分式的加减法
分式加减法则
242422++-=+--=a a a a a a 31))1)(1()1()1)(1(3222--⨯⎥⎦⎤⎢⎣⎡-++--+--x x x x x x x x x 3431)1)(1(44--=--•-+--x x x x x x 311131)1)(1()1)(3(--⨯-+---⨯-++-x x x x x x x x x x 343)1(33133--=-+--=-+---x x x x x x x x 1.分式加减法法则(1)通分:把异分母的分式化为同分母分式的过程,叫做通分(2)同分母分式的加减法法则:同分母的分式相加减,分母不变.分子相加减.用字母表示为:bc a b c b a ±=± (3)异分母分式的加减法法则:异分母的分式相加减,先通分.变为同分母的分式后再加减.用字母表示为:bd bc ad bd bc bd ad d c b a ±=±=± 问题:通分有哪些应注意的问题,通分与约分之间又有哪些区别与联系呢?探究:通分的关键是确定几个分式的最简公分母,其步骤如下:①将各个分式的分母分解因式;②取各分母系数的最小公倍数;③凡出现的字母或含有字母的因式为底的幂的因式都要取;④相同字母或含字母的因式的幂的因式取指数最大的;⑤将上述取得的式子都乘起来,就得到了最简公分母。
如分式223c a b ,c b a 35的最简公分母为15a 2b 3c 2,通分的结果为23242215a 53c b b c a b =老师:学习了通分和约分后,你能总结出通分和约分的区别和共同点吗?小明:通分与约分虽都是针对分式而言,但却是两种相反的变形.小勇:约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,把各分式的分母统一起来. 小刚:通分和约分都是依据分式的基本性质进行变形,在变形中都保持分式的值不变.老师:一般地,通分结果中,分母不展开而写成连乘积的形式.分子则乘出来写成多项式,为进一步运算作准备.yx y x y x x y x y x y x y x x y x y x y x y x y x y x y x x y x y x +=-+++--=-++-++--+-=-+--+2))((2)()())((2))(())((21122 例题22)44(42)2(42)2(241224224222+++-=++-=++-+=+-+=--+a a a a a a a a a a a a 名师点金:(1)异分母分式相加减步骤如下:分母能分解因式的分解因式;确定最简公分母;通分;同分母分式加减;化成最简形式.(2)分式与整式进行加减,要把整式当成分母为“1”的式子.与分式进行通分,再计算.(3)分式中的分数线有括号的作用,单个的分式分子、分母不用加括号,只要几个分式统一成一个分式时,原来隐藏的话号主写出来。
分式的加减法
2、学会用转化的思想将异分母的分式的加减转化成同分母分 式的加减法.
3、以后,不再犯像小明那样不找最简公分母的错误.
课后作业: 习题3.4
1、2、3、4
分式的加减法(二)
习题分析: 1、确定几个分式的最简公分母的方法: (1)系数:分式分母系数的最小公倍数; (2)因式:凡各分母中出现的不同因式
小亮: 3 1 3 4 1 12 1 13 a 4a a 4 4a 4a 4a 4a
你对这两种做法有何评论?与同伴交流。
练习与提高
例1 :计算
(1) 3 a 15 a 5a
=
15 a 15 a 1 5a 5a 5a 5
(
2)
x
2
1
x 1 1 x
= 2 1 x 3 x x 1 x 1 x 1
x 1 x 1 x 1
x 1
x 1
同分母分式加减法则: 同分母的分式相加减,分母不变,把分子相加减.
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
第三章 分式
分式的加减法
情景引入
从甲地到乙地有两条路,每条路都是3 km,其中第一条路是 平路,第二条路有1km的上坡路,2 km的下坡路。小丽在上坡路
的骑车速度为v km/h,在平路上的骑车
速度为 2v km/h,在下坡路的骑车速度为3v km/h,那么
1.当走第一条路时,她从甲地到乙地需多长时间? 2.当走第二条路时,她从甲地到乙地需多长时间? 3.她走哪条路花费的时间少?少用多长时间?
