π 0 r
r r E dE
P点的场强为
r 1 E 4π 0
V
r r dV 3 r
穿出为正,穿进为负
向外法 线
31
S
E
选取面积元 dS dS en
1.3.3 高斯定理
1. 点电荷q 的电场中任意闭合曲面的电场强度通量 (1)点电荷在闭合曲面内 以q为中心、半径任意的球面S 的电场强度通量 由库仑定律得P 点场强 面积元dS的电场强度通量
v E 1 q r e 2 r 4π 0 r
大小 F12 k
12
v v F21 F12
q1q2
q1q2
r122 方向 沿 q1、 q 2 的连线,同性相斥,异性相吸
k 9 109 N m2 C2
比例系数 真空中的电容率
9
1 4π 0 r12 2
v F21
v r12
q1
v F12
q2
0 8.851012 C2 (N m2 )
15
点电荷的电场分布
q>0
q<0 (b)负电荷
(a)正电荷
16
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
q1
r r r r F = F+F 1 2+L F n
P 点场强
r E r Fi
n i 1
r r1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大 学 物 理(电 学)一、选择题(共24分)1(本题3分)如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A)20214r Q Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D) 2024rQ επ. [ ] 2(本题3分)A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为20π4r qE ε=.(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为20π4rqE ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯定理求出. [ ]3(本题3分)半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:[ ](C (A (B (D4(本题3分)静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]5(本题3分)图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为:(A) 204r Q E επ=,rQ U 04επ=. (B) 0=E ,104r Q U επ=.(C) 0=E ,r QU 04επ=.(D) 0=E ,204r QU επ=. [ ]6(本题3分) 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ] 7(本题3分)一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]8(本题3分)真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是 (A) 球体的静电能等于球面的静电能. (B) 球体的静电能大于球面的静电能. (C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能. [ ] 二、填空题(共28分)9(本题5分)两块“无限大”的均匀带电平行平板,其电荷面密度分别为σ( σ>0)及-2 σ,如图所示.试写出各区域的电场强度E .Ⅰ区E的大小__________________,方向____________.Ⅱ区E的大小__________________,方向____________.Ⅲ区E的大小__________________,方向_____________.10(本题3分)由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线 密度为λ,则在正方形中心处的电场强度的大小E =_____________.11(本题5分)电荷均为+q 的两个点电荷分别位于x 轴上的+a和-a 位置,如图所示.则y 轴上各点电场强度的表示式为E=______________________,场强最大值的位置在y =__________________________.σⅠⅡⅢ-2σ+q +q -a+aOxy12(本题3分)如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b 点,外力所作的功A =______________.13(本题3分) 图示为某静电场的等势面在图中画出该电场的电场线.14(本题3分)知立方导体中心O 处的电势为U 0____________.15(本题3分)一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.16(本题3分)两个空气电容器1和2,并联后接在电压恒定的直流电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)三、计算题(共38分) 17(本题10分)真空中有一高h =20 cm 、底面半径R =10 cm的圆锥体.