一元一次不等式组ppt课件一
合集下载
人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
人教版七年级数学下册《一元一次不等式》PPT优质教学课件
(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
第10讲 一元一次不等式组
三、解答题 (共 54 分 ) 15 . (1)(4 分 )(2015· 连云港)解不等式组:
2x+ 1>5, x+1>4(x-2).
2x+ 1>5, 解: x+1>4(x-2),
解不等式①,得 x> 2. 解不等式②,得 x< 3.
① ②
∴不等式组的解集是 2<x<3.
2 x- 1≥x+ 1, (2)(4分 )解不等式组: 1 x- 2> 2x- 1. 3 2 x- 1≥x+ 1, 解: 1 x- 2> 2x- 1, 3x+1<0, D. 3-x>0
3x+ 4≥ 0, 3 . 不 等 式 组 1 x-24≤ 1 2 积为 0 .
的所有整数解的
5-2x≥-1, 4.已知关于 x 的不等式组 无解, x-a>0
则 a 的取值范围是 a≥ 3.
解不等式①,得 2x≥- 2,解得 x≥- 1. 解不等式②,得 x< 4. 则不等式组的解集为- 1≤ x< 4.
在数轴上表示如下图所示.
4 x+ 1≤7x+ 10, (4)(5 分 )(2015· 北京 ) 解不等式组: x-8 x-5< , 3 并写出它的所有非负整数解.
∴不等式组的解集是 x> 5. ① ②
解不等式①,得 x≥ 3.解不等式②,得 x> 5.
2x+ 1≥- 1, (3)(5分 )解不等式组: 1+ 2x >x- 1, 3
等式组的解集在数轴上表示出来.
并把不
2x+ 1≥- 1, ① 解:1+ 2x >x- 1, ② 3
m= 2, ∴ n= 1.
∴ x2- 4x+ 2mn= x2- 4x+ 4= (x- 2)2. 答案: (x- 2)2
《一元一次不等式》完整版PPT1
变式:若x=2是不等式2x-a-2<0的一个解,则a可取的最小正整数为( ) 变式:不等式4-3x≥2x-6的非负整数解有( ) 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.
移项
不等式的性质1
m≥2 B.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
73
64
7.(课本P124 T2)当x或y满足什么条件时,下列关系式成立? (1)2(x+1)大于或等于1; (2)4x与7的和不小于6; (3)y与1的差不大于2y与3的差; (4)3y与7的和的四分之一小于-2.
拓展提升 8.解关于x的一元一次不等式 x+8>4x+m(m是常数).
变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
A.±1 B. 1 C. -1 D. 0
问题思考 解一元一次方程
2(1+x)=3
解:去括号 2+2x=3
移项 2x=3-2
合并同类项 2x=1
系数化为1
x1 2
解一元一次不等式 2(1+x)<3
Hale Waihona Puke 在数轴上表示解集?典例分析
例 解下列不等式,并在数轴上表示解集. 变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
(1)x +1>2x; (2) +2>0; ③移项、合并同类项,得-x>-13;
2 3个 D.
C.
1
①去分母,得5(x+2)>3(2x-1);
A.
(课本P124 T1)解下列不等式,并在数轴上表示解集:
x
课件《一元一次不等式》完美PPT课件_人教版1
平均速度是4km/h,他们最远能登上哪座山顶?(图 现用甲,乙两种运输车将56吨救灾物资运往灾区,甲种车载重为6吨,乙种运输车载重为5吨,案排车辆不超过10辆,则甲种运输车至
少安排(
) A。
中数字表示出发点到山顶的路程.) 一个长方形的长为x米,宽为50米,如果它的周长不小于280米,那么 x应满足的不等式为 (
分析 本题涉及的数量关系是: 销售额-成本-税费≥纯利润(900元).
解 设每套童装的售价是x元.
则
40·x-90×40-40·x·10%≥900.
解这个不等式,得
x ≥ 125.
答:每套童装的售价至少是125元.
议一议
应用一元一次不等式解决实际问题的步骤有哪些?
找出不等关系 实际问题
设未知数
列不等式
你能用关于x的 一个式子刻画水 位需满足的高度
要求吗?
145≤x≤175
热身题:
根据题意列不等式: 1. a的5倍与7的和不大于0: (5a+7)≤0 2.同样一款毛衣,在A,B两店都有卖,A店标价68元,B店不只68元,
用x表示B店这种毛衣的标价( x>68 )
3.甲有m元钱,乙有1150元钱,甲的钱数不足乙的钱数的一半,则m满 足的关系式是(m< 2 ×150)
他们在山顶休息了2 h,又上午7点到下午4点之间总共相隔9 h,即所用时间应少于或等于9 h.
如现果用要 甲获,得乙不两A低种于运2输9x0车+0元(将3的526纯-吨x利救)润≥灾4,物8每资套运童往装B灾的区2售,x价甲-至(种3少2车是-载x多重)≥少为4元68?吨,乙种C运输2车x载+(重3为25-吨x),≤案48排车辆不D超2过x1≥0辆48,则甲种运输车至
一元一次不等式组(共19张PPT)
与 1 x 1 7 3 x都成立?
2
2
15
问题探究
例2
x取哪些整数值时,1 2x 5 7
成立?
这个式子是 什么含义?
16
巩固练习 练习
x取哪些正整数值时,不等式 x 3 6
与 2x 110 都成立?
17
归纳总结
(1)你怎么理解一元一次不等式组的概念, 它的解集是什么含义? (2)如何解一个一元一次不等式组?具体 步骤有哪些? (3)在用数轴确定不等式组的解集时,有 哪些需要注意的问题?
9.3 一元一次不等式组 (第1课时)
1
课件说明
学习目标: (1)了解一元一次不等式组的概念及其解集的 含义. (2)会用数轴确定一元一次不等式组的解集, 体会数形结合的思想方法.
学习重点: 求解一元一次不等式组.
2
1.探究新知 用每分钟可抽30 t水的抽水机来抽污
水管道里积存的污水,估计积存的污水超 过1 200 t而不足1 500 t,那么将污水抽完 所用时间的范围是什么?
3
探究新知
两个 等量关系
两个 不等关系
方程组
同时 满足
不等式组
4
探究新知
30x 1200 x 40
30x 1500 x 50
40
50
5
探究新知
由同一未知数的几个一元 一次不等式所组成的一组不等 式,叫做一元一次不等式组.
注意:1.几个指两个或两个以上; 2.不等式组中只有一个未知数; 3.由一元一次不等式组成;
6
考考你 下列各式哪些是一元一次不等式
组,哪些不是.
x2(x1)814xx11,; 是
X>3, (2)
X<6;
人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】
分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
2(x+70) >350 70x <7560
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)
-3、-2、-1.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.
一元一次不等式的应用ppt课件
5
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
5
探究新知
应用一元一次不等式可以刻画和解决很多实际生活
中的有关数量不等关系的问题.
6
6ห้องสมุดไป่ตู้
探究新知
列不等式解应用题的一般步骤:
审题
1
检验解的合理性
列出不等式
2
设未知数
3
4
解不等式
5
6
作答
7
7
探究新知
例1 有一家庭工厂投资2万元购进一台机器,生产某种商品.这种
商品每个的成本是3元,出售价是5元,应付的税款和其他费
>1 000
卡费,设按标价累计购物金额为x元,当x_______时,办理购
物“金卡”省钱.
解析:在办理购物“金卡”省钱时,
满足的关系式为:标价x-标价×0.9>购卡费.
即:x-0.9x>100,解得x>1 000.
14
14
探究新知
例5
一水果店进了某种水果1吨,进价是7元/千克,售价定为10元/千克.
3. 初步体会一元一次不等式的应用价值,形成严谨的学习态
度和独立思考的习惯.
2
2
新课导入
复习回顾
你还记得应用一元一次方程解实际问题的步骤吗?
审题
1
列出方程
2
设未知数
3
检验解的合理性
4
解方程
5
6
作答
我们能用列方程的方法解决一些现实生活中数量相
等关系的问题. 实际上,现实生活中还存在着许多数量
之间不相等的关系.这些问题应该如何来解决呢?
步骤类似,可概括为:“审、设、列、解、验、答”六步,
其不同点是方程是找相等关系,不等式是找不等关系.
11
《一元一次不等式》ppt全文课件
-16 0
《一元一次不等式》上课实用课件(P PT优秀 课件)
3.课堂练习
2(x 5) 3( x 5)
解:去括号,得:2x+10<3x-15 移项, 得:2x-3x<-15-10
合并同类项,得: -x < -25 系数化为1,得: x > 25 这个不等式的解集在数轴上的表示:
《一元一次不等式》上课实用课件(P PT优秀 课件)
《一元一次不等式》上课实用课件(P PT优秀 课件)
5.布置作业 教材 习题9.2 第1、2、3题
《一元一次不等式》上课实用课件(P PT优秀 课件)
问题4 解一元一次不等式和解一元一次方程 有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简形式.
不同之处: (1)解法依据不同:解一元一次不等式的依据是不 等式的性质,解一元一次方程的依据是等式的性质. (2)最简形式不同,一元一次不等式的最简形式是 x>a或x<a ,一元一次方程的最简形式是x=a.
(1) 2(1 x) 3
解:去括号,得 移项,得
合并同类项,得
系数化为1,得
2 2x 3 2x 3 2
2x 1 x 1
2
《一元一次不等式》上课实用课件(P PT优秀 课件)
《一元一次不等式》上课实用课件(P PT优秀 课件)
例 解下列不等式,并在数轴上表示解集:
(2) 2 x 2x 1
2
3
例 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
问题(1) 解一元一次不等式的目标是什么? 问题(2) 你能类比一元一次方程的步骤,解这个不等式吗?
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品PPT
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
在数学的天地里,重 要的不是我们知道什么 ,而是我们怎么知道什 么。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
——毕达哥拉斯
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
练习一 1、关于x的不等式组
x<8 x>m
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
解不等式组:
5x 10 3x 12 0
① ②
解 解不等式①,得
x 2
解不等式②,得
x4
在数轴上表示不等式①、②的解集
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2
所以,这个不等式组的解集是
4x
2 x4
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
2.利用数轴求出这些不等式的解集的公 共部分。
3.写出不等式组的解集。
大大取最大,小小取最小, 大小小大取中间,大大小小解不了。
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件 湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
不等式组
x>-1 x>2 x<-1 x<2 x>-1 x<2
数轴表示
-1 0 1 2 3
解集
解集的确定规律
x 2 同大取大
-1 0 1 2 3 -1 0 1 2 3
x 1 同小取小
1 x 2 “大”小“小” 大 中间找
x>2 x<-1
湘教版初中数学八年级上册 . 一元一次不等式组 课件精品课件
第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
a<b => a+c<b+c ,a-c<b-c.
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?
一元一次不等式(组)的解法课件(共22张PPT)
我们在初中已经知道,在上述问题情境列出的不 等式中,未知数的个数是1,且它的次数为1,这样的 整式不等式称为一元一次不等式.使不等式成立的未 知数的值的集合,通常称为这个不等式的解集. 试一试:利用一元一次不等式解答本章导语中提到的 问题(2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).
浙教版八年级上3.3一元一次不等式ppt课件
1、能使不等式成立的未知数的值的全体, 叫做不等式的解集,简称不等式的解
2、求不等式解集的过程叫解不等式.
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1. 判断题
⑴ X=2是x﹣1﹥0的解 。 ( ⑵ x﹣1﹥0的解是x=2。 ( ⑶ x﹣1﹥0的解x>1 。 ( ⑷ x﹣1﹥0的解是x>2 。 (
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
与解一元一次方程的步骤类似可得解 一元一次不等式的步骤:
①去分母; ②去括号;
③移项;
④合并同类项;
⑤两边都除以未 知数的系数.(注 意系数的符号)
2024/7/29
解:
7m+3
2m-3=<
去分母,得
2
小组合作:完成工作
2(2m-3)=7m< +3
去括号,得
4m-6=<7m+3
移项,得
4m-7m=<6+3
不等式基本性质23 单项式乘以多项式法则
不等式基本性质12
合并同类项,得
-3m=<9
合并同类项法则
两边都除以-3,得
m=>-3 不等式基本性质23
怎么变向了?
2024/7/29
课堂小结
通过本堂课的学习 我学会了… …
我体会到… … 我感到困惑的是… …
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
2、求不等式解集的过程叫解不等式.
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1. 判断题
⑴ X=2是x﹣1﹥0的解 。 ( ⑵ x﹣1﹥0的解是x=2。 ( ⑶ x﹣1﹥0的解x>1 。 ( ⑷ x﹣1﹥0的解是x>2 。 (
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
与解一元一次方程的步骤类似可得解 一元一次不等式的步骤:
①去分母; ②去括号;
③移项;
④合并同类项;
⑤两边都除以未 知数的系数.(注 意系数的符号)
2024/7/29
解:
7m+3
2m-3=<
去分母,得
2
小组合作:完成工作
2(2m-3)=7m< +3
去括号,得
4m-6=<7m+3
移项,得
4m-7m=<6+3
不等式基本性质23 单项式乘以多项式法则
不等式基本性质12
合并同类项,得
-3m=<9
合并同类项法则
两边都除以-3,得
m=>-3 不等式基本性质23
怎么变向了?
2024/7/29
课堂小结
通过本堂课的学习 我学会了… …
我体会到… … 我感到困惑的是… …
2024/7/29
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
通过本节课的学习, 你有什么收获?
作业
习题1.10部分
2.已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两 种布料生产M,N两种型号的时装共80套,已知做一套M型号时装需A种 布料0.6米,B种布料0.9米,做一套N型号时装需用A种布料1.1米, B 种布料0.4米,若设生产N型号的时装套数为x,用这批布料生产这两 种型号的时装有几种方案?
根据对话的内容,试求出饼干和牛奶的 标价各是多少元.
补充练习 1若前面 每人分3件,则最后一个人得到的玩具数不足2件.求小朋友的人数 与玩具数.
1.解:设小朋友的人数为x,则玩具数为(2x+3)件,根据题意,得
3( x 1) 2 x 3 2 x 3 3( x 1) 2
第一章 一元一次不等式和 一元一次不等式组
第六节 一元一次不等式组(三)
一元一次不等式的解集怎么确定?
160 100 0.32 x 280
大约需要188天到563天,小颖的头发才能 生长到16cm到28cm.
阿姨,我要买 一 盒饼干和 一袋牛奶(递 上10元钱)
小朋友,本来你用10 元钱买一盒饼干是有 多的,但是再买一袋 牛奶就不够了!今天 是儿童节,我给你买 的饼干打9折,两样东 西请拿好!还有找你 的8角钱. 一盒饼干 的标价可 是整数哦!
2.解:生产N型号的时装套数为x时,则生产M型号的时装套数为 (80-x),根据题意,得 0.6(80 x) 1.1x 70 0.9(80 x) 0.4 x 52
活动与探究 火车站有某公司待运的甲种货物1530吨,乙种货物 1150吨,现计划用50节A、B两种型号的车厢将这批 货物运至北京,已知每节A型车厢的运费是0.5万元, 每节B节车厢的运费是0.8万元;甲种货物35吨和乙 种货物15吨可装满一节A型车厢,甲种货物25吨和乙 种货物35吨可装满一节B型车厢,按此要求安排A、B 两种车厢的节数,共有哪几种方案?请你设计出来; 并说明哪种方案的运费最少.