八年级下册数学分式的加减法
八年级下册数学分式的加减法摘要:一、分式的基本概念1.分式的定义2.分式的组成部分3.分式的基本性质二、分式的加减法1.分式加法的规则2.分式减法的规则3.分式加减混合运算的顺序三、分式的加减法实际应用1.实际问题中的分式加减法2.利用分式的加减法解决实际问题正文:一、分式的基本概念分式是数学中一种常见的表达形式,它由分子和分母组成,用斜杠“/”表示。
分式的定义是:如果A 和B 是两个整式,并且B 不等于零,那么我们用A 除以B 所得到的商A/B 就叫做分式。
分式的组成部分包括分子、分母和分数线,其中分子和分母都是整式,分数线表示分式的开始和结束。
分式的基本性质有:分子和分母同时乘以或除以一个非零数,分式的值不变;分子和分母同时加上或减去一个相同的数,分式的值不变。
二、分式的加减法分式的加减法是数学中常见的运算,其规则如下:1.分式加法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的和就是(A+C)/B;如果分母不同,需要将它们通分,然后将分子相加,分母保持不变。
2.分式减法:对于两个分式A/B 和C/D,如果它们的分母相同,那么它们的差就是(A-C)/B;如果分母不同,需要将它们通分,然后将分子相减,分母保持不变。
3.分式加减混合运算的顺序:在没有括号的情况下,先进行乘除运算,再进行加减运算。
如果有括号,先进行括号内的运算。
三、分式的加减法实际应用分式的加减法在实际问题中有很多应用,例如在物理、化学、地理等学科中,常常需要用分式的加减法来解决问题。
例如,在化学中,可能会遇到需要将两种物质的摩尔质量相加或相减的问题,这时候就需要用到分式的加减法。
在解决实际问题时,我们需要先将问题抽象成数学模型,然后根据问题中给出的条件,选择合适的数学方法,包括分式的加减法,来解决问题。
以上就是八年级下册数学分式的加减法的内容。
分式的加减法是数学中重要的基本概念和基本运算,它在解决实际问题中有着广泛的应用。
分式的加减法法则
分式的加减法法则分式是数学中常见的一种表达形式,它由分子和分母组成,分子表示分数的被除数,分母表示分数的除数。
分式的加减法法则是指在进行分式的加减运算时需要遵循的规则。
我们来看分式的加法法则。
当两个分式的分母相同时,我们只需将分子相加,然后保持分母不变即可。
例如,对于分式$\frac{a}{b} + \frac{c}{b}$,我们可以直接将分子相加,得到$\frac{a+c}{b}$。
这里的a、b、c可以是任意实数。
当两个分式的分母不相同时,我们需要通过求最小公倍数的方法来进行转化。
首先,我们找到两个分式的最小公倍数作为新的分母,并将原分式的分子分别乘以最小公倍数除以原来的分母,得到新的分子。
然后,将两个新的分式的分子相加,保持分母不变。
例如,对于分式$\frac{a}{b} + \frac{c}{d}$,我们可以通过求b和d的最小公倍数bd,得到新的分式$\frac{ad}{bd} + \frac{cb}{bd}$,然后将分子相加,得到$\frac{ad+cb}{bd}$。
接下来,我们来看分式的减法法则。
分式的减法可以通过将减数取相反数,然后按照加法法则进行运算来实现。
例如,对于分式$\frac{a}{b} - \frac{c}{b}$,我们可以将减数$\frac{c}{b}$取相反数,即$-\frac{c}{b}$,然后按照加法法则进行运算,得到$\frac{a+(-c)}{b}$,即$\frac{a-c}{b}$。
同样地,当两个分式的分母不相同时,我们需要通过求最小公倍数的方法来进行转化。
首先,我们找到两个分式的最小公倍数作为新的分母,并将原分式的分子分别乘以最小公倍数除以原来的分母,得到新的分子。
然后,将被减数的新分子减去减数的新分子,保持分母不变。
