高中数学必修5等差数列知识点总结和题型归纳

合集下载

高中数学必修五-等差数列

高中数学必修五-等差数列

等差数列知识集结知识元等差数列的性质知识讲解1.等差数列的性质【等差数列】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.等差数列的通项公式为:a n=a1+(n﹣1)d;前n项和公式为:S n=na1+n(n﹣1)或S n=(n∈N+),另一重要特征是若p+q=2m,则有2a m=a p+a q(p,q,m都为自然数)例:已知等差数列{a n}中,a1<a2<a3<…<a n且a3,a6为方程x2﹣10x+16=0的两个实根.(1)求此数列{a n}的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由.解:(1)由已知条件得a3=2,a6=8.又∵{a n}为等差数列,设首项为a1,公差为d,∴a1+2d=2,a1+5d=8,解得a1=﹣2,d=2.∴a n=﹣2+(n﹣1)×2=2n﹣4(n∈N*).∴数列{a n}的通项公式为a n=2n﹣4.(2)令268=2n﹣4(n∈N*),解得n=136.∴268是此数列的第136项.这是一个很典型的等差数列题,第一问告诉你第几项和第几项是多少,然后套用等差数列的通项公式a n=a1+(n﹣1)d,求出首项和公差d,这样等差数列就求出来了.第二问判断某个数是不是等差数列的某一项,其实就是要你检验看符不符合通项公式,带进去检验一下就是的.【等差数列的性质】(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).例题精讲等差数列的性质例1.设等差数列{a n}的前n项和为S n,若a2+a8=15-a5,则S9等于()A.18B.36C.45D.60例2.记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=()A.7B.8C.9D.10例3.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12等差数列的通项公式知识讲解1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.例题精讲等差数列的通项公式例1.在等差数列{a n}中,a4,a12是方程x2+3x+1=0的两根,则a8=()A.B.C.D.不能确定例2.在等差数列{a n}中,a2+a10=0,a6+a8=-4,a100=()A.212B.188C.-212D.-188例3.在等差数列{a n}中,若a2=5,a4=3,则a6=()A.-1B.0C.1D.6当堂练习单选题练习1.在等差数列{a n}中,a3+a9=24-a5-a7,则a6=()A.3B.6C.9D.12练习2.等差数列{a n}中,已知a2+a6=4,则a4=()A.1B.2C.3D.4练习3.在等差数列{a n}中,若a3+a9=17,a7=9,则a5=()A.6B.7C.8D.9练习4.《孙子算经》是中国古代重要的数学著作,上面记载了一道有名的“孙子问题”(又称“物不知数题”),后来我国南宋数学家秦九韶在《数书九章∙大衍求一术》中将此问题系统解决.“大衍求一术”是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.后传入西方,被称为“中国剩余定理”.现有一道一次同余式组问题:将正整数中,被3除余2且被5除余1的数,按由小到大的顺序排成一列,则此列数中第10项为()A.116B.131C.146D.161练习5.已知2,b的等差中项为5,则b为()A.B.6C.8D.10练习6.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.练习7.等差数列{a n}中,S n是它的前n项和,a2+a3=10,S6=54,则该数列的公差d为()A.2B.3C.4D.6练习8.等差数列{a n}中,a1+a8=10,a2+a9=18,则数列{a n}的公差为()A.1B.2C.3D.4练习9.在等差数列{a n}中,已知a2+a6=18,则a4=()A.9B.8C.81D.63。

高中数学_数列知识点汇总

高中数学_数列知识点汇总

必修5 数列知识点小结【等差数列】1. 证明方法:①递推关系(定义):)(1*+∈=-N n d da a n n 为常数,②等差中项法:112+-+=n n n a a a )1(>n判断方法:③通项公式q pn d n a a n +=-+=)1(1(其中p,q 为常数) ④前n项和Bn An 2+=-+=+=d n n n a a a n S n n 2)1(2)(11(A,B 为常数)2. 等差中项:b A a ,,成等差数列,A 称为b a 与的等差中项(其中b a 与为任意实数, A 存在且唯一),2b a A b a A +=⇔的等差中项与为即3. 等差数列性质:(1) 任两项关系:nm a a mn a a d n m m n --=--=(其中n m ≠)(2) 任两项关系:d m n a a m n )(-+=(其中n m ≠)(3) 是递增数列;数列}a {,0d n >是递减数列;数列}a {,0d n <是常数列数列}a {,0d n =。

