算术平方根专项练习题
平方根专题训练试题
平方根(1)一、平方根:1、先填写下面的空:16的平方等于9, 的平方等于—,的平方等于0, 的平方等于-9 , 的平方等8, 的平方等于-8, 的平方等于52, 的平方等于(-5)2, 的平方等于54,______ 的平方等于(-3)6, _____的平方等于3T。
162、例如上面:—2 = 9,我们就说是9的平方根3、用字母表述:如果一个数x的______等于a,即x2= a,那么这个数x就叫做a的(也叫做________ )。
记作“________”,读作“_________ ”。
例1:下列各数有平方根吗?如果有,求出它的平方根,如果没有说明理由。
9736,-一,(-3)2, 1-, -52, 43,(-41,-a2,(-a)2,a225 9总结:1、 _____ 有平方跟, ________ 没有平方根;2、V a2 = a = 举例:指2 =3、只要找到一个数的平方根,肯定是一个正一个负成双成对出现的,切记.练习1:下列各式中,正确的是( )- '71 iA.一v'-49 =-(-7) =7B. v12- =1-\ 4 219~ 3 3 .―二C. J4 + — =2+ =2—D. =0.25 二±0.5\,16 4 4练习2:判断题(1)-0.01是0.1的平方根. ( )(2)-52的平方根为-5. ( )(3)0和负数没有平方根. ( )一,1 ____ 、…1 ~ , ■丁1(4)因为—的平方根是±二,所以.、:二土二. ( )16 4 16 4(5)正数的平方根有两个,它们是互为相反数. ( )练习3:下列各数中没有平方根的数是()A . 一 (—2) 3B .3-3C . a oD . — (a 2+1)练习4: Ja 2等于()A . aB .一 aC . ±aD .以上答案都不对二、算术平方根:1、什么叫做算术平方根?若一个正数x 的平方等于a,即x 2=a,则这个正数x 就叫做a 的算术平方根.记为“、a ”读作“根号a” .这就是算术平方根的定义.特别地规定0的算术平方根是0,25 7 例2:求下列各数的算术平方根:121, 1, = , 2-, 15,(—3), a 21449总结:1、算术特指值为正的那个平方根;2、一般求平方根可以先求出算术平方根,不用考虑,再找出相反的那一个;3、算术平方根是一个非负数或者说大于等于0的数,例如v a ,表示a 的算术平方根, 定是一个非负数数,否则aa 没有意义。
(完整版)平方根习题精选练习
平方表:12= 62= 112= 162= 212= 22= 72= 122= 172= 222= 32= 82 = 132= 182 = 232= 42= 92 = 142= 192 = 242= 52=102=152=202 =252=【典型例题】例 1、判断以下说法正确的个数为()① -5 是-25 的算术平方根;② 6 是6 2的算术平方根;③ 0 的算术平方根是 0;④ 0.01 是 0.1 的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A . 0 个B .1 个C . 2 个D .3 个例 2、 36 的平方根是()A 、6B 、6C 、 6D 、6例 3、以下各式中,哪些有意义?( 1) 5(2)2 ( 3)4 (4) ( 3) 2(5)103例 4、一个自然数的算术平方根是 a ,则下一个自然数的算术平方根是() A . a 1B .a 1 C . a 21D .a 2 1例 5、求以下各式中的x :(1)x 2 25 0( 2) 4(x+1) 2-169=0【牢固练习】 一、选择题1 . 9 的算术平方根是()A .-3B . 3C .± 3D . 812 .以下计算正确的选项是( )A . 4 =± 2B .2=9( 9)81C.36 6D.9293.以下说法中正确的选项是()A .9 的平方根是 3B . 16 的算术平方根是± 2C.16 的算术平方根是 4D.16 的平方根是± 24 . 64 的平方根是()A .± 8B .± 4C .± 2D .±25 . 4 的平方的倒数的算术平方根是()A .4B . 1C . -1D .18446 .以下结论正确的选项是()A( 6)26B ( 3) 29C ( 16)2 16D1621625257 .以下语句及写成式子正确的选项是()A 、 7 是 49 的算术平方根,即 497B 、7 是 ( 7)2 的平方根,即 (7)2 7C 、 7 是 49 的平方根,即49 7D 、 7 是 49 的平方根,即 4978 .以下语句中正确的选项是()A 、9 的平方根是 3B 、 9 的平方根是 3C 、 9 的算术平方根是 3D 、9 的算术平方根是 39 .以下说法: (1)3 是 9 的平方根; (2)9 的平方根是3;(3)3 是 9 的平方根; (4)9 的平方根是 3,其中正确的有( )A .3 个B . 2 个C .1 个D . 4 个 10.以下语句中正确的选项是()A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵ 3 的平方是 9,∴ 9 的平方根是 3D 、1是 1 的平方根11.以下说法正确的选项是()A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D . a 2的平方根是a12.以下表达中正确的选项是()A .(-11 ) 2 的算术平方根是± 11B .大于零而小于 1 的数的算术平方根比原数大C .大于零而小于 1 的数的平方根比原数大D .任何一个非负数的平方根都是非负数13. 25 的平方根是()A 、5B 、 5C 、5D 、514. 36 的平方根是()A 、6B 、6C 、 6D 、615.当 m0 时, m 表示()A . m 的平方根B .一个有理数C . m 的算术平方根D .一个正数16.用数学式子表示 “ 9 的平方根是 3”应是()164A .9 3B.9 3164164C .9 3 D .9 3 16 416417.算术平方根等于它自己的数是()A 、 1和 0B 、0C 、1D 、1 和 018.0.0196的算术平方根是( )0.140.014C 、 0.14D 、 0.014A 、B 、19. ( 6) 2 的平方根是()A 、- 6B 、36C 、±6D 、± 620.以下各数有平方根的个数是()(1) 5; ( 2)( -4 ) 2 ; ( 3) -2 2 ; (4)0;(5) -a 2 ; (6)π; (7) -a 2 -1A .3 个B .4 个C .5 个D .6 个 21. (5) 2 的平方根是()A 、 5B 、 5C 、 5D 、522.以下说法错误的选项是()A. 1 的平方根是 1B. –1 的立方根是- 1C.2 是 2 的平方根D. –3 是 ( 3)2的平方根23.以下命题正确的选项是( )A . 0.49 的平方根是 0.7B .0.7 是 0.49 的平方根C .0.7 是 0.49 的算术平方根D .0.7 是0.49 的运算结果24.若数 a 在数轴上对应的点的地址在原点的左侧,则以下各式中有意义的是( )A . aB . aC .a 2 D . a325. x 2 289 ,那么 x 的值为()A . x17 B . x 171919 C . x 17 D . x17181826.以下各式中,正确的选项是()A.( 2) 22B.(3)29C.9 3 D.39327.以下各式中正确的选项是()A . ( 12)2 12B . 18 2 6C . ( 12)212D .( 12) 21228.若 a 、 为实数,且b a 2 1 1 a 24,ba 7则 ab 的值为( ) (A)1 (B) 4(C)3 或 5(D)529.若 a 24,b 29 ,且 ab 0 ,则 ab 的值为()(A)2(B)5(C)5(D)530 .若一个正数的平方根是2a 1和a 2 ,则a ____ ,这个正数是;31. 满足 -2<x<5 的整数 x 是32.已知一个正方形的边长为 a ,面积为 S ,则()A. SaB.S 的平方根是 aC. a 是 S 的算术平方根D.aS33. 若a 和 a 都有意义,则 a 的值是()A. a 0B. a 0C. a 0D. a 034.(x 2 4) 2 的算术平方根是()A 、(x24) 4 B 、 ( x24)2C 、 x 24D 、x 2 435.( 5) 2 的平方根是()361A 、5 B 、 5 C 、 5 D 、536.以下各式中,正确的选项是()A.( 2) 22 B.(3)29 C.93 D.39337.以下各式中正确的选项是( )A . ( 12) 212 B . 18 26C .( 12)212D .( 12)21238. 以下各组数中互为相反数的是( ) A 、2与( 2)2B 、2与38C 、2与(2)2D 、2 与 2二、填空题:1.若是 x 的平方等于 a ,那么 x 就是 a 的,因此的平方根是2.非负数 a 的平方根表示为3.因为没有什么数的平方会等于,因此负数没有平方根,因此被开方数必然是4. 16的平方根是 _______;9 的平方根是 _______.815. 16 的平方根是,25 的平方根记作,结果是6.非负的平方根叫平方根7. ( 8)2 =,( 8) 2。