例如,对于分式$\frac{a}{b} - \frac{c}{d}$,我们可以通过求b和d的最小公倍数bd,得到新的分式$\frac{ad}{bd} - \frac{cb}{bd}$,然后将分子相减,得到$\frac{ad-cb}{bd}$。
分式加减法运算法则
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
分式的加减法与乘除法
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
分式的加减法
分式的加减法分式是数学中常见的一种表达形式,它由分子和分母组成,用于表示两个数的比值或者部分与整体的关系。
分式的加减法就是对两个或多个分式进行相加或相减的运算。
本文将介绍分式的加减法的基本原理和具体操作方法。
一、分式的加法分式的加法就是将两个分式相加,要求它们的分母相同。
具体的操作步骤如下:1. 找出需要进行加法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相加,保持分母不变,得到加法结果;4. 对加法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加法的答案。
例如,计算1/3 + 1/4的结果。
首先,分母不同,需要进行通分,得到4/12 + 3/12 = 7/12。
最后,7/12为所求的答案。
二、分式的减法分式的减法与加法类似,也需要求出相同的分母。
具体的操作步骤如下:1. 找出需要进行减法运算的分式,保持分子和分母的不变;2. 确保这些分式的分母相同,如果分母不同,需要通过通分将它们的分母转化为相同的值;3. 将这些分式的分子相减,保持分母不变,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为减法的答案。
例如,计算3/4 - 1/3的结果。
分母不同,需要进行通分,得到9/12 - 4/12 = 5/12。
最后,5/12为所求的答案。
三、分式的加减混合运算对于分式的加减混合运算,按照运算顺序逐步进行。
先进行加法,再进行减法。
具体操作如下:1. 找出需要进行加减混合运算的分式,保持分子和分母的不变;2. 对这些分式进行加法运算,得到加法结果;3. 再对加法结果进行减法运算,得到减法结果;4. 对减法结果进行约分,如果可以约分的话;5. 最后得到的结果即为加减混合运算的答案。
例如,计算2/3 + 1/4 - 5/6的结果。
首先,需要进行通分,得到8/12 + 3/12 - 10/12 = 1/12。
分式的运算如何进行分式的加减法运算
分式的运算如何进行分式的加减法运算分式是数学中常见的一种表达形式,用于表示两个数的比值或算式的一部分。
在进行分式的加减法运算时,需要根据相应的规则进行化简和通分,并最终得到最简形式的结果。
一、分式的加法运算1. 化简分式:首先要化简分式,即将分子、分母约分至最简形式。
如有必要,使用最大公约数将分子、分母的公因式约掉。
2. 通分:对于两个分式进行加法运算,需要先将两个分式的分母通分,使其相同。
通分的方法为,将两个分式的分母的乘积作为新分式的分母,并对应调整分子。
3. 分子相加:将通分后的两个分子相加,得到新的分子。
4. 最简形式:将得到的分子与通分后的分母组合,得到最简形式的结果。
举例说明:2/3 + 1/4首先将分式化简至最简形式,2/3 已经是最简形式,1/4 也是最简形式。
然后找到两个分式的分母的最小公倍数,分母为 3 和 4,最小公倍数为 12。
对于 1/4,将其分母乘以 3,得到 3/12。
相加得到新分子 8 + 3 = 11。
将新分子11 与通分后的分母12 组合,得到最简形式的结果11/12。
二、分式的减法运算分式的减法运算与加法运算类似,只需要将加号换成减号即可。
1. 化简分式:首先要化简分式,即将分子、分母约分至最简形式。
2. 通分:对于两个分式进行减法运算,同样需要先将其分母通分。
3. 分子相减:将通分后的两个分子相减,得到新的分子。
