等差数列-PPT课件

合集下载

等差数列_PPT课件

等差数列_PPT课件

已知正数数列{an}和{bn}满足:对任意 n(n∈N+),an, bn,an+1 成等差数列,且 an+1= bn·bn+1. (1)求证:数列{ bn}是等差数列. (2)设 a1=1,a2=2,求{an}和{bn}的通项公式.
第(1)问可利用等式 2bn=an+an+1,把 an,an+1 用 bn-1, bn,bn+1 代换,然后整理.再进行判断;解答本题第(2)问, 可利用第(1)问的结论,先求 bn,再求 bn 和 an.
等差数列的性质
1.进一步了解等差数列的项与序号之间的规 律.
2.理解等差数列的性质. 3.掌握等差数列的性质及其应用. 4.掌握等差中项的概念与应用.
1.灵活应用等差数列的性质,求数列中的项 (或通项)(重点,难点)
2.利用等差中项及性质设元或列方程解题(重 点)
3.常与函数、方程结合命题,三种题型均可 出现,多为中低档题.
[策略点睛]
[规范作答] (1)方法一:设等差数列的等差中项为a,公差为d, 则这三个数分别为a-d,a,a+d,
依题意,3a=6且a(a-d)(a+d)=-24, 所以a=2,代入a(a-d)(a+d)=-24, 化6,2,-2. 方法二:设首项为a,公差为d,这三个数分别为a,a+d,a
事实上,am+(n-m)d=a1+(m-1)d+(n-m)d =a1+(n-1)d=an.
2.等差数列的公差与斜率的关系 (1)一次函数 f(x)=kx+b(k≠0)的图像是一条直线,斜率 k=fxx22--xf1x1(x1≠x2). 当 k=0 时,对于常数函数 f(x)=b,上式仍然成立. (2)等差数列{an}的公差本质上是相应直线的斜率. d=amm--ann其实就是斜率公式,并且当{an}是常数列时, d=0,公式也仍然成立.

《等差数列的概念》课件

《等差数列的概念》课件

等差数列在实际问题中的应用
物理学中的周期问题
在物理学中,很多周期性问题可以用等差数 列来表示和解决。例如,摆动问题、振动问 题、波动问题等。
统计学中的数据分组
在统计学中,数据分组是常见的数据处理方 法。而等差数列可以用来表示数据的组距和 分组范围。例如,将一组数据分成若干组, 每组的组距相等,就可以用等差数列来表示 各组的范围。
题目二
等差数列的通项公式是什么? 如何推导?
题目三
等差数列的前n项和公式是什 么?如何推导?
题目四
等差数列的性质有哪些?请举 例说明。
习题答案与解析
答案一
等差数列是指每一项与它前一项的差等于同一个常数的数列。例如:1, 4, 7, 10, 13...,其 中每一项与前一项的差为3。
解析一
通过举例说明等差数列的定义,帮助学生理解等差数列的基本概念。
总结词:严谨规范
详细描述:等差数列的一般形式是 a_n=a_1+(n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公 差,n 是项数。
等差数列的图像表示
总结词:直观形象
详细描述:等差数列的图像是一条直线,任意两个相邻的点在这条直线上等距。首项 a_1 是图像在 y 轴上的截距,公差 d 控 制着直线的斜率。
答案二
等差数列的通项公式为$a_n=a_1+(n-1)d$,其中$a_1$是首项,$d$是公差,$n$是项 数。推导过程如下:$a_n=a_1+(n-1)d=a_1+a_2+(n-2)d=...=a_1+a_2+...+a_{n1}+nd=S_n+nd$,其中$S_n$为前n项和。
习题答案与解析

等差数列的概念公开课ppt课件

等差数列的概念公开课ppt课件
个公式来表示,那么这个公式叫做这个数列的递推 公式。
(1)第23到第29届奥运会举行的年份依次为 1984,1988,1992,1996,2000,2004,2008
(2)已知数列{an} ,其中 a1 =15, an = an-1 -2,n≥2, 写出这个数列的前六项。
15 13 11 9 7 5 (3)所有正偶数排成一列组成的数列
本节课主要学习: 一个定义:an an1 d, n 2, n N (d是常数)
一个公式:an a1 (n 1)d
一种思想:方程思想.
d 64
(2) 15,13,11,9,7,5 (3) 2, 4, 6, 8, 10, ……
a8=? a1d00=2?我
们该如何求解 呢?d 2
(4) 1, 1, 1, 1, 1, ……
d 0
公差为0的数列
叫做常数列
公差d是每一项(第2项起)与它的前一项的差, 防止把被减数与减数弄颠倒,而且公差可以是正数, 负数,也可以为0 .
复习回顾
数列的定义,通项公式,递推公式
按一定次序排成的一列数叫做数列。
一般写成a1,a2,a3,…,an,…,简记为{an}。
如果数列{an}的第n项an与n的关系可以用一个公式来表示,
那么这个公式就叫做这个数列的通项公式。
如果已知数列{an}的第1项(或前几项),且任一项 an与它的前一项a n-1(或前几项)间的关系可以用一
已知一个等差数列{an}的首项是a1, 公差是d,如何求出它的任意项an呢?
根据等差数列的定义填空
a2 =a1+d,
a3 = a2 +d =( a1 + d ) +d =a1 + 2 d,
a4 = a3 +d =( a1 + 2 d ) +d =a1 + 3 d , ……

等差数列课件ppt课件

等差数列课件ppt课件
等差数列课件 ppt
contents
目录
• 等差数列的定义 • 等差数列的性质 • 等差数列的通项公式 • 等差数列的求和公式 • 等差数列的应用 • 等差数列的习题与解析
01
CATALOGUE
等差数列的定义
等差数列的文字定义
总结词
等差数列是一种特殊的数列,其中任意两个相邻项的差是一 个常数。
详细描述
等差数列是一种有序的数字排列,其中任意两个相邻项之间 的差是一个固定的值,这个值被称为公差。在等差数列中, 首项和末项是固定的,而其他项则可以通过首项、末项和公 差进行计算。
等差数列的数学公式定义
总结词
等差数列的数学公式可以用来表 示任意一项的值。
详细描述
等差数列的数学公式是 a_n = a_1 + (n-1)d,其中 a_n 是第 n 项的值,a_1 是首项,d 是公差 ,n 是项数。这个公式可以帮助 我们快速计算出等差数列中的任 意一项。
04
CATALOGUE
等差数列的求和公式
公式推导
公式推导方法一
利用等差数列的性质,通过累加法推 导得出求和公式。
公式推导方法二
利用等差数列的通项公式,通过代数 运算推导得出求和公式。
公式应用
应用场景一
计算等差数列的和,例如计算 1+2+3+...+n的和。
应用场景二
解决与等差数列相关的实际问题,例 如计算存款的本金和利息之和。
,公差是多少?
进阶习题
进阶习题1
进阶习题2
题目:已知一个等差数列的前三项依次为 a-d, a, a+d,如果该数列的第2008项为 2008,那么它的第10项是什么?

4.2.1等差数列的概念PPT课件(人教版)

4.2.1等差数列的概念PPT课件(人教版)

an a1 (n 1)d
结论:等差数列的通项公式的一般情势:an=am+(n-m)d
练习
求下列等差数列的通项公式
(1)9,18,27,36,45,54,63,72...
(1)an=9+(n-1)×9=9n
(2)38,40,42,44,46,48...
(2)an=38+(n-1)×2=2n+36
ab
叫做a与b的等差中项。即 A
2
这个式子叫做这个数列的递推公式.
引入
请看下面几个问题中的数列.
1.北京天坛圜丘坛的地面由石板铺成,最中间是圆形的天心石,
环绕天心石的是9圈扇环形的石板,从内到外各圈的石板数依
次为
9,18,27,36,45,54,63,72,81.①
2.S,M,L,XL,XXL,L型号的女装上衣对应的尺码分别是
38,40,42,44,46,48.②
求an 的公差和首项;(2)求等差数列 8,5, 2, 的第20项.
解: (1)当n 2时,由an 5 2n, 得
an1 5 2(n 1) 7 2n.
于是, d an an1 (5 2n) (7 2n) 2.
当n 1时, a1 5 2 3.
练习
判断下列数列是否为等差数列,若是,求出首项和公差
(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10
×
(2) 3,3,3,3,3,3
a1=3,公差 d=0 常数列
(3) 3x,6x,9x,12x,15x
a1=3x 公差 d= 3x
(4)95,82,69,56,43,30
a1=95 公差 d=-3

等差数列ppt课件

等差数列ppt课件

等差数列的表示方法
通项公式
an = a1 + (n-1)d,其中an是第n项 ,a1是首项,d是公差。
前n项和公式
Sn = n/2 * (2a1 + (n-1)d),其中Sn 是前n项和,a1是首项,d是公差。
等差数列的性质
01
02
03
公差性质
公差d是任意两个相邻项 的差,即an - a(n-1) = d 。
04
等差数列的应用
在数学中的应用
基础概念理解
等差数列是数学中的基础 概念,对于理解数列、函 数等其他数学概念有着重 要作用。
数学运算
等差数列的特性使其在数 学运算中有着广泛的应用 ,例如求和、求差等。
解决数学问题
等差数列可以用来解决一 些复杂的数学问题,例如 求解方程、不等式等。
在物理中的应用
综合练习题
题目:已知一个等差数列的前4项 和为40,前8项和为64,求这个 等差数列的前12项和。
答案:88
解析:根据等差数列的求和公式 ,得到前4项和$S_4 = frac{4}{2} times (2a_1 + (4-1)d) = 40$, 前8项和$S_8 = frac{8}{2} times (2a_1 + (8-1)d) = 64$。解这个 方程组得到首项$a_1=13$,公差 $d=-2$。然后根据等差数列的求 和公式,得到前12项和$S_{12} = frac{12}{2} times (2 times 13 + (12-1) times (-2)) = 88$。
等差数列在日常生活和科学研究中有着广泛的应用,如计算 存款利息、解决几何问题等。
公式中的参数意义
01
02

《等差数列的概念》课件

《等差数列的概念》课件
利用等差数列的求和公式,可快速计算前n项和。
实例分析
1
应用等差数列的概念解决实际问题
通过实际案例,展示如何使用等差数列的概念解决实际问题。
2
求解等差数列中的未知数
根据已知条件和等差数列的特性,推导计算出未知数的值。
3
计算等差数列的前n项和
利用等差数列的求和公式,计算前n项的总和。
总结
等差数列的概念和特 征
2 应用
求和公式可以帮助我们快速计算等差数列的 前n项和,从而解决实际问题。
等差数列的常见问题解答
1 如何判断一个数列是否为等差数列?
通过计算数列中相邻项的差值,若差值相等,则为等差数列。
2 如何求等差数列中的未知数?
利用等差数列的公式和已知条件,可从中解出未知数。
3 等差数列中的前n项和如何求解?
等差数列求和公式及 应用
等差数列常见问题的 解答
练习题
等差数列练习题1
计算等差数列的第n项。
等差数列练习题2
找出等差数列中的错误项。
等差数列练习题3
计算等差数列的前n项和。
更多资源
参考书籍
推荐一些关于
介绍一些可以在线学习等差数列的优秀平台。
等差数列的概念
本节课我们将学习等差数列的基本概念,包括定义、特征、求和公式以及常 见问题的解答,以及实际问题的应用。
什么是等差数列
定义
等差数列是指数列中任意两个相邻项之差都相 等的数列。
特征
等差数列具有固定的公差,并且每一项与它的 前一项之差都相等。
等差数列的求和公式
1 推导过程
通过对等差数列进行变形和求和,可推导出 等差数列的求和公式。

等差数列ppt课件

等差数列ppt课件

(4)通项公式可变形为an=dn+(a1-d),当d≠0时可把an 看作自变量为n的一次函数.
2.等差数列的通项公式常用的推导方法: (1)方法一(叠加法):因为{an}是等差数列, 所以an-an-1=d,an-1-an-2=d, an-2-an-3=d,…, a3-a2=d,a2-a1=d. 将以上各式相加得:an-a1=(n-1)d, 所以an=a1+(n-1)d.
2.2 等差数列 第1课时 等差数列
【知识提炼】
1.等差数列的定义 (1)从第_2_项起
条件 (2)每一项与它的_前__一__项__的差等于_同__一__个__常__数__ 结论 这个数列就叫做等差数列 有关 这个常数叫做等差数列的_公__差__,通常用字母_d_ 概念 表示
2.等差中项
(1)条件:三个数a,A,b成等差数列.
2.已知实数m是1和5的等差中项,则m等于( )
A. 5
B.± 5
C.3
D.±3
【解析】选C.由题意得2m=1+5,解得m=3.
3.等差数列{an}中,a2=-4,d=3,则a1为( )
A.-9
B.-8
C.-7
D.-4
【解析】选C.由题意得,a2=a1+d, 所以a1=a2-d=-4-3=-7.
(2)结论:A叫做a,b的等差中项. (3)关系:_A___a_2_b_.
3.等差数列的通项公式
(1)条件:等差数列{an}的首项为a1,公差为d. (2)通项公式:an=_a_1+_(_n_-_1_)_d_.
【即时小测】 1.判断 (1)常数列是等差数列.( ) (2)若一个数列从第2项起每一项与前一项的差都是常 数,则这个数列是等差数列.( )

《等差数列》PPT课件

《等差数列》PPT课件

解:用{an}表示梯子自上而下各级宽度所成的等差数列,由已 知条件, a1=33,a12=110,n=12. 由通项公式,得a12= a1+(12-1)d 即110=33+11d d=7 因此a2=33+7=40, a3=40+7=47, a4=54, a5=61, a6=68, a 7=75,a8=82, a9=89, a10=96 a=11 =103 答:梯子中间各级的宽度从上到下依次是40 cm ,47 cm , 54 cm ,61 cm ,68 cm ,75 cm ,82 cm , 89 cm ,96 cm ,103 cm
新概念 在等差数列a,A,b中,A与a,b有什么关系? 解: 依题得, A-a=b-A
所以,
A=(a+b)/2
A为a,b的
等差中项
要点扫描
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*)
一个公式:an=a1+(n-1)d
一种思想:方程思想 一个概念: A=a+b/2
例2 在等差数列{an}中,已知a5=10, a12=31,求首项a1 与公差d. 解: 由题意知, a5=10=a1+4d a12=31=a1+11d 解得: a1=-2 d=3 即等差数列的首项为-2,公差为3 点评:利用通项公式转化成首项和公差 联立方程求解
例3 梯子的最高一级宽33cm,最低一级110 cm, 中间还有10级,各级的宽度成等差数列.计算中间各级 的宽度.
点评:解等差数列有关问题时转化为
a1和d是常用的基本方法
接轨高考
(此题为2003年全国高考题) 则n的值为( ) C A.48 B.49 C.50
1 等差数列{an}中,已知 a1 , a2 a5 4, an 33 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解得 n 100
练一练
an a1 (n 1)d
1. 求等差数列3,7,11,…的第4,7,10项;
a4 15, a7 27, a10 39
2. 100是不是等差数列2,9,16,…中的项?
100 2 (n 1) 7 n 15
7
3. -20是不是等差数列0,- 2 ,-7…中的项;
等差数列
在过去的三百 多年里,人们 分别在下列时 间里观测到了 哈雷慧星:
相差76
(1)1682,1758,1834,1910,1986,( 2062)
你能预测出下一次 的大致时间吗?
主持人问: 最近的时间什么时 候可以看到哈雷慧星?
天文学家陈丹说: 2062年左 右。
通常情况下,从地面 到10公里的高空,气 温随高度的变化而变 化符合一定的规律, 请你根据下表估计一 下珠穆朗玛峰峰顶的 温度。
an a1 (n 1)d
例1 (1) 求等差数列8,5,2,…,的第20项。
解:Q a1 8, d 5 8 3, n 20 , a20 8 (20 1) (3) 49
(2) 等差数列 -5,-9,-13,…,的第几项是 –401?
解: a1 5, d 9 (5) 4, an 401, 因此, 401 5 (n 1) (4)
课后作业
课本P45习题2.2[A组]的第1 题
20 0 (n 1) 7 n 47 (舍)
2
7
例2 在等差数列中,已知a5=10,a12=31,
求首项a1与公差d.
解:由题意可知
an a1 (n 1)d
a1 4d 10 a1 11d 31
这是一个以 a1和 为d 未知数的二元一次方 程组,解这个方程组,得
a1 2 d 3
a5 a4 d (a1 3d) d a1 4d
an a1 (n 1)d
n=1时亦适合

等差数列的通项公式
a2 a1 d
a3 a2 d
a4 a3 d
an1 an2 d
an an1 d
迭加得 an a1 (n 1)d
an a1 (n 1)d
用一下
即这个等差数列的首项是-2,公差是3.
练一练
4. 在等差数列中
(1)已知a4 10, a7 19,求a1与d. a1 1, d 3
(2)已知a3 9, a9 3,求a12
a1本节学习,首先要理解与掌握等 差数列的定义
2.要会推导等差数列的通项公式,并掌握 其基本应用.
(3) 1,4,7,10,( 13 ),16,…
(4) 2, 0, -2, -4, -6,(-8 )…
它们的共同的规律是?
d=76
( 1 ) 1682,1758,1834,1910,1986,(2062) ( 2 ) 32, 25.5, 19, 12.5, 6, …, ( -20). ( 3 ) 1,4,7,10,( 13 ),16,… ( 4 ) 2,0,-2,-4,-6,( -8 ),…
(7) x, 3x, 5x, 7x, 9x,L
公差 d= 2x
你会求它们的通项 公式吗?
(3) 1,4,7,10,13,16,…
(4) 2,0,-2,-4,-6,-8 …
等差数列的通项公式
如果一个数列 a1, a2 , a3 , …,an , …
是等差数列,它的公差是d,那么
a2 a1 d a3 a2 d (a1 d ) d a1 2d a4 a3 d (a1 2d ) d a1 3d
8844.43米
高度(km) 1
2
3
45

减少6.5
9
温度(℃) 28 21.5 15 8.5 2

-24
(2) 28, 21.5, 15, 8.5, 2, …, -24.
你能根据规律在( ) 内填上合适的数吗?
(1)1682,1758,1834,1910,1986,(2062).
( 2 ) 32, 25.5, 19, 12.5, 6, …, (-20) .
d=-6.5 d=3 d=-2
定义:如果一个数列从第2项起,每一项与它的前一项的差等 于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。
它们是等差数列吗?
(5) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10 ×
(6) 5,5,5,5,5,5,…公差 d=0 常数列
相关文档
最新文档