(4) 两和式项数相同,下标和相等,则两式相等,如:112+-+=n n n a a a (其中n>1, n n n a a a +=2) k n k n n a a a +-+=2(其中n-k>0, n n n a a a +=2)特别若q p n m a a a a q p n m +=++=+则,k q p s n m a a a a a a k q p s n m ++=++++=++则,(5) {}{}n n b a ,为项数相同的等差数列(或无穷数列),则:①:k m a +、k m a 2+、k m a 3+、k m a 4+…成等差数列(其中k m ,为常数) ②:{}k a n +、{}n n b q a p ∙+∙为等差数列,(其中q p k ,,为常数)(6) 前n 项和性质:①:成等差数列,,,232k k k k k S S S S S --②:⎭⎬⎫⎩⎨⎧n S n 是等差数列。

高中数学必修5第二章等差数列知识点

高中数学必修5第二章等差数列知识点

等差数列1、等差数列的概念:1 2,n n d a a n n N d -=-≥∈()为常数(用来判断数列是否为等差数列)2、等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈,首项:1a ,公差:d ,末项:n a ;推广:d m n a a m n )(-+=,从而mn a a d m n --=。

3、等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2b a A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列-11122(2)2n n n n n n a a a n a a a +++=+≥⇔=+ 4、等差数列的前n 项和公式: ①22111()(1)1()2222n n n a a n n d S na d n a d n An Bn +-==+=+-=+ (其中A 、B 是常数,所以当0d ≠时,n S 是关于n 的二次式且常数项为0) ②特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法: (1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列;(2)等差中项:数列{}n a 是等差数列-11122(2)2n n n n n n a a a n a a a +++⇔=+≥⇔=+; (3)数列{}n a 是等差数列n a kn b ⇔=+(其中b k ,是常数);(4)数列{}n a 是等差数列2n S An Bn ⇔=+,(其中A 、B 是常数)。

6、等差数列的证明方法:定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列. 7、提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。

等差数列知识点归纳总结

等差数列知识点归纳总结

等差数列知识点归纳总结
等差数列是数学里最基本的概念之一,是定义数轴上元素排列方式的基础。

一个等差数列是从第二项开始,后一项减去前一项的差都是固定值的数列,称为等差数列。

等差数列的特点是可以求出中间的项,预测后面的项,计算等差数列的和等。

第一,等差数列的定义。

等差数列,也称等差级数,是由一系列等差的数构成的数列,也就是前面两项的差相同,且为有限数,叫做等差数列。

第二,等差数列的特点。

等差数列的特点是,前一项与下一项的差是一个固定的值,也就是等差数列的公差,从而可以从其中推测出等差数列中的其他数。

第三,等差数列的公式。

等差数列的通用公式为:Sn = a1 + (n - 1) d,其中,a1表示等差数列的第一项,d表示等差数列的公差,n 表示等差数列的项数,Sn表示等差数列中第n项的值。