4. 最简形式:将得到的分子与通分后的分母组合,得到最简形式的结果。
举例说明:5/6 - 2/5首先将分式化简至最简形式,5/6 已经是最简形式,2/5 也是最简形式。
然后找到两个分式的分母的最小公倍数,分母为 6 和 5,最小公倍数为 30。
对于 5/6,将其分母乘以 5,得到 25/30。
相减得到新分子 25 - 12 = 13。
将新分子13 与通分后的分母30 组合,得到最简形式的结果13/30。
综上所述,分式的加减法运算需要化简分式、通分、分子相加或相减,最后得到最简形式的结果。
分式的加减法
分式的加减法分式是数学中常见的一种表示形式,用于表示比例、比率以及一些运算过程中的数值关系。
分式的加减法是分式运算中的基本运算之一,它可以帮助我们计算各种分数的和或差。
本文将介绍分式的加减法,并演示一些实际应用的例子。
一、分式的基本概念在了解分式的加减法之前,我们先来回顾一下分式的基本概念。
分式由两个整数表示,其中一个整数位于分数线上方,称为分子;另一个整数位于分数线下方,称为分母。
分子和分母之间用横线表示,如a/b。
二、分式的加法在进行分式的加法运算时,我们首先要确保两个分式的分母相同,然后将它们的分子相加,最后将分子的和写在相同的分母下即可。
具体的步骤如下:1. 确定两个分式的分母是否相同。
如果两个分式的分母相同,直接将它们的分子相加即可;如果两个分式的分母不同,需要通过通分将它们的分母转化为相同的数值。
2. 将两个分子相加。
将两个分式的分子相加,得到它们的和。
3. 将分子的和写在相同的分母下。
将分子的和写在相同的分母下,得到最终的结果。
示例1:计算分式的加法计算1/3 + 2/5。
步骤1:确定两个分式的分母是否相同。
1/3与2/5的分母不同,需要通过通分将它们的分母转化为相同的数值。
步骤2:通分后,将两个分子相加。
分母相同的通分数为15,所以1/3可以拓展为5/15,2/5可以拓展为6/15。
5/15 + 6/15 = 11/15。
步骤3:将分子的和写在相同的分母下。
最终结果为11/15。
因此,1/3 + 2/5 = 11/15。
三、分式的减法分式的减法与分式的加法类似,也需要确保两个分式的分母相同,然后将它们的分子相减,最后将分子的差写在相同的分母下。
具体的步骤如下:1. 确定两个分式的分母是否相同。
如果两个分式的分母相同,直接将它们的分子相减即可;如果两个分式的分母不同,需要通过通分将它们的分母转化为相同的数值。
2. 将两个分子相减。
将两个分式的分子相减,得到它们的差。
3. 将分子的差写在相同的分母下。
分式的加减法运算
分式的加减法运算分式是数学中的一种表示形式,常用于表示部分与整体之间的关系或比例关系。
在分式中,有时需要进行加减法运算,以求得分式的和或差。
下面将介绍分式的加减法运算方法,并给出一些例子进行解析。
一、同分母当两个分式的分母相同时,可以直接对分子进行加减运算,分母保持不变。
例如:计算3/4 + 1/4由于两个分式的分母相同,因此可以直接对分子进行加法运算,得到4/4。
答:3/4 + 1/4 = 4/4同样的道理,对于两个分式进行减法运算也是一样的。
例如:计算5/6 - 1/6由于两个分式的分母相同,因此可以直接对分子进行减法运算,得到4/6。
答:5/6 - 1/6 = 4/6二、异分母当两个分式的分母不同时,需要进行分母的通分操作,再进行加减法运算。
1. 分母为相同因数的情况如果两个分式的分母可以通过相同的因数相乘得到,那么可以直接进行通分操作,再进行加减法运算。
例如:计算1/3 + 1/6由于3和6可以通过乘以2得到相同的分母,所以先将两个分式的分母进行通分,得到2/6 + 1/6。
然后可以对分子进行加法运算,得到3/6,再约分得到1/2。
答:1/3 + 1/6 = 1/2同样的方法,可以进行异分母分式的减法运算。
例如:计算5/8 - 1/12由于8和12可以通过乘以3得到相同的分母,所以先将两个分式的分母进行通分,得到15/24 - 2/24。
