2020-2021上海民办新黄浦实验学校初三数学上期末第一次模拟试题(附答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴b<0,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵x=1时,y<0,
∴a+b+c<0,故②错误,
∵x=-1时,y>0,
∴a-b+c>0,
∴a+c>b,故③正确,
∵对称轴x=1,
∴- =1,
∴2a+b=0,故④正确,
∵抛物线与x轴有两个交点,
∴△=b2-4ac>0,故⑤错误,
故选D.
∵x=﹣ =1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
【详解】
解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,
∴全班共送:(x-1)x=1980,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.
2.D
解析:D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
23.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.
(1)若连接AO,试判断四边形AECO的形状,并说明理由;
3.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()
A.MB.PC.QD.R
4.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是( )
A.2B.1C.0D.﹣1
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1Fra Baidu bibliotek与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
22.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
A.4个B.3个C.2个D.1个
6.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()
A.4- B.4- C.8- D.8-
7.一元二次方程x2+x﹣ =0的根的情况是( )
A.有两个不等的实数根B.有两个相等的实数根
x(x﹣4)=0,
x﹣4=0,x=0,
x1=4,x2=0,
故选B.
【点睛】
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
9.D
解析:D
【解析】
【分析】
根据二次函数的性质,利用数形结合的思想一一判断即可.
【详解】
解:∵抛物线的开口向上,
∴a>0,
∵对称轴在y轴的右侧,
∴a,b异号,
C.无实数根D.无法确定
8.方程x2=4x的解是( )
A.x=0B.x1=4,x2=0C.x=4D.x=2
9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤ =b2-4ac<0中,成立的式子有( )
A.②④⑤B.②③⑤
(2)求证:AH是⊙O的切线;
(3)若AB=6,CH=2,则AH的长为.
24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
它们都经过Q,所以点Q为这条圆弧所在圆的圆心.
故选:C.
【点睛】
本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.
4.A
解析:A
【解析】
【分析】
把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.
【详解】
解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,
6.B
解析:B
【解析】
试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF= ,
S△ABC= AD•BC= ×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4- π.
7.A
解析:A
【解析】
【分析】
根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.
25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)如果AB=5,BC=6,求DE的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.
2020-2021上海民办新黄浦实验学校初三数学上期末第一次模拟试题(附答案)
一、选择题
1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有 名学生,那么所列方程为( )
A. B.
C. D.
2.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1B.m≤1C.m>1D.m<1
【详解】
设二、三两个月每月的平均增长率是x.
根据题意得:100(1+x)2=150,
故选:B.
【点睛】
本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“-”.
14.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
16.如图,抛物线 的对称轴为 ,点P,点Q是抛物线与x轴的两个交点,若点P的坐标为(4,0),则点Q的坐标为__________.
17.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.
【详解】
∵△=12﹣4×1×(﹣ )=2>0,
∴方程x2+x﹣ =0有两个不相等的实数根.
故选:A.
【点睛】
本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
8.B
解析:B
【解析】
【分析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2=4x,
x2﹣4x=0,
12.B
解析:B
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.
【详解】
解:画树状图如下:
,
一共12种可能,两人摸出的小球颜色相同的有6种情况,
所以两人摸出的小球颜色相同的概率是 = ,
故选:B.
【点睛】
此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
20.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于_____.
三、解答题
21.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
详解:∵方程 有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
3.C
解析:C
【解析】
【分析】
根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.
【详解】
解:作AB的垂直平分线,作BC的垂直平分线,如图,
C.100(1+x)+100(1+x)2=150D.100+100(1+x)+100(1+x)2=150
12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )
A. B. C. D.
二、填空题
13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.
C.①②④D.①③④
10.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
11.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是( )
A.100(1+2x)=150B.100(1+x)2=150
18.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是 ,则飞机着陆后滑行的最长时间为秒.
19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
解得m= ,与m<﹣2矛盾,故m值不存在;
②当﹣2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=4,
解得m=﹣ ,m= (舍去);
③当m>1时,x=1时二次函数有最大值,
此时,﹣(1﹣m)2+m2+1=4,
解得m=2,
综上所述,m的值为2或﹣ .
故选C.
11.B
解析:B
【解析】
【分析】
可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.
∴k=2,
故选A.
【点睛】
本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.