第四,等差数列的求和计算。

等差数列的求和计算有两种方法,一种是利用求和公式,一种是利用构造法来求和。

求和公式是:Sn = a1 + a2 + a3 + + an = n(a1 + an) / 2。

构造法是把等差数列分成两半,把两半数列的首项和末项相乘,得到的积叫做构造法的和。

第五,等差数列的应用。

等差数列广泛应用于数学、计算机、统计学和其他学科,如时间序列分析、有限项计算、数列递推、方程定义等,这些都可以利用等差数列的特性加以计算。

综上所述,等差数列是数学里最基本的概念之一,包括定义、特
点、公式、求和计算、应用等。

它在数学、计算机、统计学和其他学科有着广泛的应用,是这些学科里重要的基础概念,也是几乎所有数学计算研究的基础。

人教版高中数学必修五 2.2 等差数列

人教版高中数学必修五 2.2 等差数列
(2)符号语言:an+1-an=d(d 为常数,n∈N*).
知识2:等差中项 问题导思:
如果三个数 a,A,b 成等差数列,那么它们之间有怎样的 数量关系? 答:因为 A-a=b-A,所以 a+b=2A.
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差中项.它 们之间的关系式是 a+b=2A .
4.已知等差数列{an}:-1,2,5,8,…,求公差 d 和 a10. 解:∵a1=-1, ∴d=a2-a1=2-(-1)=3, ∴a10=a1+(10-1)×d=-1+9×3=26.
变式训练 3:《九章算术》“竹九节”问题:现有一根 9 节的竹
子,自上而下各节的容积成等差数列,上面 4 节的容积共 3 升,
下面 3 节的容积共 4 升,则第 5 节的容积为( )
A.1 升
B.6676升
C.4474升
D.3373升
【解析】设所构成数列为{an},且其首项为 a1,公差为 d, 依题意得aa17++aa28++aa39+=a44,=3, 即43aa11++62d1=d=3,4,
2.等差数列的通项公式可以解决以下三类问题: (1)已知 an,a1,n,d 中的任意三个量,可求出第四个量; (2)已知数列{an}的通项公式,可以求出等差数列{an}中的 任一项,也可以判断某一个数是否是该数列中的项; (3)若已知{an}的通项公式是关于 n 的一次函数或常数函 数,则可判断{an}是等差数列.
∴an=a1+(n-1)×5=5n-4, ∴a80=5×80-4=396.
(2)a1=a2-d=12+2=14, ∴an=14+(n-1)×(-2)=-20, ∴n=18.
类型3:等差数列的实际应用问题 例 3:梯子的最高一级宽 33 cm,最低一级宽 110 cm,中间还有 10 级,各级宽度依次成等差数列,计算中间各级的宽度.

等差数列知识点总结与基本题型

等差数列知识点总结与基本题型

等差数列知识点总结与基本题型一、基本概念 1、等差数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

(2)对于公差d ,需强调的是它是每一项与它前一项的差(从第2项起)要防止把被减数与减数弄颠倒。

(3)0d>⇔等差数列为递增数列0d =⇔等差数列为常数列 0d <⇔等差数列为递减数列(4)一个等差数列至少由三项构成。

2、等差数列的通项公式 (1)通项公式:1(1)na a n d =+-,(当1n =时,等式也成立);(2)推导方法:①不完全归纳法:在课本中,等差数列的通项公式是由1234,,,,a a a a 归纳而得,这种利用一些特殊现象得出一般规律的方法叫不完全归纳法。

②迭加法:也称之为逐差求和的方法:2132,,a a d a a d -=-=431,,n n a a d a a d --=-=,上述式子相加,1(1)n a a n d -=-,即1(1)n a a n d =+-。

③迭代法:1223()2()2n n n n n a a d a d d a d a d d ----=+=++=+=++313(1)n a d a n d-=+==+-。

(3)通项公式的应用与理解①可根据d 的情况来分析数列的性质,如递增数列,递减数列等。

②用于研究数列的图象。

11(1)()n a a n d dn a d =+-=+-,∴(Ⅰ)0d ≠时,na 是n的一次函数,由于n N *∈,因此,数列{}n a 的图象是直线1()n a dn a d =+-上的均匀排开的无穷(或有穷)个孤立点。

(Ⅱ)0d=时,1n a a =,表示平行于x 轴的直线上的均匀排开的无穷(或有穷)个孤立点。

不难得出,任意两项可以确定一个等差数列。

③从函数知识的角度考虑等差数列的通项公式:11(1)n a a n d d n a d =+-=+-,n a 是关于n的一次式()n N*∈,所以等差数列的通项公式也可以表示为n a pn q =+(设1,p d q a d==-)。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