然后可以对分子进行减法运算,得到13/24。
答:5/8 - 1/12 = 13/242. 分母为互质的情况如果两个分式的分母不能通过相同的因数相乘得到相同分母,那么需要使用辗转相除法来得到最小公倍数,并进行通分操作。
例如:计算2/5 + 3/7由于5和7互质,没有相同的因数,所以需要找到最小公倍数。
7和5的最小公倍数为35,所以可以将两个分式的分母进行通分,得到14/35 + 15/35。
然后可以对分子进行加法运算,得到29/35,再约分得到 5/7。
答:2/5 + 3/7 = 5/7同样的方法,可以进行异分母分式的减法运算。
分式方程的加减法运算
分式方程的加减法运算
分式方程是指含有分数形式的方程,其中未知数出现在分母或分子中。
分式方程的加减法运算是解决这类方程的常见方法之一,下面将详细介绍分式方程的加减法运算。
一、同分母分式的加减法
当分式方程中的分式有相同的分母时,可以直接进行加减法运算。
例如,对于分式方程$\frac{3}{5x} + \frac{2}{5x}$,由于两个分式的分母相同,可以将分子相加得到$\frac{3+2}{5x}=\frac{5}{5x}$。
二、不同分母分式的加减法
当分式的分母不同的时候,需要通过找到它们的最小公倍数来将它们的分母转换成相同的,然后再进行加减法运算。
例如,对于分式方程$\frac{1}{2x} - \frac{1}{3y}$,分母的最小公倍数为$6xy$,将分子乘以相应的倍数进行转换得到$\frac{3y}{6xy} - \frac{2x}{6xy}=\frac{3y-2x}{6xy}$。
三、加减法运算注意事项
在进行分式方程的加减法运算时,需要注意以下几点:
1. 确保分式的分母相同或转换成相同的分母;
2. 分子之间进行加减法运算时,分母保持不变;
3. 结果可能需要进行约分或化简。
通过以上介绍,我们可以看到分式方程的加减法运算并不复杂,关键在于找到合适的方法将分式转换成相同的分母,然后进行简单的加减法运算即可。
希望本文的内容能够帮助到大家理解分式方程的加减法运算,更好地解决相关问题。
分式的加减法
分式的加减法
知识要点:
1、多个分式之间用“+”“-”连接起来的运算叫分式的加减法。
2、同分母的分式相加减,分母不变,分子相加减。
3、通分:利用分式基本性质,将异分母分式化成同分母分式的过程。
4、异分母的分式相加减,先通分,化成同分母分式相加减,再按同分母分式相
加减的运算法则运算。
注意:整式与分式相加减时,可以把整式看成分母为1的式子。
解题方法:
1、先将分式中所有分母分解因式,若不能分解的,把分母本身看成一个因式。
2、确定公分母:取所有分母系数的最大公倍数作为公分母的系数,取所有分母
中含未知数的不同因式和相同因式的最高次幂的乘积作为公分母的字母项,系数与字母项的乘积作为公分母。
(注意:互为相反数的因式,可以提出负号,使其变成相同的因式)
3、用公分母分别除以各个分式原来的分母,把商分别与各分式的分子相乘,所
得的积作为各分式的分子。
4、把公分母作为最后和或差的分母,把各个变化后的分子相加减。
各个分子的
符号与各个分式前的符号相同,如果分子是多项式,要在分子两端加括号。
5、能合并的合并,能约分的约分。
最后化简成最简分式。
同分母和异分母相加减混合运算方法:
1、合并同分母项,移项时要注意与分式前的符号一起移动。
2、再按异分母分式加减法则进行计算。
数学分式的计算方法
数学分式的计算方法数学分式是数学中常见的一种表达形式,它由分子和分母组成,分子和分母都可以是数或者变量的组合。
在计算数学分式时,我们需要掌握一些基本的计算方法和技巧。
一. 分式的加减法1. 分式的加法:当两个分式的分母相同时,可以直接将分子相加,并保持分母不变。
例如,计算1/3 + 2/3,由于分母相同,所以直接将分子相加得到3/3,即1。
2. 分式的减法:当两个分式的分母相同时,可以直接将分子相减,并保持分母不变。