平方根(巩固篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.3平方根(巩固篇)(专项练习)一、单选题1)A .7±B .7-C .D2.若实数x 10x +≤,则()A .x =2或-1B .2≥x ≥-1C .x =2D .x =-13.下列说法中,正确的是()A .64的平方根是8B4和-4C .()23-没有平方根D .4的平方根是2和-24.下列各数中,不一定有平方根的是()A .x 2+1B .|x |+2C 1D .|a |-15.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是()A .n +1B .21n +C D6.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,-a b 等于()A .a-B .aC .2b a+D .2b a-7.已知{}min ,,a b c 表示取三个数中最小的那个数,例加:min{1,2,3}3---=-,当}21min,81x x =时,则x 的值为()A .181B .127C .13D .198.如下表,被开方数a律可得m ,n 的值分别为()A .=0.025m ,7.91n ≈B . 2.5m =,7.91n ≈C .7.91m ≈, 2.5n =D . 2.5m =,0.791n ≈9.如图,将一张长方形纸片按如图所示的方式沿虚线折叠,得到两个面积分别为16和5的正方形,则阴影部分的面积为()A .5B .C .4D .410.设12211112S =++,22211123S =++,32211134S =++,⋯,22111(1)n S n n =+++,则的值为()A .62425B C .2425D .57524二、填空题11()21-=______.12.写出一个比____.13a,小数部分为b ,则________,_________a b ==.14.如果a ,b 是2020的两个平方根,则a + b - 2021的值是__________.15.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将10个小正方形拼成一个大正方形,若10个小正方形的面积之和等于大正方形的面积,则这个大正方形的边长是__________.16.如图是一个数值运算的程序,若输出y 的值为4,则输入的值为__.17.把如图①中的长方形分割成A ,B 两个小长方形,现将小长方形B 的一边与A 重合,另一边对齐恰好组成如图②的大正方形,(空余部分C 是正方形).若拼接后的大正方形的面积为5,则图①中原长方形的周长为_________.18.将自然数的算术平方根如右图排列,第3行第2则第101行第100列是______.三、解答题19.求满足条件的的值:(1)23126x -=;(2)()21218x -=20.(1)已知某正数的平方根为3a +和215a -,求这个数是多少?(2)已知m ,n 320n -=,求22m n +的平方根.21.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B设点A 所表示的数为m .(1)实数m 的值是_________;(2)求()221m m +++的值.(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +238c d ++的平方根.22.(1)如图1,分别把两个边长为1dm 的小正方形沿一条对角线裁成4个小三角形,可以拼成一个大正方形,由此可知,小正方形的对角线长为______dm .(2)若一个圆的面积与一个正方形的面积都是22cm π,则圆的周长C 圆,正方形的周长C 正的大小关系是:C 圆______C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为216cm ,李明同学想沿这块正方形边的方向裁出一块面积为212cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.探究题:(1的值.对于任意实数a 等于多少?(2)求222222,,,,,的值.对于任意非负实数2等于多少?24.【初步感知】(1)直接写出计算结果.=___________;=_______;=________;=________;…【深入探究】观察下列等式.①(12)2122+⨯+=;②(13)31232+⨯++=;③(14)412342+⨯+++=;④(15)5123452+⨯++++=;…根据以上等式的规律,在下列横线上填写适当内容.(2)_________(12022)20222+⨯=;(3)123(1)++++++= n n _______,【拓展应用】计算:(5)333331112131920+++++ .参考答案1.C【分析】先求出49的算术平方根,再根据一个正数有两个平方根,它们互为相反数解答即可.【详解】7=,7的平方根是,故选:C.【点睛】本题考查了算术平方根和平方根,熟练掌握算术平方根的性质,一个正数有两个平方根,它们互为相反数,先求出49的算术平方根,是解题关键.2.A【分析】根据非负数性质求解即可.x+≤,10≥,|x+1|≥0,∴x-2=0或x+1=0,解得:x=2或x=-1,故选:A.【点睛】本题考查非负数的性质,熟练掌握算术平方根的非负数,绝对值的非负数是解题的关键.3.D【详解】A.64的平方根是±8,故本选项不符合题意;4=,4的平方根是±2,故本选项不符合题意;-=,9的平方根是±3,故本选项不符合题意;C.()239D.4的平方根是±2,故本选项符合题意.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.D【分析】根据平方根的性质解答即可.【详解】A、∵x2+1>0,∴该数有平方根;B 、∵|x |+2>0,∴该数有平方根;C 1>0,∴该数有平方根;D 、∵0a ≥,∴|a |-1不一定大于0,故该数不一定有平方根;故选:D.【点睛】此题考查了平方根的性质:正数有两个平方根,0有一个平方根是0,负数没有平方根,正确掌握实数的大小估算确定其为正数、负数或是0是解题的关键.5.D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.【详解】解:这个自然数是2n ,则和这个自然数相邻的下一个自然数是21n +,.故选:D .【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.6.A【分析】先根据数轴的性质可得0,0a b ><,从而可得0a b ->,再根据算术平方根的性质、化简绝对值、整式的加减法即可得.【详解】解:由题意得:0,0a b ><,所以0a b ->,()a b b a b -=---b a b =--+a =-,故选:A .【点睛】本题考查了数轴、算术平方根、绝对值、整式的加减,熟练掌握数轴的性质是解题关键.7.D2,x x 都小于1且大于0,根据平方根求得x 的值即可求解.【详解】解:∵}21min,81x x =2,x x 都小于1且大于02x x ∴<<2181x ∴=19x ∴=(负值舍去)故选D2,x x 的范围是解题的关键.8.B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B .【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.9.A【分析】首先根据面积确定大长方形的长和宽,然后再利用长方形的面积减去两个小正方形的面积.【详解】解: 两个面积分别为16和5的正方形,∴大正方形的边长为4∴阴影部分的长方形的宽为4∴5=,故选:A .【点睛】此题主要考查了算术平方根,关键是正确理解题意,确定长方形的长和宽.10.A【分析】观察第一步的几个计算结果,得出一般规律.3111112122===+=+-⨯,71111162323===+=+-⨯,1311111123434===+=+-⨯,2111111204545===+=+-⨯,⋯,1111n n=+-+,+⋯+1111111112232425=+-++-+⋯++-124125=+-62425=.故选A.【点睛】本题考查了数字算式的变化规律.关键是观察几个结果的结果,由特殊到一般,得出规律.11.2【分析】按顺序先分别进行算术平方根和平方运算,然后再进行减法运算即可.2(1)-=3-1=2,故答案为:2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.12.答案不唯一,如:1【详解】解:∵<2∴-2<x<2,(x为整数)故答案为:-1,0,1(答案不唯一)【点睛】本题考查算术平方根的估值.理解算术平方根的定义是关键.13.【答题空1】3【答题空23【详解】∵9<10<16∴3<4,∴a=3,-3,故答案为3﹣3.14.2021-【分析】利用平方根的性质可知0a b +=,代入题中代数式直接求值即可得到答案.【详解】解:如果a ,b 是2020的两个平方根,则0a b +=,2021020212021a b ∴+-=-=-,故答案为:2021-.【点睛】本题考查平方根的性质及代数式求值,熟练掌握一个正数的两个平方根互为相反数是解决问题的关键.15【分析】由题可知,每个小正方形的边长为1,面积为1,可得出拼成的大正方形的面积为11.【详解】解:由题意可知,每个小正方形的边长为1,∴每个小正方形的面积为1,∴10个小正方形拼成的大正方形的面积为1×10=10,.【点睛】本题考查图形的剪拼和算术平方根,熟练掌握“如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根”.16.±3【分析】设输入的数是x ,根据题意得出方程(x 2-1)÷2=4,求出即可.【详解】解:设输入的数是x ,则根据题意得:(x 2-1)÷2=4,x 2-1=8,x=±3,故答案为±3.【点睛】本题考查了对平方根的应用,关键是能根据题意得出方程.17.【分析】设矩形B的长为a,宽为b,表示大正方形边长:a+b,进而求出a+b 得出图①中原长方形的周长.【详解】解:设矩形B的长为a,宽为b,∵C是正方形,∴C的边长为b,∴大正方形边长:a+b,∵大正方形的面积为5,∴a+b∵图①中的长方形的周长为:(a+b+b+a)×2=4(a+b),∴图①中原长方形的周长为:故答案为:18【分析】根据所给数据排列的顺序,找出规律即可解答.【详解】解:根据题意知:第2行,第1第3行,第2第4行,第3第5行,第4…n-列的数为:故第n行,第()1当n当n故当n =101时,第101行第100【点睛】本题考查了数字类规律问题,根据题意找出规律是解决本题的关键.19.(1)3x =±;(2)54x =或34x =【分析】(1)先求出x 2,然后再运用直接开平方法解答即可;(2)先求出(x -1)2,再运用直接开平方法求得x -1,最后求得x 即可.【详解】解:(1)23126x -=2327x =29x =3x =±;(2)()21218x -=()21116x -=即114x -=±所以54x =或34x =.【点睛】本题主要考查了解一元二次方程,掌握运用直接开平方法解一元二次方程成为解答本题的关键.20.(1)49;(2)56±【分析】(1)根据一个正数的两个平方根互为相反数建立方程求解即可;(2)根据非负数的性质求出m 、n 的值,然后代值计算即可.【详解】解:(1)∵某正数的平方根为3a +和215a -,∴32150a a ++-=,∴4a =,∴这个数为()223749a +==;(2320n -=0320n ≥-≥,,320n =-=,∴210320m n +=-=,,∴1223m n =-=,∴222212523263m n ⎛⎫++ ⎪⎛⎫=-= ⎝⎪⎝⎭⎭,∴22m n +的平方根是56±.【点睛】本题主要考查了平方根,非负数的性质,熟知一个平方根的定义是解题的关键.21.2;(2)2+(3)4±【分析】(1)根据两点间的距离公式,直接右边的数减去距离即得左边的数;(2)代入m 求值即可;(3)根据非负数的性质,求得c,d 的值,代入即可求解.【详解】(1)解:(1)2m =,2;(2)解:()221m m +++=)22221+++=31=2,故答案为:2.(3)解:∵24c +∴|24|c +=0,∵24|0|c ≥+,∴|2|40c +=,∴24c d -=,=,∴()2382234816c d ++=⨯-+⨯+=,∴4=±.【点睛】本题考查的是两点间的距离公式、非负数的性质,关键是要会理解两点间的距离,最后求的平方根有两个.22.(12)<;(3)不能,理由见解析【分析】(1)根据勾股定理即可得到结论;(2)设圆的半径为r cm ,正方形的边长为a cm ,求得C 圆π,C 正,于是得到结论;(3)设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,得到x 求得长方形的长为,正方形的边长为4cm ,由于>4,于是得到结论.【详解】解:(1)∵小正方形的边长为1dm ,(dm ),(2)设圆的半径为r cm ,正方形的边长为a cm ,∵一个圆的面积与一个正方形的面积都是2πcm 2,∴r a∴C 圆,C 正,∵8π2<32π,∴C 圆<C 正,故答案为:<;(3)不能裁出,理由:设长方形的长为3x cm ,宽为2x cm ,令3x •2x =12,解得:x ∵x >0,∴x∴长方形的长为cm ,,∴正方形的边长为4cm ,∵4,∴不能裁出这样的长方形纸片.【点睛】本题考查了算术平方根的应用,圆的面积公式,正确地理解题意是解题的关键.23.(12=3=5=6=7=0=,对于任意实数a a =;(224=29=,225=236=249=,20=,对于任意非负实数a ,2a =.【分析】(1)直接计算各式进而得出一般规律;(2)直接计算各式进而得出一般规律.【详解】(12=,3=,5=,6=,7=,0=,对于任意实数a a ;(2)24=,29=,225=,236=,249=,20=,对于任意非负实数a ,2a =.【点评】本题主要考查了二次根式的性质与化简,正确得出变化规律是解题关键.24.(1)①1②3③6④10(2)12320212022+++++ (3)()()122n n ++(4)5050(5)41075【分析】(1)直接计算即可;(2)根据前4个式子的规律填空即可;(3)根据规律可得1+2+3+⋯+n +(n +1)=()()122n n ++;(4)根据(1)的计算可得原式=1+2+3+ (100)(5)根据规律可得原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103),再根据规律计算即可.(1=1=3=6=10;故答案为:①1②3③6④10(2)解:由规律可得:1+2+3+ (2022)()1202220222+⨯,故答案为:1+2+3+…+2022;(3)解:1+2+3+⋯+n +(n +1)=()()122n n ++.故答案为:()()122n n ++;(4)解:原式=1+2+3+…+100=()10011002+⨯=5050;(5)解:原式=(13+23+33+⋯+193+203)-(13+23+33+⋯+93+103)=)2-2=(1+2+…+20)2-(1+2+…+10)2=(21202⨯)2-(11102⨯)2=2102-552=41075.【点睛】本题考查规律型:数字的变化类,能够根据式子的变化得到规律是解题关键.。
平方根3套练习题(有答案)
平方根3套练习题(有答案)篇一:八年级数学平方根练习题包含答案第11章平方根练习题班级:________ 姓名________ 分数________ ◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)2的算术平方根C、11的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7●拓展提高一、选择1?2,则(m?2)2的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)2=0,则yx三、解答题5、若a是(?2)2的平方根,ba+2b的值6、已知ab-1是400●体验中考1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a?1 22 CD12、(08;若b,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥2,≥4、D拓展提高:1、C2、C3、04、165、由题意知:a=(?2)2= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.22??0.4,所以每块瓷砖的边长篇二:七年级下册第6章-平方根习题题精选(含答案)6.1平方根习题题精选______班别______姓名______考号______一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是() 5.(2021?张家界)若+(y+2)2=0,则(x+y)2021等于()6.(2021?泸州)已知实数x、y满足+|y+3|=0,则x+y的值为()8.(2021?新泰市一模)的平方根是()9.(2021?德州一模)|﹣4|的平方根是() 10.(2021?资阳一模)下列说法正确的是()13.(2021?邻水县模拟)16的算术平方根的平方根是()14.(2021?南充)0.49的算术平方根的相反数是() 15.(2021?黄石模拟)算术平方根等于2的数是()的平方根是() 18.下列说法正确的是() 19.下列说法正确的是()20.一个数如果有两个平方根,那么这两个平方根之和是()21.下列说法正确的()(1)9的平方根是±3(2)平方根等于它本身的数是0和1 (3)﹣2是4的平方根(4)的算术平方根是4.22.81的平方根是±9的数学表达式是()23.已知3m﹣1和m﹣7是数p的平方根,则p的值为() 24.如果一个数的平方根是这个数本身,那么这个数是()27.一个正数的平方根是2m+3和m+1,则这个数为() 28.下列说法正确的是() 30.下列说法正确的是()一.填空题(共8小题)1.(2021?本溪)一个数的算术平方根是2,则这个数是.2.(2021?营口一模)若2x﹣4与1﹣3x是同一个数的平方根,则x的值为 3.(2021?江西模拟)已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=4.(2021?普陀区二模)5.(2021?道里区一模)6.(2021?高港区二模)7.(2021?高淳县二模)如果a、b分别是9的两个平方根,则ab的值为的平方根是的算术平方根是.的平方根是8.(2021?潮安县模拟)如果二.解答题(共12小题) 9.解方程:(1)x﹣与(2x﹣4)互为相反数,那么2x﹣y= _________ .2=0;(2)(x﹣1)=36. 10.解方程:0.25(3x+1)﹣15=0.2211.解方程:196x﹣1=0. 12.解方程:(1)13.解方程:(2x+1)﹣6=0.14.观察下列表格,并完成下列问题(1)求a和b的值;(2)用一句话概括你发现的规律.22=0;(2)(x﹣1)=36.2(1)268.96的平方根是多少?(2)(3)(4)表中与≈ _________ .在哪两个数之间?为什么?最接近的是哪个数?16.已知2a﹣1的算术平方根是3,3a+b﹣1的算术平方根是4,求a,b的值. 17.计算:(1)(2)(3)= _________ ,= _________ ;= _________ ,= _________ .= _________ ;仔细观察上面几道题的计算结果,猜想一个数的平方的算术平方根与这个数之间的关系.(可以用代数式表示或用语言叙述)18.已知2a+b的算术平方根是9,3a﹣b+1是144的算术平方根,求a﹣b的值. 19.若 20.己知+(x﹣2)=0,求x﹣y的平方根.,求(x+2)的平方根.26.1平方根习题题精选(参考答案与解析)一.选择题(共30小题)2.(2021?鞍山)4的平方根是()3.(2021?陕西)4的算术平方根是()5.(2021?张家界)若+(y+2)=0,则(x+y)22021等于()篇三:八年级数学平方根练习题包含平方根检测题◆随堂检测1、9的算术平方根是___ __ 252、一个数的算术平方根是9,则这个数的平方根是3x的取值范围是,若a≥04、下列叙述错误的是()A、-4是16的平方根B、17是(?17)的算术平方根C、211的算术平方根是D、0.4的算术平方根是0.02 864◆典例分析例:已知△ABC的三边分别为a、b、c且a、b|b?4|?0,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围|b?4|?00 |b?4|≥0|b?4|=0所以a=3 b=4 又因为b-a c a+b 所以 1 c 7◆课下作业●拓展提高一、选择1?2,则(m?2)的平方根为()A、16B、?16C、?4D、?22)A、4B、?4C、2D、?2二、填空 3、如果一个数的算术平方根等于它的平方根,那么这个数是4(y?4)=0,则y三、解答题25、若a是(?2)的平方根,ba+2b的值 22x26、已知ab-1是400的值●体验1.(2009年山东潍坊)一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是()A.a?1B.a2?1CD12、(08;若,(a、b为连续整数),则a= , b=3、(08年广州)如图,实数a、b在数轴上的位置,化简4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米的房间,小明想知道每块瓷砖的规格,请你帮助算一算.2参考答案:随堂检测:1、3,352、?93、x≥-2,≥4、D拓展提高:1、C2、D3、04、165、由题意知:a=(?2)= 4 ,b=2 所以a+2b= 4+4=86、解:因为a,所以a=13,又因为b-1是400的算术平方根,所以b-1=20b=21?●体验中考:1、B2、9;7,83、-2b4为0.4米.222??0.4,所以每块瓷砖的边长。