高中数学必修5等差数列知识点总结

高中数学必修5等差数列知识点总结

等差数列一、 要点梳理1、 等差数列:如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列叫做等差数列,这个常数角做等差数列的公差2、 通项公式:1(1)n a a n d =+- 或 ()n m a a n m d =+-3、 等差中项:三个数,,a A b 组成等差数列,则A 叫做a b 与的等差中项,此时2A a b =+4、 等差数列前n 项和公式:11()(1)22n n n a a n n S na d +-==+ 5、 等差数列性质:1) 若m n p q +=+,则m n p q a a a a +=+2) 23243,,,m m m m m m mS S S S S S S ---是等差数列6、 等数列的判定:1)定义法:1n n a a d --= 2)通项法:n a pn q =+ (其中,p q 是常数)3)中项公式法:112n n n a a a -+=+ 4)求和公式法:2n S An Bn =+二、习题精练1、(1)求等差数列8 , 5,2,…..,的第20项(2)-401是不是数列-5,-9,-13……,的项?若是,为第几项?2、在等差数列{}n a 中(1)已知1102,3,a d a ==求 (2)已知13,21,2,n a a d n ===求(3)已知1612,27,a a d ==求(4)71,83d a =-=已知,求1a(5)已知36912,27,a a a ==求(6)已知372012,28,a a a ==求3、(1)159...77_______++++=(2)258...29_______++++= 4、(1)120,54,999,n n a a S ===求d 及n(2)1,37,629,3n d n S ===求1n a a 及(3) 151,,15,66n a d S ==-=-求n 及n a (4) 2,15,10n d n a ===-求1a 及n S5、若一个等差数列的前3项和为34,最后3项和为146,且所有项和为390,求此数列的项数n6、(1)等差数列{}n a 中,85a =,求S 15(2)已知220n S n n =-,求n a 及n S 的最小值7、 已知325n a n =-+,当n S 达最大是,n 的值是多少8、已知等差数列{}n a 中,310S =,630S =,求9S 的值。

(完整版)等差数列知识点总结及练习(精华版)

(完整版)等差数列知识点总结及练习(精华版)

等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。

{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。

{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。

只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。

(完整版)等差数列知识点总结

(完整版)等差数列知识点总结

(完整版)等差数列知识点总结1. 等差数列的定义等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都相等的数列。

2. 等差数列的通项公式设等差数列的首项为 a1,公差为 d,则第 n 项的通项公式为 an = a1 + (n - 1) * d。

3. 等差数列的前 n 项和公式设等差数列的首项为 a1,末项为 an,项数为 n,公差为 d,则前 n 项的和公式为 Sn = n * (a1 + an) / 2。

4. 判断数列是否为等差数列- 检查数列中连续两项的差是否相等,即是否满足等差数列的定义。

- 可以通过计算数列的前 n 项和是否满足 Sn = n * (a1 + an) / 2 来判断。

5. 求等差数列的公差设等差数列的首项为 a1,第二项为 a2,则公差可以通过计算差值 d = a2 - a1 获得。

6. 求等差数列的项数设等差数列的首项为 a1,末项为 an,公差为 d,则项数可以通过以下公式计算:n = (an - a1 + d) / d。

7. 求等差数列的首项设等差数列的第一项为 a1,公差为 d,已知项数为 n,末项为an,则首项可以通过以下公式计算:a1 = an - (n - 1) * d。

8. 求等差数列的末项设等差数列的首项为 a1,公差为 d,已知项数为 n,末项可以通过以下公式计算:an = a1 + (n - 1) * d。

9. 等差数列的性质- 等差数列的任意三项成等差数列。

- 等差数列中的取任意几项可以组成一个等差数列。

- 等差数列的平均数等于首项与末项的平均数。

10. 应用场景等差数列的应用非常广泛,常见的应用场景包括:- 数学题中的数列问题,如求和、推导等。

- 统计学中的数据分析,如平均数、标准差等。

- 金融学中的投资计算,如等额本息还款、定期存款等。

- 工程学中的时间序列分析,如温度变化、电压波动等。

以上是等差数列的一些重要知识点总结,希望能对你有所帮助!。

高中数列知识点总结(附例题)