例如,计算4/5 - 2/5,由于分母相同,所以直接将分子相减得到2/5。
3. 分式的加减法:当两个分式的分母不同时,我们需要先找到它们的最小公倍数作为通分的分母,并将分子进行相应的乘法运算后再进行加减。
例如,计算1/2 + 1/3,首先找到2和3的最小公倍数为6,然后将分子进行相应的乘法运算得到3/6 + 2/6,最后得到5/6。
二. 分式的乘除法1. 分式的乘法:将两个分式的分子相乘作为新的分子,分母相乘作为新的分母。
例如,计算2/3 * 4/5,将分子相乘得到8,分母相乘得到15,所以结果为8/15。
2. 分式的除法:将第一个分式的分子乘以第二个分式的倒数,作为新的分子,第一个分式的分母乘以第二个分式的分子,作为新的分母。
例如,计算2/3 ÷ 4/5,将2/3乘以5/4得到10/12,最后可以化简为5/6。
三. 分式的化简与约分1. 分式的化简:将一个分式的分子和分母同时除以它们的最大公约数,可以得到一个化简后的分式。
例如,将12/16化简为3/4,因为12和16的最大公约数为4,所以同时除以4得到3/4。
2. 分式的约分:将一个分式的分子和分母同时除以它们的公因子,可以得到一个约分后的分式。
例如,将15/25约分为3/5,因为15和25的公因子为5,所以同时除以5得到3/5。
四. 分式的整数部分和真分数部分1. 分式的整数部分:当一个分式的分子大于或等于分母时,可以将其化简为一个整数和一个真分数相加。
分式的加减法练习分式的加减运算
分式的加减法练习分式的加减运算分式是数学中的一种运算形式,可以进行加法、减法、乘法和除法等运算。
本文将着重练习分式的加法和减法运算。
一、分式的加法对于分式的加法,我们需要满足分母相同的条件下进行运算。
下面将通过例子来详细说明:例1:计算1/4 + 3/4。
解:由于两个分数的分母相同,可以直接将分子相加,分母保持不变。
1/4 + 3/4 = (1 + 3)/4 = 4/4 = 1例2:计算2/3 + 1/5。
解:这里分母不同,我们需要先找到它们的最小公倍数(LCM),然后对分子进行相应的放大。
最小公倍数(LCM) = 3 * 5 = 15将分母为3的分数2/3转化为分母为15的分数:(2/3) * (5/5) = 10/15将分母为5的分数1/5转化为分母为15的分数:(1/5) * (3/3) = 3/15现在两个分数的分母相同,可以直接将分子相加。
10/15 + 3/15 = 13/15二、分式的减法对于分式的减法,也需要满足分母相同的条件下进行运算。
下面继续通过例子来说明:例3:计算5/8 - 1/8。
解:由于两个分数的分母相同,可以直接将分子相减,分母保持不变。
5/8 - 1/8 = (5 - 1)/8 = 4/8 = 1/2例4:计算2/3 - 1/5。
解:同样,这里分母不同,我们需要先找到它们的最小公倍数(LCM),然后对分子进行相应的放大。
最小公倍数(LCM) = 3 * 5 = 15将分母为3的分数2/3转化为分母为15的分数:(2/3) * (5/5) = 10/15将分母为5的分数1/5转化为分母为15的分数:(1/5) * (3/3) = 3/15现在两个分数的分母相同,可以直接将分子相减。
10/15 - 3/15 = 7/15三、总结通过以上例子,我们可以总结出分式的加法和减法规则:1. 加法规则:分母相同,直接将分子相加,分母保持不变。
2. 减法规则:分母相同,直接将分子相减,分母保持不变。
分式的加减法课件
目 录
• 分式加减法的概念 • 分式加减法的运算 • 分式加减法的应用 • 分式加减法的练习题 • 分式加减法的总结与回顾
01
分式加减法的概念
分式的定义
总结词
分式是数学中一种基本的代数式,表 示两个整式相除的关系。
详细描述
分式由分子、分母和分数线组成,其 中分子是一个整式,分母也是一个整 式,分数线表示除法运算。例如, $frac{x^2 + 1}{x - 1}$是一个分式。
