建立一次函数模型(1)
冀教版八年级数学_21.4.1 建立一次函数模型解简单应用

感悟新知
知1-练
解:(1)y=30(60+x)=30x+1 800(x>0). (2)令30x+1 800=60×40,解得x=20,即当x=20时 ,变化后的长方形与原来的长方形的面积相等. (3)令30x+1 800>2×60×40,解得x>100,即当x> 100时,可以使变化后的长方形的面积比原来的长 方形面积的2倍还要大.
3 20
,
所以y= 3 x(x≥0). 20
(2)由题意可得,0≤ 3 x≤12,解得0≤x≤80. 20
故要使刹车距离不超过12 m,车速应保持在
知2-练
0~80 km/h的范围内.
感悟新知
2. 某市为鼓励市民节约用水,自来水公司采用分段 知2-练 收费标准收费,每月收取水费y(元)与用水量x(t)之间 的函数关系如图所示.
x/千册 6 8 y/万元 3.1 3.6
(1)求y(万元)与x(千册)之间的函数关系式. (2)当出版社投入成本4.1万元时,能印该书多少千册?
感悟新知
解:(1)设y与x之间的函数关系式为y=kx+b.将(6, 知1-练 6k b 3.1,
3.1),(8,3.6)分别代入,可得 8k b 3.6, k 0.25,
感悟新知
知1-练
7. 【中考·黄石】一食堂需要购买盒子存放食物,盒子 有A,B两种型号,单个盒子的容量和价格如表.现 有15升食物需要存放且要求每个盒子要装满,由于 A型号盒子正做促销活动:购买三个及三个以上可 一次性返还现金4元,则购买盒子所需要最少费用 为____2_9___元.
感悟新知
知识点 2 用一次函数解含图像的实际问题
第二十一章 一次函数
21.4 一次函数的应用
第1课时 建立一次函数模型 解简单应用
一次函数数学模型的建立

标题:《一次函数的应用》教育内容:培养学生建立数学模型的习惯新的教学课程标准强调要以学生为主,培养学生的应用能力和创新能力,要形成学生“基本数学活动经验和基本数学思想”“初步形、成模型思想”。
这就要求教师在教学中主动联系生活实际,开发教材,为学生设计适合学生的可操作性强的生活问题,使学生自主通过运用所学的数学知识去解决相应的生活问题,从而形成对数学的学习兴趣,形成应用能力和创新能力。
下面我就谈一下自己在教授初二数学《一次函数的应用》时的一点体会:一,在课前:1、先让学生分成了四个小组,各小组想法统计一下自己小组中一名同学的家里固定电话的上一个月的通话时间并做记录。
2、去离学校不远的电信局查询电话的收费方式有几种,并做记录。
二,在上课时:1、回忆一次函数、方程、不等式的相关知识。
2、各小组排一名学生通报自己小组的调查结果。
3、根据自己的调查,思考使用电话和交电话费是由哪些量决定的。
4、对电话费用和通话时间建立一个关系,并把这种关系用数学关系式表示。
5、根据自己建立的关系结合本组调查的那名同学家里使用的费方式计算这名同学上个月家里的电话费用,并把结果和这名同学家里交的电话费做对比。
6、用另外的付费方式计算那名同学家的电话费,并和之前的计算结果做对比。
7、通过上面的计算你认为是哪些量在决定着电话费用,付费方式对电话费用有影响吗?8、你认为你小组里那名学生家的付费方式选择的得当吗?你是怎么挑选付费方式的。
结合函数图象作答。
9、如果给你家安装一个电话,你能给自己选择出合适的付费方方式吗?设计出你的选择方案。
总结反思:在教学中时常能遇到一些创设有关知识情境的问题,这些问题大多数可以结合数学思想、数学方法联系生活进行教学。
在这个教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决生活问题的妙处,进而对数学产生更大的兴趣。
只要充分挖掘教材有关内容的内涵和外延,就可以在教学的过程中渗透数学建模思想的教学。
初二八年级数学下册《解题技巧专题:利用一次函数解决实际问题》(附答案演示)【人教版适用】

解:(2)∵B种树苗的数量不超过
35棵,但不少于A种树苗的数量, ∴ ∴22.5≤x≤35.
设总费用为W元,则W=6.4x+
32+7(45-x)=-0.6x+347. ∵k=-0.6<0,
∴y随x的增大而减小,
∴当x=35,45-x=10时,总费用最低,即购买B种 树苗35棵,A种树苗10棵时,总费用最低,W最低= -0.6×35+347=326(元).
5.A,B两地相距60km,甲、乙两人从两地出发相向 而行,甲先出发,图中l1,l2
表示两人离A地的距离s(km)
与时间t(h)的关系,请结合图 象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是
(填l1
或l2);甲的速度是 30 km/h,乙的速度是 20 km/h;
解析:由题意可知,乙的函数
kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A
酒店本月对这种水果的需求量,y(元)表示水果店销售
这批水果所获得的利润. (1)求y关于x的函数表达式;
解:(1)当2000≤x≤2600时,y=10x-6(2600-x)=16x
-15600;当2600<x≤3000时,y=2600×10=26000,
பைடு நூலகம்
四、分类讨论思想
4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两 “龙虾节”期间,甲、乙两家商店 都让利酬宾,付款金额y甲,y乙
家农贸商店,平时以同样的价格出售品质相同的小龙虾,
(单位:元)与原价x(单位:元)之
间的函数关系如图所示:
(1)直接写出y甲,y乙关于x的函数关系式; 解:(1)y甲=0.8x,y乙=
∴y=
(2)当A酒店本月对这种水果的需求量如何时,该水果店
建立一次函数模型