(完整版)算术平方根练习题
算术平方根练习一、选择题:1. 81的算术平方根是( )A .9±B .9C .-9D .32. 已知正方形的边长为 a ,面积为 S ,下列说法中:①a S =;②S a =;③S 是a 的算术平方根;④a 是S 的算术平方根。
正确的是( )A .①③B .②③C .①④D .②④3. 如果5.1=y ,那么y 的值是( )A .2.25B .22.5C .2.55D .25.54. 计算()22-的结果是( )A .-2B .2C .4D .-45. 下列各式中正确的是( )A .525±=B .()662-=- C .()222-= D .()332=- 二、填空题:1. 一个数的算术平方根是25,这个数是________。
2. 算术平方根等于它本身的数有______________。
3. 81的算术平方根是__________。
4. 144=_______;4925=________;=-01.0________;0025.0=_______。
5. ()=2196_________;()=-28_________;256169-=___________。
三、解答题:1. 求下列各数的算术平方根:(1) 3.24 (2)12149 (3) 1000012. 求下列各式的值: (1) 144169- (2) 0625.0 (3) 1692254-+3. 回答下列问题: (1) ()25-有没有算数平方根?如果没有,说明理由;如果有,写出它的算术平方根。
(2) 3-是()23-的算术平方根吗?如果不是,请写出它的算术平方根。
4. 用长3cm 、宽2.5cm 的邮票30枚,拼成一个正方形,则这个正方形的边长是多少?13.1.1算术平方根练习一、课堂练习:1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= . 2. 16的算术平方根是 ;16的算术平方根是 ;4的算术平方根是 ;4的算术平方根是 ,3、不用计算器你能比较上面数的大小吗?(1)7和3 (2)7-2和14.不用计算器,比较下列数的大小(1)140和12 (2)215-和215.小丽想用一块面积为400m 2的正方形纸片,沿着边的方向裁出一块面积为300m 2的长方形纸片,使它的长宽之比为3∶2。
100道平方根计算练习题
100道平方根计算练习题平方根习题精选班级::学号1.正数a的平方根是A.B.±C.?D.±a;④±都是32.下列五个命题:①只有正数才有平方根;②?2是4的平方根;③5的平方根是2的平方根;⑤的平方根是?2;其中正确的命题是A.①②③B.③④⑤C.③④D.②④3.若=.291,=.246,那么=A.22.91B.2.46C.229.1D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是A.a+1 B.a+1C..下列命题中,正确的个数有①1的平方根是1 ;②1是1的算术平方根;③的平方根是?1;④0的算术平方根是它本身A.1个B.2个C.3个D.4个.若=.449,=.746,=44.9,= 0.7746,则x、y的值分别为22+1 D.A.x =0000,y = 0.6B.x =00,y = 0.6C.x =000,y = 0.06D.x =0000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米的圆形桌面,那么它的半径应该是______23.在下列各数中,?2,,?3,.在?.若和22,?,有平方根的数的个数为:______之间的整数是____________的算术平方根是3,则a =________三、求解题1.求下列各式中x的值①x =61;②81x?4= 0;③49 =0;④ =2.小刚同学的房间地板面积为16米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?222222第十二章:数的开方1、如果一个数的等于a,那么这个数叫做a的平方根,正数的平方根有系是,0的平方根是,负数。
正数a的,叫做a的算术平方根。
3、如果一个数的a,那么这个数就叫做a的立方根,正数有的立方根,负数有的立方根,0的立方根为。
11一、平方根的概念及性质例题分析:1、________的平方等于25,所以25的平方根是_____________的平方等于,所以4的平方根是________ 9121的平方根_____,所以它的算术平方根是____的平方根______,所以它的算术平方根16是_______2、下列说确的个数是①0.25的平方根是0.5;②-2是4的平方根;③只有正数才有平方根;④负数没有平方根A、1 B、C、D、4、下列说法中不正确的是A、9的算术平方根是B、的平方根是?2C、27的立方根是?3D、立方根等于-1的实数是-19154、求下列各数的平方根11)、100 )、03)、4)、1)、96)、0.09、若2m-4与3m-1是同一个数的平方根,则m的值是A、-B、1 C、-或1 D、-16、若一个正数的平方根是2a-1和-a+2,则a=________15,那么这个数是多少?、某数的平方根是a+3和2a-二、算术平方根的概念及性质一个正数的平方根有两个,它们互为相反数,而一个正数的算术平方根只能是一个正数1、的算术平方根是A、?B、C、? D、2、9的算术平方根是A、-B、C、? D、812??94??23、下列计算不正确的是A、B、C、.064?0.4D、?216??64、下列叙述正确的是A、0.4的平方根是±0.2B、-的立方根不存在C、±6是36的算术平方根D、-27的立方根是-35、不使用计算器,你能估算出126的算术平方根的大小在哪两个整数之间吗?A、10-11之间B、11-12之间C、12-13之间D、13-14之间6、如果一个数的平方根与立方根相同,那么这个数是A、0B、±1C、0和1D、0或±12a?16,则a=________?1.2,则a=________、若8、-2的相反数是________;3-2的绝对值是________29、求下列各数的算术平方根1)、0.002)、)、04)3三、立方根的概念及性质11?1、下列说确的是①12是1728的立方根;②的立方根是;③64的立方根是?4;④0273的立方根是0A、①④B、②③C、①③D、②④、下列说法中错误的是42)2A、是5的平方根B、-16是256的平方根C、-15是4、若a是的平方根,则a=A、-3B、3C、3D、3和3D、立方根等于它本身的-35、已知x的平方根是2a+3和1-3a ,y的立方根为a ,求x+y的值6、的平方根是______________;的立方根是_________________818、计算:11)、?)、?8)、164562x四、能力点:会用若?|y|?z?0,则x?0,y?0,z?0去解决问题例题分析:2x?4??0,则xy的值是1、已知x,y是实数,且99A、B、-C、D、-42、若x?4?x?y?5?0,则x?________,y?________25x?3?|y?1|??0,求xyz=________、已知4、已知| x ? y ? |+x?y?10 ? 0 ,求x 、y 的值273x?2?0?169?04?1?05、1););3)4;)2213?42无理数常见的三种形式:1)开方开不尽的数,如0.010010001??2,)特定意义的数,如? )有特定结构的数,如3?1、下列各数:2,-3,3.1415926,125,19,?8,3.101001000??中无理数有2、若无理数a满足不等式1 223、下列各数:7,0,-?,,64,2-中无理数有__________22?3272、下列各数:,-,?27,1.414,-3,3.1212,?9中无理数有___________;有理数有______ _________;负数有______ _________;整数有_______________;3、设a是实数,则|a|-a的值A、可以是负数B、不可能是负数C、必是正数D、可以是正数也可以是负数1?4、下列实数:19,-2,,,9,0中无理数有A、B、C、D、15、下列说法中正确的是A、有限小数是有理数B、无限小数是无理数C、数轴上的点与有理数一一对应D、无理数就是带根号的数116、下列各数中,互为相反数的是A、-3和B、|-3|与-C、|-3|与D、|-3|与-37、边长为1的正方形的对角线的长是A、整数B、分数C、有理数D、无理数、写出一个3和4之间的无理数__________、数轴上表示1?3的点到原点的距离是__________510、比较大小:2__________52;3__________??51311、在下列各数中,0.5,4,,-0.03745,3,0.12,1-,其中无理数的个数为A、B、3C、D、512、一个正方形的面积扩大为原来的n倍,则它的边长扩大为原来的nA、n倍B、2n倍C、n倍D、2倍6.的平方根是A. ±B. C. ± D.321、x为何值时,下列各式有意义:①?x②?x22、解下列方程1)x2=)x3-27=0)x?)2=493、1的平方根是;27的立方根是4-27的立方根是的平方根是____。
(完整版)平方根练习题
平方根练习题姓名一、填空题1。
如果x的平方等于a,那么x就是a的 ,所以数才有平方根。
2.非负数a的平方根符号表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者 ,4.16的平方根符号表示为,其中16的根,5。
非负的平方根叫平方根二、选择题6.(05年南京市中考)9的算术平方根是( )A.-3 B.3 C.±3 D.817.下列计算不正确的是()A=±2 B= C 。
)2=2 8.下列说法中不正确的是( )A.9的算术平方根是3 B 2C。
10的算术平方根是10 D. (-4)2的平方根是-49. 64的平方根是( )A.±8 B.±4 C.±2 D10. 4的平方的倒数的算术平方根是( )A.4 B.18C.-14D.14三计算题11.计算:(1(2(3(4 12.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.0913_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是( )A.x+1 B.x2+1 C15.若2m-4与3m—1是同一个数的平方根,则m的值是( )A.—3 B.1 C.—3或1 D.-116.已知x,y是实数,2=0,则xy的值是( )A.4 B.-4 C.94D.—94五、综合训练17.利用平方根解下列方程.(1) X2=81 (2)(x—2)2=49(3)(2x-1)2-169=0;(4)4(3x+1)2—1=0;。
100道平方根练习题
100道平方根练习题一、填空题1.如果x的平方等于a,那么x就是a的,所以a的平方根是2.非负数a的平方根表示为3.因为没有什么数的平方会等于,所以负数没有平方根,因此被开方数一定是或者4的平方根是5.非负的平方根叫平方根二、选择题6.9的算术平方根是A.- B. C.± D.817.下列计算不正确的是A=±2B? .下列说法中不正确的是A.9的算术平方根是B29. 4的平方根是A.±B.± C.± D10.的平方的倒数的算术平方根是A. B.三计算题11.计算:100; 0;159;1;1;0.092513_______;9的平方根是_______.四、能力训练14.一个自然数的算术平方根是x,则它后面一个数的算术平方根是A.x+1 B.x2+1 C+1 D- 1 -15.若2m-4与3m-1是同一个数的平方根,则m的值是 A.- B.1 C.-3或1 D.-116.已知x,y2=0,则xy的值是A.4B.- C.五、综合训练17.利用平方根、立方根来解下列方程.2-169=0;42-1=0;99D.-42731x-2=0;3=4.2六、提高题18、x?3??y?5??0,求?x?y?的平方根219、4a2?b2?4a?10b?26?0,求ba的平方根20、a2?b2?2a?8b?17?0,a、b为实数,求ab?的平方根 ba- -6.1平方根练习题一、选择题1. 下列各式中正确的是 A.=±B. =-C. ±36=±D. ?100=102. 当x=-6时,x的值为A. B. - C.3 D.33. 下列说法正确的是 A.的平方根是±2B. -a一定没有平方根C. 0.9的平方根是±0.3D. a-1一定有平方根4. 已知正方形的边长为a,面积为S,则 A. S=a B. S 的平方根是aC. a是S的算术平方根 D. a=±5. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a的算术平方根是a;④的算术平方根是π-4;⑤算术平方根不可能是负数。
初二数学求算术平方根练习题
初二数学求算术平方根练习题算术平方根是数学中的一个重要概念,它能帮助我们求解方程、解决实际问题等。
为了帮助初二学生更好地理解和掌握算术平方根的求解方法,下面给出了一些练习题。
练习1:求算术平方根
1. 求算术平方根:√36 = ?
2. 求算术平方根:√64 = ?
3. 求算术平方根:√100 = ?
4. 求算术平方根:√121 = ?
5. 求算术平方根:√144 = ?
练习2:使用算术平方根解决问题
1. 一个正方形的面积是16平方单位,求它的边长。
2. 若一块田地的面积为225平方米,求它的边长。
3. 一块菱形的面积为49平方厘米,求它的对角线长度。
练习3:应用算术平方根解决实际问题
1. 烟花以每秒10米的速度上升,若烟花升高了100米,请问它上升的时间是多少?
2. 一辆汽车以每小时60公里的速度行驶,若车程为240公里,请问这段行程需要的时间是多少?
3. 一颗子弹射出后以每秒700米的速度飞行,若子弹射出后经过5秒才撞到墙壁,请问墙壁与枪离得有多远?
以上是一些关于算术平方根的练习题,希望能帮助到初二的同学们更好地理解和掌握相关知识。
通过多做题、多思考、多实践,相信你们一定能够掌握算术平方根的求解方法,并能够熟练地运用它解决实际问题。
加油!。
平方根(基础篇)(专项练习)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.2平方根(基础篇)(专项练习)一、单选题1.4的平方根是()A .2B .2-C .16D .2±2.)A .﹣2B .2C .﹣12D .123的值().A .在3到4之间B .在4到5之间C .在5到6之间D .在6到7之间4.下列计算正确的是()A2=B 5=±C .4D .7=±5.平方根是13±的数是()A .13B .16C .19D .19±6.若是169的算术平方根,是121的负的平方根,则(+)2的平方根为()A .2B .4C .±2D .±47.下列命题是真命题的是()A .25的平方根是5B .0.01的平方根是0.001±C .只有正数才有算术平方根D .平方根是其本身的数只有08.实数a ,b ,c 在数轴上的对应点如图所示,化简a b a -+-+的结果是()A .b c --B .c b -C .222a b c -+D .2a b c++9.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是()A B .2C .1.5D .110.有一个如图的数值转换器,当输出值是4时,输入的是()A .8B .16C .D .二、填空题11.如果0x <,0y >且24x =,29y =,则x y +=___________.12.若2y ,则yx =________.13a ,小数部分为b ,则=a _________,b =_________.14 3.873≈ 1.225≈≈___.151=,则2x +6的平方根是______.16.某正数的平方根是a 和5a -,则这个数为_________.17.()29-的四次方根是______.18.七巧板被西方人称为“东方魔术”,下面的两幅图是由同一个七巧板拼成的.已知七巧板拼成的正方形(如图1边长为a (cm ).若图2的“小狐狸”图案中阴影部分面积为162cm ,那么a 的值为__.三、解答题19.求下列各式中的x .(1)29250x -=;(2)24(2)90x --=.20.计算:(1)()()2202131---;(2)233--21.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.22.(1=__________;(2=__________;(3)实数a 、b 、c 在数轴上的位置如图所示,请化简:a -23.定义:若A B m -=,则称A 与B 是关于m 的关联数.例如:若2A B -=,则称A 与B 是关于2的关联数.(1)若49与a 是关于2的关联数,则=a ________;(2)若21x -与53x -是关于2的关联数,求51x +的平方根;(3)若M 与N 是关于m 的关联数,53M mn n =++,N 的值与m 无关,求N 的值.24.发现:(1)面积为249cm 的正方形纸片,它的边长是______cm ;拓展:(2)面积为226cm 的长方形纸片,如果它的长是宽的2倍,则长和宽各是多少cm ?延伸:(3)在面积为249cm 的正方形纸片中能否沿着边的方向(如图所示)裁出一块面积为226cm 的长方形纸片,使它的长是宽的2倍?说明理由.参考答案1.D【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.【详解】∵()22=4±∴4的平方根为2±.故选:D.【点拨】本题考查了平方根的定义,掌握一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根是解题的关键.2.C【分析】先化简,再计算倒数.【详解】解:=−2,-2的倒数是1 2-.故选:C.【点拨】本题考查了倒数,算术平方根,熟练掌握相关知识是解题的关键.3.C【分析】根据题意可直接进行求解.【详解】解:∵56<,5到6之间.故选C.【点拨】本题主要考查算术平方根,熟练掌握求一个算术平方根的整数部分与小数部分是解题的关键.4.D【分析】A、根据负数没有平方根即可判定;B、根据算术平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根的定义即可判定.【详解】解:AB5=,故选项错误;C、4==-,故选项错误;D、7=±,故选项正确.故选:D.【点拨】此题考查了平方根、算术平方根的定义.此题比较简单,注意熟记定义是解此题的关键.5.C【分析】根据平方根的定义求解即可.【详解】解:∵211 39⎛⎫±=⎪⎝⎭,∴平方根是13±的数是19.故选C.【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6.C【分析】求出m、n的值,求出m+n的值,再根据平方根定义求出即可.【详解】解:∵m是169的算术平方根,n是121的负的平方根,∴m=13,n=-11,∴m+n=2,∴(m+n)2的平方根是,故答案为C.【点拨】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数;注意:一个正数有两个平方根,它们互为相反数.7.D【分析】根据平方根的概念判断即可.【详解】解:A、25的平方根是±5,故本选项命题是假命题;B、0.01的平方根是±0.1,故本选项命题是假命题;C、正数和0都有算术平方根,故本选项命题是假命题;D、平方根是其本身的数只有0,故本选项命题是真命题;故选:D.【点拨】本题考查的是平方根及算术平方根的概念,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【分析】先判断0b c a <<<,可得0b a -<,再结合算术平方根的含义可得0c <c =-,再化简绝对值即可.【详解】解:∵0b c a <<<,∴0b a -<,∴a b a -+-+()()a b a c =---+-a b a c=--+-b c =--.故选A .【点拨】本题考查的是算术平方根的含义,化简绝对值,整式的加减运算,掌握“算术平方根的含义与化简绝对值”是解本题的关键.9.A【分析】求出长方形的面积,即为正方形的面积,开方即可求出正方形边长.【详解】解:根据题意得:故选:A .【点拨】此题考查了算术平方根,弄清题意是解本题的关键.10.B【分析】设输入的数为x ,根据输出值是4即可求出答案.【详解】解:设输入的数为x ,∴4=,16x ∴=,故选:B .【点拨】本题考查的是算术平方根的概念和性质,解题的关键是掌握一个正数的正的平方根是这个数的算术平方根是解题的关键,注意有理数的概念.11.1【分析】24x =即x 是4的平方根,29y =即y 是9的平方根,因而根据0x <,0y >且24x =,29y =就可确定x ,y 的值,进而求解.【详解】解:∵24x =,29y =,∴2x =±,3=±y ,又∵0x <,0y >,∴2x =-,3y =,∴231x y +=-+=.故答案为:1.【点拨】本题考查平方根的意义,求代数式的值,有理数的加法运算.根据条件正确确定x ,y 的值是解题关键.12.94【分析】根据算术平方根的非负性求得,x y 的值,代入代数式即可求解.【详解】解:∵2y ,∴230,320x x -≥-≥,∴230x -=,解得32x =,∴2y =,∴23924yx ⎛⎫== ⎪⎝⎭,故答案为:94.【点拨】本题考查了算术平方根的非负性,掌握算术平方根的非负性是解题的关键.13.33【分析】根据34<首先确定a 的值,则小数部分即可确定.【详解】解:34<< ,3a ∴=,则3b =.故答案是:33.【点拨】本题主要考查了无理数的估算,解题的关键是确定无理数的整数部分即可解决问题.14.12.25【分析】根据算术平方根与被开方数的关系:“被开方数每向左或向右移动2个位数,则它的算术平方根就向左向右移动1个位数”可知答案.1.225≈,≈12.25故答案为:12.25【点拨】本题考查了求算术平方根,掌握规律是解题的关键.15.±21=,解得=1x -,继而计算264x +=,再根据平方根的定义解答.【详解】解:1=,21x ∴+=1x ∴=-264x ∴+=4的平方根是±2故答案为:±2.【点拨】本题考查平方根与算术平方根,是基础考点,掌握相关知识是解题关键.16.254【分析】根据正数的两个平方根互为相反数可得50a a +-=,解方程求出a ,然后根据平方根的意义求出这个正数.【详解】解: 某正数的平方根是a 和5a -,50a a ∴+-=.解得52a =.2525()24±= .∴这个数为254.故答案为:254.【点拨】本题考查了平方根的性质与意义,解题的关键是掌握一个正数有两个平方根,且它们互为相反数.17.3±【分析】计算出()2981-=,再找出四次方等于81的数即可.【详解】解:∵()2981-=,又∵()4381±=∴()29-的四次方根是3±,故答案为:3±.【点拨】本题考查平方根的推广,有理数的乘方.解题的关键是正确找出四次方等于81的数.18.8【分析】设阴影小正方形的边长为x cm ,根据阴影部分的面积列出方程,求出x 的值,进而得出大正方形的对角线的长度是4x cm ,最后求出边长a 即可.【详解】设“小狐狸”脸部小正方形的边长为x cm ,由题意得:21(24)162x x x x +⨯-=,解得:x =x =-∴小正方形的边长为,∴大正方形的对角线为:,∴大正方形的边长为8(cm)=,8a ∴=.故答案为:8.【点拨】本题主要考查七巧板的知识,熟练掌握七巧板各边的关系是解题的关键.19.(1)1255,33x x ==-(2)1271,22x x ==【分析】(1)先移项,然后利用平方根求解方程即可;(2)先移项,然后利用平方根求解方程即可.【详解】(1)解:29250x -=移项得:2925x =,∴2259x =,∴53x =±,∴1255,33x x ==-(2)24(2)90x --=24(2)9x -=,∴29(2)4x -=∴32=2x -±∴1271,22x x ==.【点拨】题目主要考查利用平方根解方程,熟练掌握解方程方法是解题关键.20.(1)5;(2)8--【分析】(1)先化简各式,然后再进行计算即可;(2)先化简各式,然后再进行计算即可.【详解】(1)解:22021(3)(1)--93(1)=-+-6(1)=+-5=;(2)解:233|-+932=-+8=-【点拨】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点拨】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.22.(1)5;5;(2)()0(0)a a a a ⎧≥⎨-<⎩;(3)b a -【分析】(1)根据算术平方根求解即可;(2)结合(1)中结果求解即可;(3)根据数轴得出0c a b <<<,且a b <,然后将各式化简合并同类项求解即可.【详解】解:(15=5==;故答案为:5;5;(2)当0a ≥a =;当0a <a =-;()0(0)a a a a ⎧≥=⎨-<⎩,故答案为:()0(0)a a a a ⎧≥⎨-<⎩;(3)由数轴得:0c ab <<<,且a b <,∴a +∴a -()()a abc c a =-++-+-a a b c c a=-++-+-b a =-.【点拨】题目主要考查算术平方根的化简及根据数轴判断式子的正负,整式的加减法等,理解题意,熟练掌握各个运算法则是解题关键.23.(1)47;(2)3±;(3)165.【分析】(1)根据关联数的含义,列方程求解即可;(2)根据关联数的含义,列方程求得x 的值,即可求解;(3)根据关联数的含义,可得M N m -=,可得N M m =-,根据题意,求解即可.【详解】(1)解:由题意可得:492a -=解得47a =,故答案为:47;(2)由题意可得:21(53)2x x ---=解得:85x =,519x +=9的平方根为3±(3)由题意可得:M N m -=,则53(51)3N M mn n m n m n m ++--==+=+-,∵N 的值与m 无关∴510n -=,解得15n =则116355N =+=【点拨】本题考查了新型定义题型,解一元一次方程、整式的值与字母无关,解题的关键是准确理解题干,列出方程,进行解答.24.(1)7;(2,长为;(3)不能,理由见解析【分析】(1)根据正方形的面积公式和正方形的面积即可求出正方形的边长;26cm列出方程求解即可;(2)设长方形的宽为x cm,则长为2x cm,根据长方形的面积为2(3)根据题意比较正方形的边长和长方形的长即可判断.49cm,【详解】解:(1)∵正方形的面积为2∴边长7==cm.(2)设长方形的宽为x cm,则长为2x cm,根据题意得x·2x=26,x2=13,解得x=∵x∴x∴长为2x=,,长为,(3)不能.理由:因为7,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.【点拨】此题考查了正方形和长方形面积公式,算数平方根的性质,解题的关键是根据题意求出正方形的边长和长方形的长和宽.。
平方根练习题
平方根练习题平方根练题一、填空题1、判断下列说法是否正确⑴5是25的算术平方根(正确)⑵√525是的一个平方根(错误,应为√25)⑶√(-4)的平方根是-4(错误,应为不存在实数平方根)⑷-5的平方根与算术平方根都是不存在(错误,应为不存在实数平方根)2、⑴121=11²,⑵-1.69=√2.8561,⑶±7,⑷-0.093、若x=7,则x²=49,x的平方根是74、√=±907,选项A5、共有4个数有平方根,选项B6、a=1,b=1/4,a+b的平方根为√(5/4)=1.1187、⑴x=5,⑵x=9,⑶x=49/4,⑷x=36/258、a=14/3,b=-1/39、a=5,b=1/210、a=4/3,b=1/311、x=±√a,x的正平方根为√a,负平方根为-√a12、非负数a的平方根为√a13、因为没有什么数的平方会等于负数,所以负数没有平方根,因此被开方数一定是非负数或014.16的平方根是415.非负的平方根叫正平方根二、选择题16.9的算术平方根是317.下列计算正确的是C.±6=±√3618.下列说法中正确的是C.16的算术平方根是419.64的平方根是±820.4的平方的倒数的算术平方根是1/2三、计算题21.(1)-9=不存在实数平方根(2)9=3(3)√100=1022.(1)10,(2)不存在实数平方根,(3)223.(1)√159≈12.61,(2)±3,(3)11/8,(4)±0.5,(5)1,(6)0.324.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A。
x+1 B。
x^2+1 C。
x+1 D。
x^2+125.若2m-4与3m-1是同一个数的平方根,则m的值是()A。
-3 B。
1 C。
-3或1 D。
-126.已知x,y是实数,且3x+4+(y-3)^2=99,则xy的值是()A。
初二数学求算术平方根练习题
初二数学求算术平方根练习题算术平方根是数学中的重要概念之一,对于初二学生而言,掌握求算术平方根的方法和技巧是至关重要的。
在本文中,我将为您提供一些初二数学求算术平方根的练习题,以帮助您加深对这一概念的理解和掌握。
练习题1:求下列数的算术平方根(保留两位小数):(1)16(2)25(3)36(4)49(5)64解答:(1)√16 = 4.00(2)√25 = 5.00(3)√36 = 6.00(4)√49 = 7.00(5)√64 = 8.00练习题2:求下列数的算术平方根(保留两位小数):(1)121(2)144(3)169(4)196(5)225解答:(1)√121 = 11.00(2)√144 = 12.00(3)√169 = 13.00(4)√196 = 14.00(5)√225 = 15.00练习题3:根据给定条件,求下列数的算术平方根(保留两位小数):(1)某个数的平方等于121(2)某个数的平方等于169(3)某个数的平方等于256(4)某个数的平方等于400解答:(1)√121 = 11.00(2)√169 = 13.00(3)√256 = 16.00(4)√400 = 20.00练习题4:求下列数的算术平方根(保留两位小数):(1)1.21(2)0.25(3)0.09(4)0.64(5)0.36解答:(1)√1.21 = 1.10(2)√0.25 = 0.50(3)√0.09 = 0.30(4)√0.64 = 0.80(5)√0.36 = 0.60练习题5:求下列数的算术平方根(保留两位小数):(1)√2(2)√3(3)√5(4)√7(5)√10解答:(1)√2 ≈ 1.41(2)√3 ≈ 1.73(3)√5 ≈ 2.24(4)√7 ≈ 2.65(5)√10 ≈ 3.16通过以上练习题,我们进行了一系列算术平方根的求解练习。
掌握求解算术平方根的方法,对于初二学生来说是非常重要的。
算术平方根练习题
算术平方根练习题一、选择题1. 下列哪个数的算术平方根是4?A. 12B. 16C. 20D. 242. 若一个数的算术平方根是5,那么这个数是多少?A. 20B. 25C. 30D. 35A. 4B. 9C. 16D. 24. 已知一个数的算术平方根是8,那么这个数的平方是多少?A. 64B. 128C. 256D. 512二、填空题1. 一个正数的算术平方根是______,那么这个数是______。
2. 若一个数的算术平方根是10,那么这个数的平方是______。
3. 已知一个数的算术平方根是x,那么这个数可以表示为______。
4. 计算:√36 + √49 √25 = ______。
三、解答题1. 已知一个数的算术平方根是3,求这个数的平方。
2. 计算:√81 × √64 ÷ √16。
3. 设一个正数的算术平方根是a,求这个数的平方根。
4. 已知一个数的算术平方根是5,求这个数的平方根。
5. 计算:√(25 + 144) √(121 64)。
四、应用题1. 一块正方形场地的面积是81平方米,求这块场地的边长。
2. 一个正方形的对角线长度是10厘米,求这个正方形的面积。
3. 一个长方形的面积为144平方厘米,已知长是12厘米,求宽。
4. 一块长方形菜地的面积是56平方米,如果长是8米,求宽。
5. 计算下列图形的面积:(1)边长为6厘米的正方形;(2)长为8厘米,宽为6厘米的长方形。
五、判断题1. 一个负数也有算术平方根。
()2. 0的算术平方根是0。
()3. 两个算术平方根相加,结果仍是一个算术平方根。
()4. 所有正整数的算术平方根都是整数。
()5. 如果一个数的平方是25,那么它的算术平方根一定是5。
()六、匹配题将下列数的算术平方根与它们对应的结果匹配:A. 9B. 25C. 49D. 81E. 1211. 32. 53. 74. 95. 11七、简答题1. 什么是算术平方根?请举例说明。
(完整版)平方根、算术平方根、立方根练习题
1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。
(完整版)平方根习题精选练习
平方表:【典型例题】例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根;③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个 例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5(2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A.()1+aB .()1+±aC .12+aD .12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】 一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A ±2B C.636=± D.992-=- 3.下列说法中正确的是( )A .9的平方根是3B 2 24. 64的平方根是( )A .±8B .±4C .±2 D5. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .146.下列结论正确的是( )A 6)6(2-=--B 9)3(2=-C 16)16(2±=-D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±= 8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是3 9.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根 11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=± C .43169= D .43169-=- 17.算术平方根等于它本身的数是( )A 、1和0 B 、0 C 、1 D 、 1±和018.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0;(5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个C .5个D .6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根23.下列命题正确的是( ) A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( )A .1917±=xB .1917=xC .1817=xD .1817±=x 26.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=-C. 39±=±D. 393-=-27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( ) (A)1± (B) 4 (C) 3或5 (D) 529.若9,422==b a,且0<ab ,则b a -的值为( )(A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;31.满足的整数x 是32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S= B.S 的平方根是aC.a 是S 的算术平方根D.Sa ±=33. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a34.22)4(+x 的算术平方根是( )A 、42)4(+x B 、22)4(+xC 、42+x D 、42+x35.2)5(-的平方根是( )A 、5± B 、 5 C 、5- D 、5±36.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=- C. 39±=±D. 393-=-37.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯C .12)12(2±=-D .12)12(2=-±38.下列各组数中互为相反数的是( ) A 、2)2(2--与 B 、382--与C 、2)2(2-与D 、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为 3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。
算术平方根与平方根专项练习
算术平方根与平方根专项练习算术平方根与平方根专项练一、填空1、如果一个数的平方等于a,即x^2=a,那么x叫做a的算术平方根。
注:①数a的算术平方根记作√a,其中a≥0;②0的算术平方根为0;③只有当a≥0时,数a才有算术平方根。
2、如果一个数的平方等于a,即x^2=a,那么x叫做a的平方根(二次方根)。
注:①一个正数a有两个平方根,且它们互为相反数,记为±√a;②有一个正数的平方根,就是正数;③负数没有平方根。
3、4的平方根是2;算术平方根是2.4、36有个正平方根6,一个负平方根-6;它们的和是0;它们互为相反数。
5、0.04的算术平方根是0.2,开平方等于±0.2的数是0.2和-0.2.6、81的正平方根是9;(-5)^2的平方根是5i。
7、算术平方根等于它本身的数只有0和1;平方根等于它本身的数只有1.8、若5x+4的平方根为±1,则x=-3或x=-0.2;若m-4没有实数平方根,则|m-4|=m-4.9、已知2a-1的平方根是±4,3a+b-1的平方根是±4,则a+2b的平方根是±10.10、若实数x,y满足x-2+(3-y)^2=0,则代数式xy-x的值为1.11、在小于或等于100的非负整数中,其平方根是整数的共有10个。
12、已知x+2与y-3互为相反数,则xy=-6.13、因为没有什么数的平方会等于负数,所以负数没有实数平方根,因此被开方数一定是非负数或0.14、当m≥3时,3-m有意义。
二、选择题15、(-3)^2的平方根是B.-3.16、9的算术平方根是B.3.17、下列个数没有平方根的是C.(-1)。
18、如果3x-5有意义,则x可以取的最小整数为D.3.19、x是16的算术平方根,那么x的算术平方根是B.2.20、选B。
因为(-9)的平方是81,而81不等于9.21、选B。
因为64的平方根是8,而8的相反数是-8,故平方根为±8.22、选C。
算术平方根与平方根练习题
算术平方根与平方根练习题1.9的算术平方根是3.2.下列计算正确的是22=±2.3.计算(-3)²的结果是9.4.若a=2,则a的值为2.5.下列结论正确的是16的平方根是4.6.有平方根的数共有6个,分别是2,-4,-3,-5,4,-3.7.给出下列各数:49,3,-4,其中有平方根的数共有4个。
8.平方根等于它本身的数是1.9.81的平方根是9.10.下列计算或判断:①±3都是27的立方根;②3a³=a;③6根是4;④3(±8)=±4,其中正确的个数有2个。
11.在下列各式中,正确的是25=±5.12.若a²=25,|b|=3,则a+b的值是±8.13.a²的算术平方根一定是|a|。
14.0.0001≈0.01≈1≈100≈≈300.15.如果3≈1.732,30≈5.477,那么≈5477.16.如果2≈1.414,20≈4.472,那么≈4472.17.在a中,a的取值范围是(-∞。
+∞);在(a²)中,a的取值范围是[0.+∞);在a²中,a的取值范围是(-∞。
+∞);在±a中,a 的取值范围是(-∞。
+∞);在3a中,a的取值范围是(-∞。
+∞)。
18.一个正数的平方根分别是x+1和x-5,则x=13.19.6的整数部分是6,17的整数部分是17,41的整数部分是41.20.化简(a)²=a²,(a²)=(a²)。
3化简(31)3=27;(3(1))=3333化简(38)3=1029;(3(8))=24化简(3-8)= -15;(3(-8))= -24化简(3a)3=27a;(3a3)=27a^321.3-a=3a22.求下列各数的算术平方根.1)196;(2)5.-5;(3)0.2;23.求下列各数的平方根:1)12;(2)0.1,-0.1;(3)7/3,-7/3;24.求下列各式的值:1)25;(2)-0.0004;25.计算下列各式的值:1)-40.875;(2)2.973;26.求下列各式中x的值.1)x=5,-5;(2)x=13,-13;3)x=1/3,-1/3;4)x=±3/2.3)x=2±10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算术平方根专项练习题
一、填空
1、如果一个__________平方等于a,即x=a,那么________叫做a的算术平方根。
注:① 数a的算术平方根记作________,其中a_____0;② 0的算术平方根为________;③ 只有当a_____0时,数a才有算术平方根。
2、如果一个__________平方等于a,即x=a,那么______叫做a的平方根。
注:① 一个正数a有_________个平方根,且它们互为________,记为________;② 0有一个平方根,就是_________;③负数没有平方根。
3、4的平方根是____;算术平方根是_____________。
922
4、3有个平方根,它们是;它们的和是;它们互为;
5、0.04的算术平方根是_________,开平方等于±5的数是_______.
6、的平方根是
的平方根是___________。
7、算术平方根等于它本身的数_________;平方根等于它本身的数是___________。
8、若5x+4的平方根为?1,则x= ;若m—4没有平方根,则|m—4|=
9、已知2a?1的平方根是?4,3a+b-1的平方根是?4,则a+2b的平方根是。
210、若实数x,y满足x?2+2=0,则代数式xy?x的值为。
11、在小于或等于100的非负整数中,其平方根是整数的共有个。
12
xy=________。
13、因为没有什么数的平方会等于,所以数没有平方根,因此被开方数一定是或者。
14、当m 时,3?m有意义.
二、选择题
15、2的平方根是
A.3
B.-
C.±
D.±9
16、9的算术平方根是
A.-B. C.±D.81
17、下列个数没有平方根的是
2A.- B. C.D. 11.1
18、如果3x?5有意义,则x可以取的最小整数为
A. 0
B. 1
C.
D.
19、x是16的算术平方根,那么x的算术平方根是
A. B. C.? D.±4
20、下列计算不正确的是
A.
?±B
0.9?0.D. ?.44??1.21、64的平方根是
A.± B.± C.±2D
22、4的平方的倒数的算术平方根是
A.B.111C.-D.44
23、设 x、y为实数,且y?4?5?x?x?5则x?y的值是
A. 1
B.
C.
D.
三、解答题
24、求下列各数的算术平方根
①121 ②14 ③ ④⑤ 0.09⑥11 16942
25、求下列各数的平方根
①48②
26、求下列各式中的x.
x?17;x?22252③ 0.0196④ ⑤9121?0;169x2?100; x2?5?09
27、已知2a-1的平方根是?3,4a+2b+1的平方根是?5,求a-2b的平方根。
28、已知a,b两数
在数轴上表示如下:化简:a?22?b?22?a?b.2
29、已知a
,b-1是400的算术平方根,
算术平方根与平方根专项练习
一、填空
1、如果一个__________平方等于a,即x=a,那么________叫做a的算术平方根。
注:① 数a的算术平方根记作________,其中a_____0;② 0的算术平方根为________;③ 只有当a_____0时,数a才有算术平方根。
2、如果一个__________平方等于a,即x=a,那么______叫做a的平方根。
注:① 一个正数a有_________个平方根,且它们互为________,记为________;② 0有一个平方根,就是_________;③负数没有平方根。
3、4的平方根是____;算术平方根是_____________。
922
4、3有个平方根,它们是;它们的和是;它们互为;
5、0.04的算术平方根是_________,开平方等于±5的数是_______.
6、的平方根是
___________。
7、算术平方根等于它本身的数_________;平方根等于它本身的数是___________。
8、若5x+4的平方根为?1,则x= ;若m—4没有平方
根,则|m—4|=
9、已知2a?1的平方根是?4,3a+b-1的平方根是?4,则a+2b的平方根是。
210、若实数x,y满足x?2+2=0,则代数式xy?x的值为。
11、在小于或等于100的非负整数中,其平方根是整数的共有个。
12
与xy=________。
13、因为没有什么数的平方会等于,所以数没有平方根,因此被开方数一定是或者。
14、当m 时,3?m有意义.
二、选择题
15、2的平方根是
A.3
B.-
C.±
D.±9
16、9的算术平方根是
A.-B. C.±D.81
17、下列个数没有平方根的是
2A.- B. C.D. 11.1
18、如果x?5有意义,则x可以取的最小整数为
A. 0
B. 1
C.
D.
19、x是16的算术平方根,那么x的算术平方根是
A. B. C.? D.±4
20、下列计算不正确的是
A.
?=±B
?.9?0.D. ?.44??1.21、64的平方根是
A.± B.± C.±2D
22、4的平方的倒数的算术平方根是
A.B.111C.-D.44
x?5则x?y的值是3、设 x、y为实数,且y?4??x?
A. 1
B.
C.
D.
三、解答题
24、求下列各数的算术平方根
①121 ②14 ③ ④⑤ 0.09⑥11 16942
25、求下列各数的平方根
①48②
26、求下列各式中的x.
x?17; x?
27、已知2a-1的平方根是?3,4a+2b+1的平方根是?5,求a-2b的平方根。
28、已知22252③ 0.0196④ ⑤92121?0;169x2?100;x2?5?09a,b两数
在数轴上表
示如下:化简:a?2?2?b?2?2?a?b?.2
29、已知a
,b-1是400的算术平方根,.
算术平方根练习
1.1的算术平方根是
A.?9B.C.-D.3
2. 已知正方形的边长为 a,面积为 S,下列说法中:
①S?a;②a?S;③S
是a的算术平方根;④a是S的算术平方根。
正确的是
A.①③B.②③ C.①④ D.②④
3. 如果y?1.5,那么y的值是
A.2.25B.22.C.2.5D.25.5
4. 计算?22的结果是
A.-2B.C.D.-4
5. 下列各式中正确的是 A.25?? B.?6?2?? C.2?2?? D.2?二、1. 一个数的算术平方根是25,这个数是________。
2. 算术平方根等于它本身的数有______________。
3.1的算术平方根是__________。
4. =_______;25=________;?0.01?________;.0025=_______。
95. ?2?_________;?82?_________;?169=___________。
256
9=
;;
25
;
;=;
,
,
,
,
,
,,
28、因为=36,所以36的算术平方根是
;
因为=2999,所以的算术平方根是,即=;46464
2因为=0.81,所以0.81的算术平方根是
;
2因为=0.572,所以0.572的算术平方根是
.
9、算术平方根等于自身的是
10、81的算术平方根是
,
9的算术平方根是;的算术平方根是,
16的算术平方根是;的算术平方根是;
4的算术平方根是;4的算术平方根是,
11、若a?2+︱b-1︳=0,求
12、若︱3x-y-1︳和2x?y?4互为相反数,求x+4y的算术平方根。
13、m?1的算术平方根是2,6m?n?1的算术平方根是3,求9m?2n的算术平方根00。