04
分式加减法的练习题
基础练习题
01
判断分式是否合法
02
判断分式是否合并同类项
提升练习题
计算复杂分式的加减法 化简复杂分式
判断复杂分式是否相等 解决与分式加减法相关的实际问题
综合练习题
01
02
03
04
分式加减法的混合运算
分式与整式的混合运算
解决与分式加减法相关 的复杂问题
感谢观看
THANKS
分式加减法的规则
总结词
分式加减法的规则包括同分母的分式相 加减、异分母的分式通分后再加减等。
VS
详细描述
在进行分式加减法时,首先需要确定分母 是否相同。如果分母相同,则直接将分子 相加减;如果分母不同,则需要先进行通 分,使分母相同后再进行加减运算。例如 ,计算$frac{x}{x - 1} - frac{2}{x + 1}$时 ,可以先将两个分式的分母通分为$(x 1)(x + 1)$,然后进行分子相减得到 $frac{x(x + 1) - 2(x - 1)}{(x - 1)(x + 1)} = frac{x^2 + x - 2x + 2}{x^2 - 1} = frac{x^2 - x + 2}{x^2 - 1}$。
初中数学分式的加减知识点
If one day I have money or I am completely out of money, I will start wandering.整合汇编简单易用(页眉可删)初中数学分式的加减知识点分式加减法法则(rule of addition and subtraction of fraction)是分式的运算法则之一。
下面是初中数学分式的加减知识点,快来看看吧!初中数学知识点总结:分式的加减法则以下是对分式的加减知识点的总结学习,同学们认真记录笔记。
法则:同分母的分式相加减,分母不变,把分子相加减。
用式子表示为:b(a)±b(c)=b(a±c)法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。
用式子表示为:b(a)±d(c)=bd(ad)±bd(bc)=bd (ad±bc)注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。
希望上面对分式的加减知识点的总结内容,同学们都能很好的掌握,并在考试中取得理想的成绩。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的`数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面;②两条数轴;③互相垂直;④原点重合。
三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的加减法(二)
授课时间:2008年3月28日授课教师:许荣爱
授课班级:八年级2班
教学目标:
1、知识与技能:掌握异分母的加减法,以及简单的分式应用。
2、过程和方法:经历观察、探索异分母分式加减法的过程,理解并能正确运用分式的两个基本法则。
3、情感态度与价值观:以积极求是的态度来提高自身的能力。
增进同学间的交流。
教学重、难点
1、重点:掌握异分母的分式相加减。
2、难点:灵活应用分式的基本性质、因式分解等进行通分,化异分母为同分母的分式相加减。
教学过程
(一)复习提问
1.什么叫通分?2.通分的关键是什么?
3.什么叫最简公分母?4.通分的作用是什么?(引出新课)
(二)新课
1.由学生小结异分母的分式加减法法则.
文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
例1 计算:
例2 计算:
(三)课堂小结
1.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.2.作为最后结果,如果是分式则应该是最简分式.
(四)课堂练习
教材P.73.1、2
作业:
教材P.75中3、4、。