课题 2.3 建立一次函数模型课标要求结合具体情景体会一次函数的意义,根据已知条件确定一次函数表达式。
教学目标知识与技能:了解什么是待定系数,什么是待定系数法;会根据已知条件运用待定系数法确定一次函数的表达式;理解什么叫建立函数模型。
过程与方法:从具体例子中发现如何根据条件求出一次函数解析式,通过分析发现求一次函数解析式的关键及其解决途径,从而了解和掌握待定系数法;初步体会一次函数与二元一次方程组之间的联系,通过分析、联想,感受数学知识间的关系,运用转化思想可获得问题解决。
情感态度与价值观:通过概念的抽象、方法的归纳,感受数学知识间的联系;在一系列数学活动中培养与人合作交流的能力。
教学过程一、情景导入:笑话导入。
二、预学:1、预学教材P47-49 的内容,将不懂的问题记录在“我的疑问”栏目中。
2、完成学研指导案的“学习新知”部分。
3、小组合作,解决“学习新知”中的疑难问题。
4、教师预见性点拨释疑。
①摄氏温度与华氏温度的关系为何用函数模型:C=kF+b 表示? 在这模型中摄氏温度、华氏温度各是什么变量?各用什么字母表示?能用模型F=k 'C+b '吗?为什么?②在模型中有哪几个待定系数?又已知哪几个条件?为什么不是 4 个已知条件?由哪个条件得到了方程212k+b=100?③这个问题的解决经历了哪几个步骤?三、合作展示1、小组独立完成“合作探究”的三个问题。
2、小组讨论交流。
3、小组汇报展示。
4、师生释疑。
四、归纳总结1、解决实际问题时,常要根据具体情况建立函数模型,这样就可以方便地解决实际问题中的数量关系问题。
2、利用待定系数法求一次函数解析式的步骤:①设一设出一次函数解析式,即为:y=kx+b(k和)。
②代一把已知条件代入y=kx+b(k和)中,得到关于k、b的一个二元一次方程组。
③求一解方程组,求k、b的值。
④写—写出一次函数解析式。
五、训练评估。
1、学生完成“课堂目标达成”的 4 个小题。
湘教版八年级数学上册(建立一次函数模型(1))导学案

建立函数模型主备人:吴志海上课日期班级姓名编号17学习目标1 通过独立思考,小组合作,初步学会建立一次函数模型的方法2 以极度的热情投入学习,全力以扑,享受学习的快乐重点;待定系数法求一次函数解析式,难点:应用一次函数解决有关问题【预习案】(学法指导)1.用15分钟的时间阅读探究课本的基础知识,2,完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测,3将预习中不能解决的问题标出来,并写到“我的疑惑”处。
一知识回顾学习建议:同学们复习上节课学习的一次函数的相关知识,以及应用待定系数法求一次函数解析式的方法,有助于扎实的掌握本节课的内容1什么叫做待定系数法?2怎样用待定系数法求一次函数的解析式?3函数的图像表示的意义是什么?二预习自测(学习建议:自测题体现一定的基础性,又有一定的思维含量,只有“思考才会,细心才对”,相信你会!1 已知一次函数的图像经过点(2,1)和(1,3)(1)求此函数的解析式(2)求此函数的图像与x轴y轴的交点坐标(3)你能求出该直线与两坐标轴围成的三角形的面积吗?2 租车公司提供的汽车,一辆汽车每天租金为300元,行驶每千米的附加费用是常数,一天用户老张向该公司租了一辆车,行驶了200千米,交了租车费460元(1)你能为租车费用与行驶路程的关系建立函数模型吗?(即求租车费用与行驶路程之间的函数关系式)(2)如果行驶了240千米,应交租车费用多少元?我的疑惑;请你将预习中未能解决的问题写下来,待课堂上与老师和同学们探究解决【探究案】一,学始于疑----我思考,我收获1请思考为什么图像上点的横,纵坐标可以满足函数关系式?2如何理解建立函数模型?3用待定系数法求一次函数(非正比例函数)的解析式至少需要知道图像上的几个点的坐标?(学习建议)请同学们用5分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
二质疑探究-----质疑解疑,合作探究知识综合应用探究教学建议:本节课的重点是待定系数法的应用,所以老师可以放手要学生自己探究。
建立函数模型,解决实际问题

建立函数模型,解决实际问题建立函数模型解决实际决策型问题是实践性,创新性很强的命题亮点,其解题步骤一般如下:由实际问题⋅⋅−−−−−→分析抽象转化数学模型(如函数等)−−−→−推理演算解答数学问题−−→−校验回归实际问题。
一、建立一次函数模型例1.鞋子的“鞋码”y 与鞋长x (cm )存在一次函数的关系,下表是几组“鞋码”与鞋长的对应数值: 鞋长(cm ) 16 19 24 27 鞋码22 28 38 44 (1)请根据表格中的数值,求出y 与x 之间的函数关系式;(2)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【命题意图】本题旨在考查根据表格提供的数据,利用待定系数法建立一次函数(模型)关系,然后用所求的函数关系(模型)解决问题。
【思路点拔】可先设一次函数解析式为:y =k x +b ,根据表中所提供的数据,取两组值分别代入解析式中的x 与y 得到方程组,解方程组即可求出函数解析式解:(1)设y =k x +b ,则由题意,得⎩⎨⎧+=+=b k b k 19281622,解得:⎩⎨⎧-==102b k , ∴ y =2x -10;(2)当x =26时,y =2×26-10=42答:应该买42码的鞋。
二、建立反比例函数模型例2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (米3)的反比例函数,其图象如图所示(千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不少于多少立方米?【命题意图】本题旨在考查根据图象(点的坐标),利用待定系数法确定反比例函数关系(模型),然后用所求的函数关系(模型)解决问题。
【思路点拔】由图象中A 点的坐标求得反比例函数解析式;对于(3),可利用反比例函数的性质,先求出气压是144千帕时对应的体积,再分析出气球的体积应不小于多少.解:(1)设此反比例函数为)0(≠=k V k p . 由图象知反比例函数的图象经过点A (1.5,64),∴5.164k =,∴k=96. 故此函数的解析式为Vp 96=; (2)当V=0.8时,1208.09696===V p (千帕);(3)当p=144时,V96144=, ∴3214496==V (3米). 由图象可知,该反比例函数p 随V 的增大而减小,故为安全起见,气球的体积应不小于332m . 【解题心得】在解题时,要充分利用图象、表格中信息和文字信息,把实际问题转化为数学问题,进一步体会数与形的统一.。
数学八年级下册《建立一次函数的模型解决实际问题》课件

典例精析 例:请每位同学伸出一只手掌,把大拇指与小拇指尽
量张开,两指间的距离称为指距. 已知指距与身高具 有如下关系:
指距x(cm) 19
20
21
身高y(cm) 151 160 169
(1)求身高y与指距x之间的函数表达式; (2)当李华的指距为22cm时,你能预测他的身高吗?
9 cm 10 cm
一次函数模型的应用
现实生活或具体情境中的很多问题或现象都可
以抽象成数学问题,并通过建立合适的数学模型来
表示数量关系和变化规律,再求出结果并讨论结果
的意义.
下面有一个实际
问题,你能否利用已
学的知识给予解决?
问题:奥运会每4年举办一次,奥运会的游泳成 绩在不断的被刷新,如男子400m自由泳项目, 2016年的奥运冠军马克-霍顿的成绩比1984年的 约提高了30s,下面是该项目冠军的一些数据:
b=231.23, 6k+b=221.86. 解得k=-1.56, b=231.23 所以,一次函数的解析式为y=-1.56x+231.23.
(3) 当把1984年的x值作为0,以后每增加4年得x的一 个值,这样2016年时的x值为8,把x=8代入上式,得 y=-1.56×8+231.23=218.74(s)
年份
冠军成绩/s
年份
冠军成绩/s
1984 1988
231.23 226.95
2004 2008
223.10 221.86
1992 1996 2000
225.00 227.97 220.59
2012 2016 2020
一次函数模型及应用