在其顶点与底面中心连线的中点上置q =10 –6 C 的点电荷,如图所示. 求通过该圆锥体侧面的电场强度通量.(真空介电常量ε 0=8.85×10-12 C 2·N -1·m -2 )18(本题5分)若电荷以相同的面密度σ 均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ 的值. (ε0=8.85×10-12C 2 / N ·m 2 )19(本题5分)一环形薄片由细绳悬吊着,环的外半径为R ,内半径为R /2,并有电荷Q 均匀分布在环面上.细绳长3R ,也有电荷Q 均匀分布在绳上,如图所示,试求圆环中心O 处的电场强度(圆环中心在细绳延长线上).20(本题10分)如图所示,一电荷面密度为σ的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.21(本题8分)两金属球的半径之比为1∶4,带等量的同号电荷.当两者的距离远大于两球半径时,有一定的电势能.若将两球接触一下再移回原处,则电势能变为原来的多少倍?四、错误改正题(共5分)22(本题5分)有若干个电容器,将它们串联或并联时,如果其中有一个电容器的电容值增大,则:(1) 串联时,总电容随之减小.(2) 并联时,总电容随之增大.上述说法是否正确, 如有错误请改正.五、回答问题(共5分)23(本题5分)为什么在无电荷的空间里电场线不能相交?大学物理试卷(电学)答案一、选择题(共24分) A D B C D C B B二、填空题(共28分) 9(本题5分)02εσ向右 2分 023εσ 向右 2分 02εσ 向左 1分 10(本题3分)0 3分11(本题5分)()jy a qy 2/322042+πε, (j 为y 方向单位矢量) 3分 2/a ± 2分12(本题3分)⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε 3分13(本题3分)答案见图. 3分14(本题3分)U 0. 3分15(本题3分)垂直于 1分 仍垂直于 2分16(本题3分)增大 1分 增大 2分 三、计算题(共38分)17(本题10分)解:以顶点与底面中心连线的中点为球心,()222/h R r +=为半径作一球面.可以看出,通过圆锥侧面的电通量(电场强度通量)等于通过整个球面的电通量减去通过以圆锥底面为底的球冠面的电通量.通过整个球面的电通量 Φ0 =q /ε0 2分通过球冠面的电通量 Φ1 = Φ0 S /S 0()2042/2r h r r q π-π⋅=ε()⎪⎪⎭⎫ ⎝⎛+-=2202/2/12h R h q ε 式中S 为球冠面积S =2πr (r -h /2),S 0为整球面积. 4分 通过圆锥侧面的电通量为Φ2, Φ2=Φ0-Φ1()2200022/42h R qh q q++-=εεεΦ()⎪⎪⎭⎫⎝⎛++=222/2/12h R h qε = 9.6×104 N ·m 2/C 4分18(本题5分)解:球心处总电势应为两个球面电荷分别在球心处产生的电势叠加,即⎪⎪⎭⎫ ⎝⎛+π=2211041r q r q U ε⎪⎪⎭⎫ ⎝⎛π+ππ=22212104441r r r r σσε()210r r +=εσ 3分故得 92101085.8-⨯=+=r r Uεσ C/m 2 2分19(本题5分)解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元d q = λd x = Q d x /(3R )它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 1分 整个细绳上的电荷在环心处的场强()203020116412RQx R dx R Q E R εεπ=-π=⎰ 2分 圆环上的电荷分布对环心对称,它在环心处的场强E 2=0 1分由此,合场强 i RQi E E20116επ== 1分20(本题10分)解:电荷面密度为σ的无限大均匀带电平面在任意点的场强大小为E =σ / (2ε0) 2分以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = σ2πr d r 2分它在距离平面为a 的一点处产生的场强 ()2/32202d ra a r d rE +=εσ 2分则半径为R 的圆面积内的电荷在该点的场强为:R3xx()⎰+=Rr arr a E 02/322d 2εσ⎪⎪⎭⎫⎝⎛+-=22012R a a εσ 2分 由题意,令E =σ / (4ε0),得到R =a 3 2分21(本题8分)解:因两球间距离比两球的半径大得多,这两个带电球可视为点电荷.设两球各带电荷Q ,若选无穷远处为电势零点,则两带电球之间的电势能为 )4/(020d Q W επ=式中d 为两球心间距离. 2分当两球接触时,电荷将在两球间重新分配.因两球半径之比为1∶4.故两球电荷之比Q 1∶Q 2 = 1∶4.Q 2 = 4 Q 1 2分但 Q Q Q Q Q Q 25411121==+=+∴5/21Q Q =,5/85/242Q Q Q =⨯= 2分 当返回原处时,电势能为 002125164W d Q Q W =π=ε 2分四、错误改正题(共5分) 22(本题5分)答:(1) 串联时,总电容随之增大. 3分(2) 正确. 2分 五、回答问题(共5分) 23(本题5分)答:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾。