扭转习题解答
材料力学第3 章 扭 转习题及答案
第 三 章 扭 转一、判断题1.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
( × ) 2.薄壁圆管和空心圆管的扭转切应力公式完全一样。
( × ) 3.圆杆扭转变形实质上是剪切变形。
( √ ) 4.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
( √ )5.材料相同的圆杆,它们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
( × ) 6.切应力互等定理,仅适用于纯剪切情况。
( × ) 7.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
( √ ) 8.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
( √ ) 9.受扭圆轴的最大切应力只出现在横截面上。
( × ) 10. 因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭矩达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( √ )二、填空题1.一级减速箱中的齿轮直径大小不等,在满足相同的强度条件下,高速齿轮轴的直径要比低速齿轮轴的直径( 小 )。
2. 当实心圆轴的直径增加1培时,其抗扭强度增加到原来的( 8 )倍,抗扭刚度增加到原来的( 16 )倍。
3. 直径D=50mm 的圆轴,受扭矩T=2.15kn.m ,该圆轴横截面上距离圆心10mm 处的剪应力τ=(35.0 MPa ),最大剪应力τmax=(87.6 MPa )。
4. 一根空心轴的内外径分别为d ,D ,当D=2d 时,其抗扭截面模量为(33256153215D d ππ或)。
5. 直径和长度均相等的两根轴,在相同的扭矩作用下,而材料不同,它们的τmax 是( 相 )同的,扭转角φ是( 不 )同的。
6. 等截面圆轴扭转时的单位长度相对扭转角为θ,若圆轴直径增大一倍,则单位长度扭转角将变为(16θ)。
(仅供参考)第3章扭转作业参考解答
第3章作业参考解答3-1 试作附图中各圆杆的扭矩图。
习题3-1附图解答 各杆的轴力图分别见解答附图(a)、(b)、(c)、(d)。
3-2 一传动轴以每分钟200转的角速度转动,轴上装有4个轮子,如附图,主动轮2输入功率60kW ,从动轮1,3,4依次输出功率15kW ,15kW 和30kW 。
(1)作轴的扭矩图。
(2)将2,3轮的位置对调,扭矩图有何变化? 解答 (1)各轮上作用的力偶矩为m kN T ×=´´´=716.0200260101531pm kN T ×=´´´=865.2200260106032p ,m kN T ×=´´´=716.0200260101533pm kN T ×=´´´=432.1200260103034p扭矩图见附图(a),最大扭矩为m kN M x ×=149.2max 。
(2) 2,3轮的位置对调后扭矩图见附图(b),最大扭矩为m kN M x ×=432.1max 。
(a) M x(c) M x /N ·m(b)M x /kN ·m(d) M x /kN ·m习题3-2附图T 1T 2 T 3 T 4 (a)M x /kN ·m1.432(b) M x /kN ·m3-3 一直径d =60mm 的圆杆,其两端受T =2kN·m 的外力偶矩作用而发生扭转,如附图示。
设轴的切变模量G =80GPa 。
试求横截面上1,2,3点处的切应力和最大切应变,并在此三点处画出切应力的方向。
解答 1,2,3点处的切应力分别为MPaMPa W T p 4.313/22.4716/06.014.320000.031332===´===t t t t 切应力方向见附图(1)。
4.6 扭转-习题课
第4章扭转4-1 判断题判断下面说法是否正确:切应力互等定理只有材料处于线弹性范围才成立答:错。
推导切应力互等定理时只用到了平衡条件,没有牵涉到材料是否线弹性,因此,只要处于平衡状态,切应力互等定理都是成立的。
4-2 判断题判断下面说法是否正确:低碳钢圆轴扭转破坏是沿横截面剪断。
答:对。
低碳钢是塑性材料,其抗剪能力低于抗拉、抗压能力,因此它的扭转破坏面为最大切应力所在面,即横截面。
4-3 选择题圆轴单位长度扭转角与 无关。
A.扭矩大小B.杆长C. 材料D. 截面几何性质答:B 。
由 可知,表达式中无杆长项。
PGI T =θ4-4 选择题m axτm ax τm ax τ图示由两种不同材料等截面杆连接而成的圆轴,两端受到扭转外力偶作用后,左、右两段 。
A. 相同, 不同B. 不同, 相同C. 与 都不同D. 与都相同 M eM e钢铝l ltm ax WT=τm ax τPGI T=θθ答: A左右两段内力相同, ,与材料无关,所以两段 相同。
而 ,式中G 代表材料不同。
材料不同时G 不同,因此两段 m ax τm ax τθθθθ4-5 选择题图示圆轴表面贴有三片应变片,实测时应变片 的度数几乎为零。
A. 1和2B. 2和3C. 1和3D. 1、2和3M eM e1 2345答: C圆轴在线弹性范围内扭转变形时,轴向尺寸和横截面尺寸没有变化,因此1、3两片应变片不应有度数。
4-6 选择题为提高碳钢圆轴的扭转刚度,下列措施中最有效的是 。
A. 减小轴的长度B. 改用高强度结构钢C. 提高轴表面的粗糙度D. 增加轴的直径P GI PI 答: D圆轴扭转刚度为 ,各种钢材的切变模量G 相差不多,更换钢种无明显效果, 而增加轴的直径可显著提高4-7 计算题Dd ABCM e123M em m 100=D m m 50=d []MPa 60=τ 图示圆轴AB 段为实心,BC 段为空心,它们的外直径都为 ,BC 段的内直径 材料的许用切应力 ,试求此轴能承受的M e 最大值。
扭转典型习题解析
扭转典型习题解析1 一内径d =100mm 的空心圆轴如图示,已知圆轴受扭矩m kN 5⋅=T ,许用切应力][τ=80MPa ,试确定空心圆轴的壁厚。
解题分析:因为不知道壁厚,所以不能确定是不是薄壁圆管。
分别按薄壁圆管和空心圆轴设计。
解: 1、按薄壁圆管设计薄壁圆管扭转时,假设切应力沿壁厚均匀分布,设壁厚为δ,平均半径为2/0)(δ+=d R ,则扭转切应力为 δτ20π2R T=强度条件为][ττ≤,于是得][π22τδδTd =+)( ][π22223τδδδTd d =++ ()Pa1080πm N 1052m 10100m 1010026323233××⋅××=×+××+−−δδδ解得 mm 70.3m 1070.33=×=−δ 2、按空心圆轴设计强度条件为 ][pmax ττ≤=W T将δ216π44p +=−=d D d D DW );(代入得][π16][π][π164444=−−≤−τττd TD D d D DT,)(0Pa)108(m 1.0πm N 10516Pa 1080π64346=××−×⋅××−×××)(D D解得mm 107.7m 10107.73=×=−Dmm 85.32mm100mm 7.1072=−=−=d D δ 比较可知,两种设计的结果非常接近。
讨论: 当10/0R ≤δ时,即认为是薄壁圆管,可以直接使用薄壁管扭转公式。
2 图示受扭圆杆,沿平面ABCD 截取下半部分为研究对象,如图b 所示。
试问截面ABCD 上的切向内力所形成的力偶矩将由哪个力偶矩来平衡?解题分析:由切应力互等定理可知截面ABCD 上的切向内力分布及其大小。
该截面上切向内力形成一个垂直向上的力偶矩。
在图b 中,左右两个横截面上的水平切向内力分量形成垂直于截面ABCD 的竖直向下的力偶矩,正好与截面ABCD 上切向内力的合力偶矩平衡。
扭转习题1
mB
mA
mC
n
(b)
B
A
C
3
解:1.由功率与转速关系计算外力偶矩:
MA
9550 PA n
9550 36 200
1719(N m)
MB 9550 PB 9550 22 1050(N m)
n
200
MC 9550 PC 9550 14 669(N m)
(2)1-1截面的最大剪应力
(3)轴AB的最大剪应力
1 mC=0.2kNm
mB=0.1kNm
φ50 φ40
A
1D
mA=0.3kNm
解:画扭矩图
T
0.3kNm
+
C
B
0.1kNm
+
x
8
(1)在AD段上,D1=50mm,T1=300N.m
Ip1=0.1D14=0.1 ×504 =6.25×105
当ρ=20mm 时 ,
=
T1 I1
300 6.25105
20=0.9610-2(Mpa)
(2)在AD段上,R1=25mm
m ax1
T1 Ip1
R1
300 6.25105
25 1.2102 (Mpa)
(3)在DC段上, T1=300N.m, D2=40mm ,R2=20mm
Ip2=0.1D24=0.1 ×404 =2.56×105
14
6--28实心圆轴如图所示,已知输出扭矩MB=MC=1.64kN.m; MD=2.18kN.m,材料G=80Mpa,【τ】=40Mpa,【θ】=1。/m。 (1)求输入扭矩MA;
(2)试设计轴的直径;
扭转习题解答
第7章圆轴扭转主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图;(2)圆轴扭转时的应力和强度计算;(3)圆轴扭转时的变形和刚度计算。
圆轴扭转的概念、扭矩和扭矩图1.已知圆杆横截面上的扭矩,试画出截面上与T对应的切应力分布图。
解:截面上与T对应的切应力分布图如下:2.用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。
图7-2解:a)采用截面法计算扭矩(见图7-2a)。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-311。
取2-2截面左侧外力偶矩计算,由平衡方程062122=+⋅-+-T m kN )(,可得m kN T ⋅=-322。
取3-3截面右侧外力偶矩计算,可得m kN T ⋅=-133。
b) 采用截面法计算扭矩(见图7-2b )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-511。
取2-2截面左侧外力偶矩计算,由平衡方程05522=+⋅+-T m kN )(,可得m kN T ⋅-=-1022。
取3-3截面右侧外力偶矩计算,由平衡方程03333=+⋅+-T m kN )(,可得m kN T ⋅-=-633。
3. 作下图各杆的扭矩图。
解:a)采用截面法计算扭矩(见图7-3a )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅=-411。
取2-2截面右侧外力偶矩计算,可得m kN T ⋅-=-222。
作出扭矩图。
a)b) 图7-3 b) 由力矩平衡方程可得e A M M 2-=(负号表示与图中假设方向相反)。
采用截面法计算扭矩(见图7-3b )。
取1-1截面左侧外力偶矩计算,可得e M T 211-=-。
取2-2截面右侧外力偶矩计算,可得e M T -=-22。
作出扭矩图。
圆轴扭转时的应力和强度计算4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。
已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定(1) 采用实心轴时,直径d 1和的大小;(2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。
《材料力学》第3章 扭转 习题解
第三章扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。
试作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW) 转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。
钻杆钻入土层的深度m l 40=。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。
解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图T 图(kN.m)x x lM mx x T e0133.0)(-=-=-=。
]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。
[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。
若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。
材料力学_陈振中_习题第三章扭转
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
材料力学复习题第三章 扭 转
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转
习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×
∴
Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =
∫
ρ ⋅ τdA =
∫
r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转
9-1扭转习题
0 lBC GIP GIP
2lAB
取mx Tmax 110N m ,
IP
32
24
108
1.57 108 m4
AC
110 0.2 80109 1.57 108
(1
100 ) 2 200
0.0219rad
1.25
4.图(a)所示传动轴的转速n为200r/min,从主动轮上输 入功率kW,由从动轮1、3、4及5输出的功率分别为10kW、
32
mxb d
d 4 / 32
a
d
mxax
A
B
2d
A
mxb
x
B
答案: 1/8
l
(a)
l (b)
4.多边形截面棱柱受扭转力偶作用,根据( )定理可
以证明其横截面角点上的剪应力为( )。
答案: 剪应力互等,零。
二、选择
1.空心圆轴外径为D,内径为d,在计算最大剪应力时需要确定抗扭