5.B
解析:B
【解析】
【分析】
【详解】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
此时﹣(﹣2﹣m)2+m2+1=4,
∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵x=1时,y<0,
∴a+b+c<0,故②错误,
∵x=-1时,y>0,
∴a-b+c>0,
∴a+c>b,故③正确,
∵对称轴x=1,
∴- =1,
∴2a+b=0,故④正确,
∵抛物线与x轴有两个交点,
∴△=b2-4ac>0,故⑤错误,
故选D.
∵x=﹣ =1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;
∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.
故选:B.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
【详解】
解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,
∴全班共送:(x-1)x=1980,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.
2.D
解析:D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
23.如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.
(1)若连接AO,试判断四边形AECO的形状,并说明理由;
3.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()
A.MB.PC.QD.R
4.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是( )
A.2B.1C.0D.﹣1
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1Fra Baidu bibliotek与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
22.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
A.4个B.3个C.2个D.1个
6.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()
A.4- B.4- C.8- D.8-
7.一元二次方程x2+x﹣ =0的根的情况是( )
A.有两个不等的实数根B.有两个相等的实数根
x(x﹣4)=0,
x﹣4=0,x=0,
x1=4,x2=0,
故选B.
【点睛】
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
9.D
解析:D
【解析】
【分析】
根据二次函数的性质,利用数形结合的思想一一判断即可.
【详解】
解:∵抛物线的开口向上,
∴a>0,
∵对称轴在y轴的右侧,
∴a,b异号,
C.无实数根D.无法确定
8.方程x2=4x的解是( )
A.x=0B.x1=4,x2=0C.x=4D.x=2
9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤ =b2-4ac<0中,成立的式子有( )
A.②④⑤B.②③⑤
(2)求证:AH是⊙O的切线;
(3)若AB=6,CH=2,则AH的长为.
24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
它们都经过Q,所以点Q为这条圆弧所在圆的圆心.
故选:C.
【点睛】
本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.
4.A
解析:A
【解析】
【分析】
把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.
【详解】
解:设抛物线y=2(x-3)2+k向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,
6.B
解析:B
【解析】
试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF= ,
S△ABC= AD•BC= ×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4- π.
7.A
解析:A
【解析】
【分析】
根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.
25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)如果AB=5,BC=6,求DE的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.
2020-2021上海民办新黄浦实验学校初三数学上期末第一次模拟试题(附答案)
一、选择题
1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有 名学生,那么所列方程为( )
A. B.
C. D.
2.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1B.m≤1C.m>1D.m<1
【详解】
设二、三两个月每月的平均增长率是x.
根据题意得:100(1+x)2=150,
故选:B.
【点睛】
本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“-”.
14.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_____.
16.如图,抛物线 的对称轴为 ,点P,点Q是抛物线与x轴的两个交点,若点P的坐标为(4,0),则点Q的坐标为__________.
17.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.
【详解】
∵△=12﹣4×1×(﹣ )=2>0,
∴方程x2+x﹣ =0有两个不相等的实数根.
故选:A.
【点睛】
本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
8.B
解析:B
【解析】
【分析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2=4x,
x2﹣4x=0,
12.B
解析:B
【解析】
【分析】
画树状图展示所有12种等可能的结果数,再两人摸出的小球颜色相同的结果数然后根据概率公式求解.
【详解】
解:画树状图如下:
,
一共12种可能,两人摸出的小球颜色相同的有6种情况,
所以两人摸出的小球颜色相同的概率是 = ,
故选:B.
【点睛】
此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
20.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于_____.
三、解答题
21.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
详解:∵方程 有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
3.C
解析:C
【解析】
【分析】
根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.
【详解】
解:作AB的垂直平分线,作BC的垂直平分线,如图,
C.100(1+x)+100(1+x)2=150D.100+100(1+x)+100(1+x)2=150
12.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是( )
A. B. C. D.
二、填空题
13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.
C.①②④D.①③④
10.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
11.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x,则下列方程正确的是( )
A.100(1+2x)=150B.100(1+x)2=150
18.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是 ,则飞机着陆后滑行的最长时间为秒.
19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
解得m= ,与m<﹣2矛盾,故m值不存在;
②当﹣2≤m≤1时,x=m时,二次函数有最大值,
此时,m2+1=4,
解得m=﹣ ,m= (舍去);
③当m>1时,x=1时二次函数有最大值,
此时,﹣(1﹣m)2+m2+1=4,
解得m=2,
综上所述,m的值为2或﹣ .
故选C.
11.B
解析:B
【解析】
【分析】
可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.
∴k=2,
故选A.
【点睛】
本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.
5.B
解析:B
【解析】
【分析】
【详解】
解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
此时﹣(﹣2﹣m)2+m2+1=4,