一次函数模型及应用一次函数模型是指含有一次幂的函数,可以用以下形式表示:y = kx + b,其中k和b为常数,x为自变量,y为因变量。
一次函数又称为线性函数,其与直线的关系密切。
一次函数模型广泛应用于实际生活中各个领域,下面将以几个具体的实际例子来说明一次函数模型的应用。
第一个例子是汽车的油耗问题。
假设某辆汽车在行驶时,每小时的平均油耗为k 升,初始油量为b升。
那么在x小时后,油量为y升的关系可以用一次函数模型来表示:y = -kx + b。
其中负号表示油量在不断减少。
这个模型可以帮助我们预测在车速不变的情况下,汽车在行驶x小时后的剩余油量。
通过测量汽车不同车速下的油耗数据,可以确定k的值,并通过初始油量来确定b的值。
在实际生活中,这个模型可以帮助我们合理安排加油时间,避免油量不足造成的困扰。
第二个例子是商品价格的变化。
假设某商品的价格在每个月都以恒定的速度上涨,每月涨价k元。
初始价格为b元。
那么在x个月后,商品价格为y元的关系可以用一次函数模型来表示:y = kx + b。
通过测量商品连续几个月的变价趋势,可以确定k的值,并通过初始价格来确定b的值。
这个模型可以用来预测未来几个月内商品价格的变化情况,帮助消费者做出购买决策。
第三个例子是人口增长问题。
假设某地区的人口在每年都以固定比例的速度增长,每年增长k人。
初始人口数量为b人。
那么在x年后,人口数量为y人的关系可以用一次函数模型来表示:y = kx + b。
通过观察人口连续几年的增长情况,我们可以确定k的值,并通过初始人口数量来确定b的值。
这个模型可以用来预测未来几年内人口的增长趋势,对于城市规划和社会发展具有重要意义。
以上三个例子只是一次函数模型在实际应用中的几个常见例子,实际上一次函数模型在各个领域都有广泛的应用。
在经济学中,一次函数模型被用来研究需求和供应的关系,分析市场价格的变化。
在物理学中,一次函数模型被用来描述物体的速度、加速度和位移之间的关系。
17-5-3 建立一次函数的模型解决实际问题课件2022-2023学年华东师大版八年级数学下册

0
10 20 40 60
V(cm3) 998.3 999.2 999.6 1000 1000.3 1000.7 1001.6 1002.3
能否据此求出V和t的函数关系?
你能不能根据表中数据猜想 V和t之间是什么函数关系?
分析:在平面直角坐标系中描出这些数值所对应的点.
V(cm3)
1002.0 1001.5 1001.0 1000.5 1000.0 999.5 999.0 998.5
3.由于持续高温和连日无雨,某水库的蓄水量随时间的变化而减少.蓄水 量 V (万m3) 与干旱持续时间 t (天) 的关系如图所示,根据图象回答下列 问题: (4) 按照这个规律,预计干旱持续多少 天水库将干涸?
解:(4) 预计干旱持续 60 天水库将 干涸.
4.刘老师开车上班,最初以某一速度匀速行进,中途由于汽车发生故障,停下修车 耽误了一会儿.为了按时到校,老师加快了速度,仍保持匀速行进,结果准时到校. 在课堂上,刘老师请学生画出汽车行进路程s(千米)与行进时间t(小时)的凳高x(cm) 37.0
桌高y(cm) 70.0
第二档 40.0 74.8
第三档 42.0 78.0
第四档 45.0 82.8
档次 高度
凳高x(cm)
桌高y(cm)
第一档
37.0 70.0
第二档
40.0 74.8
第三档
42.0 78.0
第四档
45.0 82.8
(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这 个一次函数的关系式(不要求写出x的取值范围); (2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm, 凳子的高度为43.5cm,请你判断它们是否配套?说明理由.
初三数学构建函数模型求解实际问题专题辅导

构建函数模型求解实际问题赵军在平时学习过程中,我们经常会遇到一些需要通过构建函数模型、运用函数的图象或性质来求解的实际问题,这类题目能把函数的有关知识与现实生活中的问题紧密联系在一起,既可以体现数学知识的应用价值,又能充分调动学生学习的积极性。
现就如何构建函数模型求解此类实际问题举例予以说明,供大家参考。
一、构建一次函数模型求最佳方案例1 某学校团支部组织该校团员参加登山比赛,比赛奖次所设等级分为;一等奖1人,二等奖4人,三等奖5人,团支部要求一等奖奖品单价比二等奖奖品单价高15元,二等奖奖品单价比三等奖奖品单价高15元,现设一等奖奖品的单价为x (元),团支部购买奖品总金额为y (元)。
(1)求y 与x 的函数关系式;(2)由于团支部活动经费有限,购买奖品的总金额限制在600y 500≤≤,在这种情况下,请根据备选奖品表提出购买一、二、三等奖奖品有哪几种方案?然后本着尽可能节约资金的原则,选出最佳方案,并求这时全部奖品所需总金额是多少?分析:这是一道联系实际生活的一次函数建模应用题,主要考查了一次函数的概念和性质以及对信息的处理和收集能力。
第(1)小题解题的关键是建立购买奖品总金额与一等奖奖品的单价之间的函数关系工式,将这一实际生活问题构建为一次函数问题。
涉及的公式为:购买奖品的总金额=购买一等奖奖品的金额+购买二等奖奖品的金额+购买三等奖奖品的金额;购买每种奖品的金额=奖品的单价⨯奖品的件数。
在第(2)小题中求最佳方案,实际上就是求y 的最小值,根据题意中600y 500≤≤可列出不等式求出x 的取值范围,再由一次函数的增减性来确定y 的最小值。
解:(1)设一等奖奖品的单价为x 元,则二等奖奖品的单价为()15x -元,三等奖奖品的单价为()30x -元,购买奖品的总金额y 元与一等奖奖品的单价为x 元之间的函数关系式为()()30x 515x 4x 1y -+-+⨯=210x 10-=。
建立一次函数模型教学设计

建立一次函数模型教学内容:这节课是九年义务教育课程标准实验教科书(湘教版)八年级第二章第三节《建立一次函数模型》的第二课时数学活动课。
主要是根据题目中的数据信息,用函数的思想决策方案。
目的在于:一方面通过实际生活中的问题,进一步突出函数这种数学模型应用的广泛性和有效性;另一方面使学生在解决实际问题的情景中运用所学数学知识,进一步提高分析问题和解决问题的综合能力。
本节在学生已有的建立方程式或不等式这样的数学模型的基础上,继续重视数学与实际的联系,在建立函数这种应用更广泛的数学模型的进程中继续体现建模思想。
教学目标:知识与技能:1、能建立一次函数模型刻画某些实际问题中变量的关系。
2、能结合对函数关系的分析,尝试对变量的变化规律进行初步预测。
过程与方法:经历对实际问题中提供的相关变量的一系列对应数据用直角坐标系中的点表示和对这些点组成的图形的观察,建立函数模型,求出函数解析式,再利用解析式对变量的变化规律进行初步预测等实践活动,掌握知识,培养技能,发展分析问题、解决问题的能力。
情感态度与价值观:感受一次函数的应用价值,乐于运用所学知识去解决实际问题,并体验成功,增强自信。
学情分析:新课程标准明确指出:数学教学的基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
学生在七年级对数据的收集和整理已有所了解,已具备了从已知表格中获取相关信息的能力。
北师大版数学八年级上学期期末备考压轴题培优:一次函数(含答案)

期末备考压轴题培优:一次函数1.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.【模型运用】(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.【模型迁移】如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P 为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.证明:【模型建立】(1)∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°∵∠ACB=90°,∴∠ACD=90°﹣∠BCE=∠CBE,且CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)【模型运用】(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:【模型迁移】(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,P A=PB ∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)2.如图在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的函数关系式;(2)求△OAB的面积;(3)是否存在点M,使△OMC的面积与△OAB的面积相等?若存在求出此时点M的坐标;若不存在,说明理由.解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)∵y=﹣x+6,当y=0时,x=6,∴B(0,6),∴OB=6,∴△OAB的面积=×6×2=6;(3)存在点M,使△OMC的面积与△OAB的面积相等,理由如下:如图所示:设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵点C(0,6),∴OC=6,∴OB=OC=6,∵△OMC的面积与△OAB的面积相等,∴M到y轴的距离=点A的纵坐标2,∴点M的横坐标为2或﹣2;当M的横坐标为2时,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=﹣x+6中,当x=2则y=4,则M的坐标是(2,4).则M的坐标为(2,1)或(2,4).当M的横坐标为﹣2时,在y=﹣x+6中,当x=﹣2时,y=8,则M的坐标是(﹣2,8).综上所述:点M的坐标为:(2,1)或(2,4)或(﹣2,8).3.如图,直线MN与x轴、y轴分别交于A、C两点,分别过A、C两点作x轴、y轴的垂线相交于B点,且OA、OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求A、C两点的坐标.(2)求直线MN的表达式.(3)在直线MN上存在点P,使以点P、B、C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.解:(1)∵x2﹣14x+48=0,解得:x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴A(8,0),C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,A(8,0),C(0,6),∵点A、C都在直线MN上,∴,解得:,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),过A、C两点作x轴、y轴的垂线相交于B点,∴B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6),当以点P,B,C三点为顶点的三角形是等腰三角形时,分三种情况讨论:如图所示:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=82,解得:a=±,则P(﹣,)或(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得:a=,则﹣a+6=﹣,∴P(,﹣).综上所述,P点的坐标为(4,3)或(﹣,)或(,)或(,﹣).4.如图,直线y=2x+4分别与x轴,y轴交于B,A两点(1)求△ABO 的面积;(2)如果在第三象限内有一点P (﹣1,m ),请用含m 的式子表示四边形AOPB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOPB 的面积是△ABO 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.解:(1)当x =0时,y =4,∴OA =4,当y =0时,2x +4=0,x =﹣2,∴OB =2,∴△ABO 的面积===4;(2)四边形AOPB 的面积=S △AOB +S △BOP =4+=4﹣m ;(3)存在满足条件的点P .∵S 四边形AOPB =2S △ABO ,∴4﹣m =8,∴m =﹣4,∴存在点P (﹣1,﹣4),使得S 四边形ABOP =2S △ABO .5.如图,直线y =kx +6与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为(﹣8,0),点A的坐标为(﹣6,0),点P是直线EF上的一个动点.(1)求k的值;(2)点P在第二象限内的直线EF上的运动过程中,写出△OP A的面积S与x的函整表达式,并写出自变量x的取值范围;(3)探究,当点P在直线EF上运动到时,△OP A的面积可能是15吗,若能,请求出点P的坐标;若不能,说明理由.解:(1)点E的坐标为(﹣8,0),且在直线y=kx+6上,则﹣8k+6=0,解得,;(2)∵点P(x,y)是第二象限内的直线上的一个动点,∴,∴;(3)当点P在x轴的上方时,由题意得,=15,整理,得,解得,,则.此时点P的坐标是;当点P在x轴的下方时,y=﹣5,此时综上所述,△OP A的面积是15时,点P的坐标为或.6.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A﹣B﹣C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)①如图∵点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线D B1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入,得.解得k=﹣3,b=﹣4.故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为(,0).②存在,D点的坐标为(﹣1,3)或(,).附:当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D 点的坐标为(﹣1,3);当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组,解得.∴交点D的坐标为(,).7.如图,在平面直角坐标系中,点A在y轴上,其坐标为(0,4),x轴上的一动点P从原点O出发,沿x轴正半轴方向运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)填空:当t=2时,点B的坐标为(6,2).(2)在P点的运动过程中,当AB∥x轴时,求t的值;(3)通过探索,发现无论P点运动到何处,点B始终在一直线上,试求出该直线的函数解析式.解:(1)将点P的坐标向右平移2个单位到达点O,此时,点A的坐标为:(﹣2,4),将点A围绕点O顺时针旋转90°,此时点B的坐标为:(4,2),将点B的坐标向右平移2个单位,即为此时的点B(6,2),故答案为:(6,2);(2)过点B作BC⊥x轴于点C,如图所示.∵AO⊥x轴,BC⊥x轴,且AB∥x轴,∴四边形ABCO为长方形,∴AO=BC=4.∵△APB为等腰直角三角形,∴AP=BP,∠P AB=∠PBA=45°,∴∠OAP=90°﹣∠P AB=45°,∴△AOP为等腰直角三角形,∴OA=OP=4,t=4÷1=4(秒);(3)∵△APB为等腰直角三角形,∴∠APO+∠BPC=180°﹣90°=90°.又∵∠P AO+∠APO=90°,∴∠P AO=∠BPC.∠P AO=∠BPC,在△P AO和△BPC中,∠AOP=∠PCB=90°,∴△P AO≌△BPC(AAS).AP=BP,∴AO=PC,BC=PO.∵点A(0,4),点P(t,0),点B(x,y),∴PC=AO=4,BC=PO=t=y,CO=PC+PO=4+y=x,∴y=x﹣4.8.【模型建立】(1)如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A 作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;【模型应用】(2)如图2,已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,将直线l1绕点A 逆时针旋转45°至直线l2;求直线l2的函数表达式;(3)如图3,平面直角坐标系内有一点B(3,﹣4),过点B作BA⊥x轴于点A、BC⊥y 轴于点C,点P是线段AB上的动点,点D是直线y=﹣2x+1上的动点且在第四象限内.试探究△CPD能否成为等腰直角三角形?若能,求出点D的坐标,若不能,请说明理由.解:(1)如图1所示:∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,又∵∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∴∠ACD+∠BEC=90°,又∵∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,x轴⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠ABO+∠ABC+∠CBD=180°,∴∠ABO+∠CBD=90°,又∵∠BAO+∠ABO=90°,∴∠BAO=∠CBD,又∵∠BAC=45°,∴∠ACB=45°,∴AB=CB,在△ABO和∠BCD中,,∴△ABO≌∠BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:y=x+3与x轴交于点A,与y轴交于点B,∴点A、B两点的坐标分别为(﹣2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(﹣3,5),设l2的函数表达式为y=kx+b(k≠0),点A、C两点在直线l2上,依题意得:,解得:,∴直线l2的函数表达式为y=﹣5x﹣10;(3)能成为等腰直角三角形,依题意得,①若点P为直角时,如图3甲所示:设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠CPM+∠CDP+∠PDH=180°,∴∠CPM+∠PDH=90°,又∵∠CPM+∠DPM=90°,∴∠PCM=∠PDH,在△MCP和△HPD中,,∴△MCP≌△HPD(AAS),∴CM=PH,PM=PD,∴点D的坐标为(7+m,﹣3+m),又∵点D在直线y=﹣2x+1上,∴﹣2(7+m)+1=﹣3+m,解得:m=﹣,即点D的坐标为(,﹣);②若点C为直角时,如图3乙所示:设点P的坐标为(3,n),则PB的长为4+n,CA=CD,同理可证明△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴点D的坐标为(4+n,﹣7),又∵点D在直线y=﹣2x+1上,∴﹣2(4+n)+1=﹣7,解得:n=0,∴点P与点A重合,点M与点O重合,即点D的坐标为(4,﹣7);③若点D为直角时,如图3丙所示:设点P的坐标为(3,k),则PB的长为4+k,CD=PD,同理可证明△CDM≌△PDQ(AAS),∴MD=PQ,MC=DQ,∴点D的坐标为(4+K,﹣3+K),又∵点D在直线y=﹣2x+1上,∴﹣2(4+K)+1=﹣3+K,解得:k=﹣,∴点P与点A重合,点M与点O重合,即点D的坐标为(,﹣);综合所述,点D的坐标为(,﹣)或(4,﹣7)或(,﹣).9.如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B 的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠P AE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF =S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB 的面积,∴S =S △ABC ﹣S △P AE =×8×8﹣×(2m ﹣8)×(2m ﹣8)=16m ﹣2m 2; (3)如图2,连接AM ,CM ,过点P 作PE ⊥AC ,∵AB =BC ,BO ⊥AC ,∴BO 是AC 的垂直平分线,∴AM =CM ,且AP =CQ ,PM =MQ ,∴△APM ≌△CQM (SSS )∴∠P AM =∠MCQ ,∠BQM =∠APM =45°,∵AM =CM ,AB =BC ,BM =BM ,∴△ABM ≌△CBM (SSS )∴∠BAM =∠BCM ,∴∠BCM =∠MCQ ,且∠BCM +∠MCQ =180°,∴∠BCM =∠MCQ =∠P AM =90°,且∠APM =45°, ∴∠APM =∠AMP =45°,∴AP =AM ,∵∠P AO +∠MAO =90°,∠MAO +∠AMO =90°,∴∠P AO =∠AMO ,且∠PEA =∠AOM =90°,AM =AP , ∴△APE ≌△MAO (AAS )∴AE =OM ,PE =AO =4,∴2m ﹣8=4,∴m =6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10.如图,一次函数y=﹣x+4的图象与x轴和y轴分别交于点A和B,再将△AOB沿直线CD对折,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为(8,0),点B的坐标为(0,4);(2)在直线AB上是否存在点P使得△APO的面积为12?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由;(3)求OC的长度.解:(1)令x=0,则y=4,∴B(0,4),令y=0,则0=﹣x+4,∴x=8,∴A(8,0),故答案为:(8,0),(0,4);(2)设点P(x,﹣x+4)∵△APO的面积为12,∴12=×8×|﹣x+4|∴x=2或14,∴点P(2,3)或(14,3)(3)设点C(a,0),则OC=a,∴AC=8﹣a,由折叠知,BC=AC=8﹣a,在Rt△BOC中,OB=4,根据勾股定理得,BC2﹣OC2=OB2,∴(8﹣a)2﹣a2=16,∴a=3,即:OC=3,11.如图,已知直线y=﹣x+3与x轴、y轴分别交于A、C,以OA、OC为边在第一象限内作长方形OABC.(1)将△ABC沿B′D对折,使得点A与点C重合,折痕交AB于点D,求直线CD的关系;(2)若在x轴上存在点P,使△ADP为等腰三角形,求出符合条件的点P坐标.解:(1)令y=0,则﹣x+3=0,解得x=2,∴A(2,0),令x=0,则y=3,∴C(0,3);由折叠可知:CD=AD,设AD=x,则CD=x,BD=3﹣x,由题意得,(3﹣x)2+22=x2,解得x=,此时AD=,∴D(2,),设直线CD为y=kx+3,把D(2,)代入得=2k+3,解得k=﹣,∴直线CD的解析式为y=﹣x+3;(2)∵A(2,0),D(2,),∴AD=.∵∠DAP=90°,∴△ADP是等腰直角三角形,∴当AD=AP=时,P点的坐标是(﹣,0)或(,0).12.如图1,在平画直角坐标系中,直线交x轴于点E,交y轴于点A,将直线y =﹣2x﹣7沿x轴向右平移2个单位长度交x轴于D,交y轴于B,交直线AE于C.=22;(1)直接写出直线BD的解析式为y=﹣2x﹣3,S△ABC(2)在直线AE上存在点F,使BA是△BCF的中线,求点F的坐标;(3)如图2,在x轴正半轴上存在点P,使∠PBO=2∠P AO,求点P的坐标.解:(1)直线y=﹣2x﹣7沿x轴向右平移2个单位长度后,所得直线方程为y=﹣2(x ﹣2)﹣7=﹣2x﹣3.则直线BD的解析式为y=﹣2x﹣3.解方程组,得,∴C(﹣4,5).在中,令x=0,得y=8,∴A(0,8).在y=﹣2x﹣3中,令x=0,得y=﹣3,∴B(0,﹣3).∴AB=11,=×11×4=22.∴S△ABC故答案是:y=﹣2x﹣3,22.(2)如图1,作CG⊥y轴于G,FH⊥y轴于H,∴CG=4,∠CGA=∠FHA=90°,∵BA为△BCF的中线,∴CA=F A,∵∠CAG=∠F AH,∴△CAG≌△F AH(AAS),∴FH=CG=4,在中,当x=4时,y=11,∴F(4,11).(3)由(1)知A(0,8),B(0,﹣3),∴OA=8,OB=3.如图2,在y轴正半轴上取一点Q,使OQ=OB=3,∵∠POB=90°,∴PQ=PB,∴∠PBO=∠PQO=∠P AO+∠APQ,∵∠PBO=2∠P AO,∴∠P AO=∠APQ,∴PQ=AQ=5,∴OP=4,∴P(4,0).13.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP =S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B 的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP =S△COB,则BC=PC,则(m﹣2)2+(﹣m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=yN=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).14.在平面直角坐标系中,直线y1=kx+b经过点P(2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,点B有几种位置?请你分别求出点B的坐标.解:(1)把P(2,2)和点Q(0,﹣2)分别代入y1=kx+b,得.解得.则直线y1=kx+b的解析式为:y1=2x﹣2;(2)如图所示,P(2,2).所以,当x<2时,y1<y2.(3)解:过点P作PM⊥x轴,交于点M.由题意可知A(1,0),M(2,0),AP=,AM=1当m>0时,点B有3种位置使得△P AB为等腰三角形①当AP=AB时,AB=,∴B(+1,0)②当P A=PB时,AB=2AM=2,∴B(3,0)③当BA=BP时,设AB=x,由等面积法可得S△ABP=2x=解得x=2.5,∴B(3.5,0)当m<0时,点B有1种位置使得△P AB为等腰三角形.当AB=AP时,OB=﹣1,∴B(1﹣,0).综上所述,点B有4种位置使得△P AB为等腰三角形,坐标分别为(+1,0)、(3,0)、(3.5,0)、(1﹣,0).15.阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y =4x+1互为“互助直线”;材料二:对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),P1、P2两点间的直角距离d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:设P0(x0,y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=4;(2)直线y=﹣2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.(3)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L(5,﹣1)到直线y=ax+b的直角距离.解:(1)d(S,T)=|﹣1+2|+|6﹣3|=4,故答案为4;(2)直线y=﹣2x+3上的“互助直线”为:y=3x﹣2,设点H(a,﹣2a+3),将点H坐标代入y=3x﹣2得:﹣2a+3=3a﹣2,解得:a=1,故点H(1,1);(3)M(m,n)在y=ax+b上,则n=am+b…①,点N在“互助直线”y=bx+a上,则2m﹣3n=3bm+a…②,联立①②并整理得:m(2﹣3a﹣3b)=a+3b,对于任意一点M(m,n)都等式均成立,故:a+3b=0,2﹣3a﹣3b=0,解得:a=1,b=﹣,故函数的表达式为:y=x﹣,设点P(x,x﹣)是函数上的点d(L,P)=|5﹣x|+|x﹣+1|=|x﹣5|+|x+|,则d(L,P)的最小值为5.。
一次函数模型

一次函数模型一次函数是数学中的基础概念,也是最简单的一种函数模型。
它表达了自变量与因变量之间的线性关系,具有形如y = kx + b的标准形式,其中k和b是常数。
一次函数的图像通常是一条直线,而且它在现实生活中有着广泛的应用。
首先,一次函数的线性关系使得我们能够快速计算两个变量之间的关系。
例如,假设我们要计算一辆汽车在行驶过程中的油耗量。
我们可以建立一个以行驶里程为自变量,油耗量为因变量的一次函数模型,通过观察其中一些点的值,我们可以轻松推断出其他点的值。
这使得我们能够在不必进行大量试验的情况下,对汽车油耗进行预测和优化。
其次,一次函数还能帮助我们理解和描述许多实际问题中的变化规律。
比如,当我们研究一个人的体重与身高之间的关系时,我们可以使用一次函数模型来描述两者之间的线性关系。
这使得我们能够更好地了解人体生长发育的规律,并可能从中推测出一些有用的信息,如一个人未来的身高。
此外,一次函数还具有一些重要的数学特性。
例如,它的导数恒为常数,这意味着函数在任意点的切线都是平行的,这是一次函数的独特之处。
这个特性在物理学和工程学中有广泛的应用,比如描述运动物体的速度、描述直线电路中的电流变化等等。
最后,一次函数模型可以引导我们探索更复杂的函数模型。
在建立更高阶的函数模型之前,了解和掌握一次函数是非常重要的。
一次函数是函数模型的基础,通过深入理解它的特性和用途,我们将有助于理解更复杂的函数模型,如二次函数、指数函数等等。
总之,一次函数作为最简单、最基础的函数模型,在数学中起着非常重要的作用。
它的应用广泛,能够帮助我们解决实际问题,理解变化规律,并且是深入学习更高阶函数模型的基础。
因此,我们应该加强对一次函数的学习和理解,将其运用到实际生活和学习中,为我们的成长和发展带来更多的指导意义。
2.3 建立一次函数模型 第1课时

二、确定一次函数的解析式的方法: 确定一次函数的解析式的方法: 1.根据题意,设解析式:y=kx+b 1.根据题意,设解析式: 根据题意 2.根据给出的条件建立并解关于k 2.根据给出的条件建立并解关于k、b的方程组 根据给出的条件建立并解关于 3.根据求出的k、b的值,写出解析式 3.根据求出的k 的值, 根据求出的
解析:如果把华氏温度换算成摄氏温度, 解析:如果把华氏温度换算成摄氏温度,最好要有换算 公式,即求出华氏温度和摄氏温度的函数的解析式. 公式,即求出华氏温度和摄氏温度的函数的解析式. 如果设函数的解析式,根据题目的要求, 如果设函数的解析式,根据题目的要求,华氏温度 和摄氏温度哪个应该为因变量,哪个做自变量. 和摄氏温度哪个应该为因变量,哪个做自变量.
华氏温度应该为自变量 摄氏温度应该为因变量
由于摄氏温度( 由于摄氏温度(用C表示)和华氏温度(用F表示)的 表示)和华氏温度( 表示) 关系近似地为一次函数关系,因此可以设为: 关系近似地为一次函数关系,因此可以设为:C = kF + b. 为了求出系数 k 出方程组: 出方程组: 212k+b=100, 212k+b=100, ① 32k+b=0. ② b,根据已知条件, b,根据已知条件,可以列
经过(4,2)这点,则函数的解析式. (4,2)这点 1. 求y = kx 经过(4,2)这点,则函数的解析式. 解析: 解析:y =
1 x 2
2.已知正比例函数的图象经过点M 2.已知正比例函数的图象经过点M(-1,5),求这个函数 已知正比例函数的图象经过点 ),求这个函数 的解析式。 的解析式。 解析:y=解析:y=-5x
5 160 C= F− 9 9
摄氏度 40 38 35 34 32 华氏度 104.00 100.40 95.00 93.20 89.60 摄氏度 10 8 5 4 2 华氏度 50.00 46.40 41.00 39.20 35.60
一次函数模型课件(共16张PPT)

y=kx1, 所以点A在正比例函数y=kx的图象上.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
在一次函数表达式①中,令b=0,则函数
y=kx
②
称为正比例函数.
想一想:正比例函数的图象是什么形状?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
从函数解析式y=kx与y=kx+b,我们可以看出,当自
变量取相同的值,y=kx+b总可以由正比例函数y=kx的对
情感目标 通过本节课学习,使学生养成乐于学习、勇于探索的良好品质
核心素养
通过思考、讨论等活动,提升学生数学的直观想象、逻辑推理、数据分析的 核心素养
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
应值加上b得到,这表示y=kx+b的图象是由y=kx的图象
研究性学习:一次函数模型的建立与应用

一次函数模型的建立与应用一、教学目标1. 了解一次函数模型,初步学会建立一次函数模型的方法.2. 会根据已知条件,运用待定系数法确定一次函数的表达式.3. 让学生主动参与特定的教学活动,通过观察、实验、推理等活动发现对象的某些特征或其他对象的区别和联系.二、教学重点运用待定系数法确定一次函数模型.三、教学难点建立一次函数模型的方法.四、教学过程(一)创设情境生活实例:小明同学从来没有到过镇江,一天他跟着老师到镇江去找丹徒高级中学,老师虽然到过镇江,也不熟悉丹徒高级中学的位置,但他们还是顺利地找到了丹徒高级中学. 晚上,小明躺在床上回忆今天和老师找丹徒高级中学的过程:(1)买地图,定位置(确定自己的位置和要找的位置).(2)找交通线路,确定上、下公交车的地点.(3)按线路地点付诸行动.他突然发现,到一个陌生的地方寻找一处所其实并不难,于是他决定就用找丹徒高级中学的办法再到镇江去找向往已久的江苏大学本部.问题1:在这个生活实例中,有那些过程?解:生活实例中有三个过程:(1)小明跟着老师到镇江城找到丹徒高级中学;(2)小明回忆寻找过程;(3)小明独自找到另一处所.问题2:对小明来说,每个过程有什么作用?(1)小明经历了找丹徒高级中学的过程,获得经验;(2)小明通过回忆找丹徒高级中学的过程,总结出经验;(3)小明运用前面总结的经验,找到另一处所.在这三个过程的作用分别是获得经验、总结经验和运用经验.这就是我们数学学习的三个过程:生活中的经历、体验和探索.今天我们用上面的方法来学习建立一次函数模型.说明:创设情境的作用:从生活实例中提炼出生活中认识事物的三个环节,为学习建立一次函数模型提供学习的操作模型.(二)探究新知资料:温度的度量有两种:摄氏温度和华氏温度.水的沸点温度是100℃,用华氏温度度量为212°F,水的冰点温度是0℃,用华氏温度度量为32°F. 已知摄氏温度与华氏温度的关系近似地为一次函数关系. 你能不能想出办法,方便地把华氏温度换算成摄氏温度?分析问题:(1)用列表法表示函数关系的好处是自变量的取值与因变量的对应值看得很清楚.(2)用图象法表示函数关系的好处是可以直观地看出因变量如何随着自变量而变化,一目了然.(3)用解析法表示函数关系的好处是可以方便的计算函数值.试一试解决问题:①确定自变量与因变量(函数)自变量:F因变量:C②列表:确定自变量与因变量的对应关系.③画图,因为华氏温度与摄氏温度成一次函数关系:但还不能方便的找出其它自变量的值对的因变量值.如:某地6月8日的最高气温为100华氏度,换算成摄氏温度是多度?提出问题、分析问题(由学生讨论提出)①是否已知函数图象上两点,可以确定一次函数的解析式?理由:由一次函数的性质可知,由两点可以确定一次函数图象,函数图象上的每一个点都适合解析式,由此可猜想:由两点可以确定一次函数的解析式.②设C=KF+b(K≠0)由A(212,100)、B(32,0)在函数图象上,因此:212K+b=100 ①32K+b=0 ②由①-②得:180K=10059K=把59K=代入②得1609b=-因此,516099 C F=-(三)小结与反思.1. 确定一次函数模型需哪些步聚?①根据题意,确定是否为一次函数关系;②找到函数上的两个坐标点;③设出一次函数的定义式;④建立二元一次方程组,确定待定系数;⑤确定一次函数.2. 介绍待定系数法:通过确定函数模型,然后列方程组求待定系数,从而求出函数的解析式,这种方法叫待定系数法.(四)反馈训练1. 已知一次函数的图象经过两点P(1,3)、Q(2,0),求这个函数的解析式.2. 为了保护学生的视力,课桌椅的高都是按一定关系配套设计的,研究表明:假设课桌的高度为y cm,椅子的高度为x cm,则y应是x的一次函数,下表列出两套符合条件的课桌椅的高度.①请确定y与x的函数关系式(不要求写x的取值范围);②现有一把高35cm的椅子和一张高67.1cm的课桌,它们是否配套?请通过计算说明理由.③若允许存在1cm的误差,问与一把高30cm的椅子在误差范围内能配套的桌子的高度应在什么范围内?。
一次函数建模及应用

20 t (秒) 0 8
迎接挑战
你能给 y 3x 10 赋予实际的情境吗?(合情
即可)
总结归纳:
用一次函数模型解决实际问题的一般步骤:
实际问题
思考、抽象 数学化
一次函数模型
解函数模型
一次函数模型的解
验证
反思才能进步!
选择方案
解:若设通话时间为x分钟,则“全球通”的通话
25 6 所以,当工作 x
5 30 6 x
25 6
小时拖拉机开始报警.
再展锋芒
2.如图,正方形ABCD的边长为4,P为CD边上一点(与点D不重合).设DP=x, (1)用含x的代数式表示 APD 的面积y; A D APD 的面积最大? (2)当DP多长时,
解:(1) y 2 x
20
y=0.2x
由图象看出,两条直线交点是P(100,20). 由图象可知,当通话时间小于100分钟时,y2 <y1,故 用神州行省钱; 当通话时间超过100分钟时, y2>y1,故用全球通合算; 当通话时间等于100分钟, y2=y1购买神州行、全球通均可.
返回
100
x/分钟
选择方案
y/元
10
y=10-0.1x
一次函数建模及应用
想一想
下表是“神州行”电话卡市内电话收费列表:
通话时间x(分钟) 10
通话费用y (元) 2
20
4
30
6
40
8
50
10
60
12
70
14
80
16
活动一: 老师本月的市内电话费为30元,请同学们 帮忙算一下,老师本月的市内通话时间是多少 分钟?
一次函数的建模-待定系数法

学习目标:1、了解什么是待定系数法,知道什么是建立函数模型,会根据已知条件运用待定系数法求一次函数的解析式。
2、了解和掌握待定系数法。
重点:待定系数法的意义和步骤。
难点:运用待定系数法求一次函数的解析式。
(一)抽测1、二元一次方程组有几种解法?2、一次函数的定义是什么?3、画一次函数图象的步骤是什么?(二)自主探究学习探究学习P47-P49回答:●在一次函数y=x+b(k,b为常数,k≠0)中,哪些是待定系数?●利用求出的摄氏度与华氏度的函数解析式来计算:如果知道了摄氏温度为100度,那么华氏温度为多少度?●什么是待定系数法?(三)讨论合作交流1、(例1、)已知一次函数的图象经过两点P(1,3),Q(2,0),求这个函数的解析式。
2、已知正比例函数的图象过点M(-1,5),求这个函数的解析式。
3、已知一次函数的图象经过两点(2,4),(-4,-5),求这个函数的解析式。
4、已知一次函数的图象经过两点(-1,1),(1,-5),求当自变量为5时的函数值。
请回答下列问题:(1)点的坐标和函数有什么关系?(2)题中并没有要求写出函数的解析式,函数的解析式是否应该求出?该如何入手?5、用待定系数法确定函数的解析式(重点)已知一次函数的图象如图,写出该函数的解析式。
思考1:求函数解析式的方法是什么?思考2:你能从图象上找到几个点的坐标?6、已知一次函数的图象经过两点(2,1),(-1,-3)。
(1)求这个函数的解析式;(2)求此一次函数的图象与X轴,Y轴的交点坐标;(3)你能求出该函数图象与两坐标轴围成的三角形的面积吗?斗笠山镇中心学校八年级数学科导学案备课日期12.09.28 课题第一课时:待定系数法课型探究+展示小主人姓名班级思考:函数图象与X轴的交点有什么特点?与Y轴呢?思考:三角形的面积公式是什么?(四)抽签分组、展示、点评或质疑。
(五)小结定义:待定系数法步骤:,写出函数的解析式。
建立函数模型:(六)课后自主检测:1、一次函数y= kx+b(k≠0),当x=-4时,y的值为9;当x=6时,y的值为3.求出k与b的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
攸县五中八年级(上)数学新教改教学案
教学内容:建立一次函数模型(1) 班级 姓名
主备:谢忠明 校正: 执教:
学习目标:
◆1、理解和掌握一次函数的图像及其性质,学会用待定系数法求一次函数的解析式 ◆2、学会运用函数这种数学模型来解决生活和生产中的实际问题,增强数学应用意识 学习重点:用待定系数法求一次函数的解析式
学习难点:体会函数、方程、不等式在解决实际问题时的密切联系,并在一定条件下互相转
化的各种情形,感受贴近生活的数学,培养解题能力。
教学流程:
一、复习巩固:
1、函数y=2x+3的图象是一条 ,该图象与x 轴交点坐标为 ,与y 轴交点坐标为 。
该图象经过 象限。
2、函数y=-2x+6,函数值y 随自变量x 的增大而 。
3、函数y=-3x 的图象向下平移4个单位得到的图象表达式为 。
二、自主预习:
1、自学教材第47页“探究”,用C 表示摄氏温度,F 表示华氏温度,摄氏温度C 与华氏温度F 的关系式为C=kF+b ,由题意知,当C=100时,F= ,当
C=0时,F= ,把这两个条件代入所设解析式得方程组:⎩
⎨⎧ 解得⎩
⎨⎧ 2、若已知某地一天的最高气温是100华氏度,则这个气温换算成摄氏度是 。
若已知某地一天的最低气温是12摄氏度,则换算成华氏温度约为度。
3、完成教材第55页A组第1、2 题
三、质疑反馈教学案:
四、交流展示教学案:
1、教材P49练习第
2、3题
2、教材P55习题2.3A组第3题
3、教材P55习题2.3A组第4题
4、已知一次函数的图象如图所示,求这个一次函数的
解析式。
提高题:已知y-2与x成正比例,且当x=3时,y=1,求y与x之间的函数关系式。
五、巩固检测:
1、已知一次函数的图象过点(3,5)与(-4,-9),求这个函数的解析式,并写出该函数图象与x轴,y轴的交点坐标。
2、已知一次函数y=kx+b的图象过点A(3,2)及点(6,1),求这个函数的解析式,并求出该函数图象与坐标轴围成的三角形的面积。
3、提高题:已知y+b与x-3成正比例,当x=1时,y=6,当x=-4时,y=0,则y与x的函数关系式为。
六、教学后记:。