截面系数WWtp,, 以下正确的是( )。
max
Tmax
G d4
180
32
d
4
32 2149180
81109 2 0.5
7.5102 m=75mm
综上述所以取d 75mm
5. 如图(a)所示,实心轴和空心轴通过牙式离合器 连接在一起。已知轴的转速n=100r/min,传递的
功率P= 7.5kW,材料的许用切应力 40MPa。试
答案:
3.应用公式 =T/IP计算扭转剪应力的基本条件是等截面
直圆杆,最大剪应力不超过材料的剪切比例极限。 ( )
材料力学专项习题练习扭转
扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。
2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。
4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。
扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。
10. 矩形截面杆扭转变形的主要特征是 。
1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。
证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。
12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。
05第五章扭转习题解析
力,轴的转速为n=300转/分。作轴的扭矩图。
1
解:
NA 50 m A 7024 7024 1170 N m n 300
NB 15 mB mC 7024 7024 351 N m n 300 NC 20 mD 7024 7024 468 N m n 300
d 63.3mm
10
m
得 D 791 . mm
已知直径d=50mm的钢制圆轴在扭转角为 6°时,轴
内最大剪应力等于90MPa,G=80GPa。求该轴长度。
Tl GIp
T Wt
解:
(1)
max
( 2)
(1) 得: ( 2)
G Ip l max Wt
2.33 m
6
15
解:外管与内轴承受的扭矩相等,设为T
m
ml Tl Tl G I p内 G I p内 G I p外
16
例:两端固定的圆截面等直杆AB,在截面
C受外力偶矩m作用,试求杆两端的支座反力
偶矩。
17
解:
静力平衡方程为: m A mB m 变形协调条件为: AB AC CB 0
12
解:由
d l 2
2 2 300 40
2 得 l d
30
max G 2.7 2
m max Wt
180
0.09425 MPa
0.09425 106
0.04 3
16
118 . Nm
材料力学习题扭转
-12-基本概念题一、选择题(如果题目有5个备选答案,选出 2〜5个正确答案,有 4个备选答案选出 一个正确答案。
)1. 图示传动轴,主动轮 A 的输入功率为 P A = 50 kW ,从动轮B ,C , D ,E 的输出功率 分另为 P B = 20 kW ,P C = 5 kW ,P D = 10 kW ,P E = 15 kW 。
则轴上最大扭矩 T 出现在max)。
A . BA 段B . AC 段C . CD 段D . DE 段题1图2.图示单元体的应力状态中属正确的纯剪切状态的是( )。
题2图3. 上题图示单元体的应力状态中属正确的是(4. 下列关于剪应力互等定理的论述中正确的是( A. 剪应力互等定理是由平衡B. 剪应力互等定理仅适用于纯剪切的情况C. 剪应力互等定理适用于各种受力杆件D. 剪应力互等定理仅适用于弹性范围E. 剪应力互等定理与材料的性能无关5.图示受扭圆轴,其横截面上的剪应力分布图正确的是鼻i题5图6.实心圆轴,两端受扭转外力偶作用。
直径为D时,设轴内的最大剪应力为,若轴的直径改为D 2,其它条件不变,则轴内的最大剪应力变为()。
A. 8 C. 167.受扭空心圆轴(d/D ),在横截面积相等的条件下,下列承载能力最大的轴是( )°A. 0 (实心轴)B.0.5 C. 0.6 0.88. 扭转应力公式+的适用范围是(A.C.9. B .实心或空心圆截面直杆D .弹性变形各种等截面直杆矩形截面直杆直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为(E.弹性非弹性范围A. -2TB. 2TC. 2 2TD. 4T10.材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径亠d2为D2 £°若两轴横截面上的扭矩T,和最大剪应力max均相同,则两轴外径之比旦D2A. 1B. 1C. (1 3)13 4.13D . (1 )11.阶梯圆轴及其受力如图所示, 其中AB段的最大剪应力max1 与BC段的最大剪应力max2的关系是()°A Rmax1 max 2 max1 3max22Cmax1 max 2D. max138 max2-13--14-题12图题13图12.在图示的圆轴中,AB 段的相对扭转角1和 BC段的相对扭转角2的关系:()。
工程力学:圆轴扭转强度与刚度 习题与答案
一、单选题1、扭转切应力τ=Tρ/Ip公式仅适用于()杆件。
A.任意截面B.线弹性材料的圆截面C.任意材料的圆截面D.任意实心截面正确答案:B2、杆件受扭时,其单位长度的扭转角与()有关。
A.长度、材料B.长度、截面形状C.扭矩、材料、截面形状D.长度、扭矩、材料正确答案:C3、一圆轴分别由实心钢轴和铝套管牢固地结合而成。
扭转变形时,则关于圆轴横截面上任意一点的切应力分布描述正确的是()。
A.该点切应力大小与其离圆心的距离、所处位置的材料有关B.该点切应力大小只与其离圆心的距离有关C.该点切应力大小与其所处位置的材料无关D.该点切应力大小只与其所处位置的材料有关正确答案:A4、对于受扭圆轴有如下说法,①由平面假设,各横截面如同刚性圆片仅绕轴线做相对转动;②最大切应力只存在于横截面上;③在横截面和包含杆件轴线的纵向截面上均无正应力。
则正确的是()。
A.①②B.②③C.①③D.①②③正确答案:C5、当传动轴传递的功率不变时,若此时转速降为原来的一半,则传动轴输出的扭矩变为原来的()。
A.两倍B.不变C.四倍D.一半正确答案:A6、一传动轴上有A、B、C三个齿轮,传动轴转速n=25r/min,此轴上轮功率从齿轮C输入,从A、B输出,输入功率为P=15kW,轮A、B的输出功率分别为5kW、10kW,若要使轴受扭情况最好,则齿轮排布方式(从左到右)为()。
A.A-C-BB.C-B-AC.A-B-CD.B-A-C正确答案:A7、等截面圆轴,左半部分为铝,右半部分为钢,两端承受扭矩后,左右两端()。
A.最大切应力τmax不同、单位长度的扭转角相同B.最大切应力τmax相同、单位长度的扭转角不同C.最大切应力τmax、单位长度的扭转角均相同D.最大切应力τmax、单位长度的扭转角均不同正确答案:B8、有两根长度相等、材料一样的圆轴A、B,圆轴A与B的直径分别为DA与DB,两者关系为DA=2DB,受相同的力矩M后,圆轴A与B最大扭转角之比φA:φB为()。
圆轴的扭转习题+答案
13、一空心圆轴在产生扭转变形时,其危险截面外缘处具有全轴的最大剪应力,而危险截面内缘处的剪应力为零。 ( )
14、粗细和长短相同的二圆轴,一为钢轴,另一为铝轴,当受到相同的外力偶作用产生弹性扭转变形时,其横截面上最大剪应力是相同的。 ( )
5、圆轴扭转时,横截面上任意点的剪应变与该点到圆心的距离成___________。
6、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。
7、圆轴扭转时,在横截面上距圆心等距离的各点其剪应变必然_________。
13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。
16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。
17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。
17、内外径比值d/D=的空心圆轴受扭转,若将内外径都减小到原尺寸的一半,同时将轴的长度增加一倍,则圆轴的抗扭刚度会变成原来的( )。
A、1/2 B、1/4 C、1/8 D、1/16
18、等截面圆轴扭转时的单位长度扭转角为θ,若圆轴的直径增大一倍,则单位长度扭转角将变为( )。
A、θ/16 B、θ/8 C、θ/4 D、θ/2
5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。 ( )
7、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。 ( )
材料力学第三章答案
材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对 b①③对 c①②对d 全对 7.扭转切应力公式?mnp?i?适用于( d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩 me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若 me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解: me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
习题3扭转
16 2149 2 6.5 10 m=65mm 6 40 10
3
10 55 13
22
10kW
(b )
10
()
()
32 45 10kW
2)由刚度条件求直径d Tmax max 4 180 G d 32 32 2149 180 2 4 d 7.5 10 m=75mm 9 2 8110 0.5 综上述所以取d 75mm
第三章 扭转
一、填空
1.空心圆轴外径为D,内径为d=D/2,两端受扭转力偶 mx max 作用,则其横截面上剪应力呈( )分布, ( ),
min ( )。
答案:线性,
256mx mx 或 5.43 , 1/ 2 max。 3 3 15 D D
2.圆截面杆扭转时,其变形特点是变形过程中横截面始 终保持( ),即符合( )。非圆截面杆扭转时,其 变形特点是变形过程中横截面发生( ),即不符合 ( )。
答案: C
2.图示为两端固定的受扭圆杆,其扭距图为( )。
T
mx mx
T
mx
mx mx (B) mx mx
(D)
l
l
l
x
T
x
(A)
x
T
答案: B
mx (C)
x
x
3.圆轴受扭转如图所示。现取出I-I横截面上点1的纯剪切单元体, 其成对存在的剪应力为( )。
y
I I
(A) ()
I
z
x
(D)
答案: B
5. 如图(a)所示,实心轴和空心轴通过牙式离合器 连接在一起。已知轴的转速n=100r/min,传递的 功率P= 7.5kW,材料的许用切应力 40MPa 。试 选择实心轴的直径d1和内外径比值为0.5的实心轴 的外径D2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章圆轴扭转
主要知识点:(1)圆轴扭转的概念、扭矩和扭矩图;
(2)圆轴扭转时的应力和强度计算;
(3)圆轴扭转时的变形和刚度计算。
圆轴扭转的概念、扭矩和扭矩图
1.已知圆杆横截面上的扭矩,试画出截面上与T对应的切应力分布图。
解:截面上与T对应的切应力分布图如下:
2.用截面法求下图所示各杆在1-1、2-2、3-3截面上的扭矩。
图7-2
解:a)采用截面法计算扭矩(见图7-2a)。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-311。
取2-2截面左侧外力偶矩计算,由平衡方程062122=+⋅-+-T m kN )(,可得m kN T ⋅=-322。
取3-3截面右侧外力偶矩计算,可得m kN T ⋅=-133。
b) 采用截面法计算扭矩(见图7-2b )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅-=-511。
取2-2截面左侧外力偶矩计算,由平衡方程05522=+⋅+-T m kN )(
,可得m kN T ⋅-=-1022。
取3-3截面右侧外力偶矩计算,由平衡方程03333=+⋅+-T m kN )(
,可得m kN T ⋅-=-633。
3. 作下图各杆的扭矩图。
解:a)采用截面法计算扭矩(见图7-3a )。
取1-1截面左侧外力偶矩计算,可得m kN T ⋅=-411。
取2-2截面右侧外力偶矩计算,可得m kN T ⋅-=-222。
作出扭矩图。
a)
b)
图7-3
b) 由力矩平衡方程可得e A
M M 2-=(负号表示与图中假设方向相反)。
采用截面法计算
扭矩(见图7-3b )。
取1-1截面左侧外力偶矩计算,可得e M T 211-=-。
取2-2截面右侧外力偶矩计算,可得e M T -=-22。
作出扭矩图。
圆轴扭转时的应力和强度计算
4. 实心圆轴和空心轴通过牙嵌离合器而连接,如图所示。
已知轴的转速n =100r/min ,传递的功率P=7.5kW ,材料的许用应力][τ=40MP a ,试通过计算确定 (1) 采用实心轴时,直径d 1和的大小;
(2) 采用内外径比值为1/2的空心轴时,外径D 2的大小。
解:计算外力偶矩,作用在轴上的外力偶矩:
m N m N n P T ⋅=⋅⨯==716100
5.795509550
(1)采用实心轴时,直径d 1的大小应满足下式:
a a P P P d W T 63
1
max 1040][16
716⨯=≤⨯==τπτ
解得 mm m T
d 0.451040716
][3
616
3
16
1=⨯⨯=⨯≥π
πτ (2)采用内外径比值α=1/2的空心轴时,外径D 2的大小应满足下式:
a
a P
P P D W T 6432
max 1040][)1(16
716⨯=≤-⨯=
=ταπτ
解得 mm m T
D 0.46)5.01(1040716
)1]([34616
3
4162=-⨯⨯⨯=-⨯≥π
π
ατ
5. 如图所示为皮带传动轴,轴的直径d =50mm ,轴的转速为n =180r/min ,轴上装有四个皮带轮。
已知A 轮的输入功率为P A =20kW ,轮B 、C 、D 的输出功率分别为P B =3kW ,P C =10kW ,P D =7kW ,轴材料的许用切应力][τ=40MP a 。
(1)画出轴的扭矩图。
(2)校核轴的强度。
图7-5
解:(1)画扭矩图
计算外力偶矩,作用在各轮上的外力偶矩:
m
N m N n P
M m
N m N n P
M m
N m N n P
M m N m N n P M D
D C
C B
B A A ⋅=⋅⨯==⋅=⋅⨯==⋅=⋅⨯==⋅=⋅⨯
==3711807
9550955053118010
95509550159180
3
95509550106118020
95509550
用截面法求得1-1截面上的扭矩为m N M T B ⋅-=-=1591;2-2截面的扭矩为
m N M M T B A ⋅=-=9022;3-3截面的扭矩为m N M T D ⋅==3713。
绘出的扭矩图如图7-5
所示。
(2)强度校核
由图可见AC 段扭矩最大,由于是等截面圆轴,故危险截面在AC 段内。
由于a a a P W T MP =<MP =P ⨯⨯==
-40][7.36105016
9023
32max τπτ)(,所以轴满足强度条件。
图7-7
圆轴扭转时的变形和刚度计算 6. 图示圆轴长l =500mm ,直径d =60mm ,受到外力偶矩M 1=4kN ·m 和M 2=7kN ·m 作用,材料的剪切弹性模量G=80GP a (1)画出轴的扭矩图; (2)求轴的最大切应力;
(3)求轴的最大单位长度扭转角。
解:(1)绘扭矩图
用截面法求得1-1截面上的扭矩为m kN M M T ⋅=-=3121,
2-2截面的扭矩为m kN M T ⋅-=-=412。
绘出扭矩图如右图。
(2)由扭矩图可见BC 段扭矩最大,由于是等截面圆轴,故危险截面在BC 段内。
得其最大切应力为
()
a a P MP MP W T 3.94106016
10433
3
2max =⨯⨯⨯==-πτ
(3)BC 段扭矩最大,BC 段内最大单位长度扭转角即轴的最大单位长度扭转角。
m
m
GI T
p
25.2180106032
10801041804
393
max max =⨯
⨯⨯⨯⨯⨯=
⨯=-π
ππ
θ)
(
7.如图示,在一直径为75mm 的等截面轴上,作用着外力偶矩:M 1=1000N ·m ,M 2=600N ·m ,M 3=M 4=200N ·m ,材料的剪切弹性模量G=80GP a 。
要求: (1)画出轴的扭矩图; (2)求出轴的最大切应力; (3)求出轴的总扭转角。
解:(1)画扭矩图
用截面法求得1-1截面上的扭矩为m N M T ⋅==100011;2-2截面的扭矩为m N M M T ⋅=-=400212;3-3截面的扭矩为m N M T ⋅==20043。
绘出的扭矩图如图7-7
所示。
(2)由图7-7可见AB 段扭矩最大,由于是等截面圆轴,故危险截面在AB 段内。
轴的最大切应力
a a P W T MP =P ⨯⨯==
-1.12107516
10003
31max )(πτ
(3)求轴的总扭转角:
00
4
391462.0180107532
10802
1000180
=⨯
⨯⨯⨯
⨯⨯=⨯=-)()(π
ππϕP AB BA GI l T
004392138.018010753210805.1400180
=⨯
⨯⨯⨯
⨯⨯=⨯=
-)()
(π
ππ
ϕP CB CB GI l T
00
4
3930462.0180107532
10801
200180
=⨯
⨯⨯⨯
⨯⨯=⨯=
-)()
(π
ππ
ϕP DC DC GI l T
D 截面相对A 截面的相对扭转角即为轴的总扭转角
0000646.0462.0138.00462.0=++=++=BA CB DC DA ϕϕϕϕ
8. 一钢轴的转速n=240r/min ,传递的功率为P=44kW 。
已知][τ=40MP a ,][θ=1︒/m ,G=80GP a ,试按强度和刚度条件确定轴的直径。
解:钢轴的扭矩
m N m N n P T ⋅=⋅⨯==1751240
4495509550
(1)按强度条件确定轴的直径
直径d 1的大小应满足圆轴扭转时的强度条件:
a a P P P d W T 63
1
max 1040][161751⨯=≤⨯==τπτ
解得 mm m T
d 6.60104016
1751
]
[16
3
6
3
1=⨯⨯=
⨯≥
πτπ
(2)按刚度条件确定轴的直径
直径d 2的大小应满足圆轴扭转时的刚度条件:
][180
32
1804
2
θπππθ≤⨯⨯=⨯=d G T GI T P (︒/m)
解得 mm m G T d 8.59180
1
32
10801751180][324942=⨯⨯⨯⨯=⨯⨯⨯≥πππθπ
由于钢轴既要满足强度条件,又要满足刚度条件,所以d 取直径d 1和直径d 2中较大的,
确定钢轴直径mm d 6.60=。