高中数列知识点总结(附例题)

高中数列知识点总结(附例题)知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1)d .3.等差中项如果 A =a +b2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n .数列{a n }是等差数列⇔S n =An 2+Bn ,(A 、B 为常数).7.等差数列的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最 大 值;若a 1<0,d >0,则S n 存在最 小 值.[难点正本 疑点清源] 1.等差数列的判定(1)定义法:a n -a n -1=d (n ≥2); (2)等差中项法:2a n +1=a n +a n +2.2.等差数列与等差数列各项和的有关性质(1)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (2)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (3)S 2n -1=(2n -1)a n .(4)若n 为偶数,则S 偶-S 奇=n2d . 若n 为奇数,则S 奇-S 偶=a 中(中间项).例1(等差数列的判定或证明):已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 ∵a n =2-1a n -1 (n ≥2,n ∈N *),b n =1a n -1.∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.∴数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n=1+22n -7,设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞内为减函数. ∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.例2(等差数列的基本量的计算)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1 (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8.所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7. (2)方法一 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-8(10d 2+1)=d 2-8≥0,解得d ≤-22或d ≥2 2. 方法二 ∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d )+15=0, 9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.例3(前n 项和及综合应用)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值; (2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.解 方法一 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653.∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130.方法二 同方法一求得d =-53.∴S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53=-56n 2+1256n =-56⎝ ⎛⎭⎪⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1)-25, ∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令⎩⎨⎧a n =4n -25<0, ①a n +1=4(n +1)-25≥0, ②由①得n <614;由②得n ≥514,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则T n =⎩⎪⎨⎪⎧21n +n (n -1)2×(-4) (n ≤6)66+3(n -6)+(n -6)(n -7)2×4 (n ≥7)=⎩⎨⎧-2n 2+23n (n ≤6),2n 2-23n +132 (n ≥7).例4,已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例5等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453n nS n T n,则使得n na b 为正整数的正整数n 的个数是 3 . (先求an/bn n=5,13,35)已知递推关系求通项:这类问题的要求不高,但试题难度较难把握.一般有三常见思路:(1)算出前几项,再归纳、猜想;(2)“a n+1=pa n+q ”这种形式通常转化为an +1+λ=p (an +λ),由待定系数法求出,再化为等比数列; (3)逐差累加或累乘法.例6 已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为例7在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .知识点2:等比数列及其n 项和 1.等比数列的定义 2.等比数列的通项公式 3.等比中项若G 2=a ·b (ab ≠0),那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a n q n-m,(n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n ,(k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),21221nn n n S S S S --=-1.21n S n ⇒=+1111122(2)n n n n n n S S S S n S S ---⇒-=⇒-=≥()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥13211221, 2.≥n n n n n a a a a a a n a a a a ---=⋅⋅⋅⋅⋅2ln n+⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q(q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .7. 等比数列的单调性【难点】1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)等比数列的通项公式a n =a 1q n -1及前n 项和公式S n =a 1(1-q n )1-q =a 1-a n q 1-q(q ≠1)共涉及五个量a 1,a n ,q ,n ,S n ,知三求二,体现了方程的思想的应用.(3)在使用等比数列的前n 项和公式时,如果不确定q 与1的关系,一般要用分类讨论的思想,分公比q =1和q ≠1两种情况.例1:(1)在等比数列{a n }中,已知a 6-a 4=24,a 3a 5=64,求{a n }的前8项和S 8; (2)设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大的项为27,求数列的第2n 项. (1)设数列{a n }的公比为q ,由通项公式a n =a 1q n -1及已知条件得: ⎩⎨⎧a 6-a 4=a 1q 3(q 2-1)=24, ①a 3·a 5=(a 1q 3)2=64. ②由②得a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,无解将a 1q 3=8代入①式,得q 2=4,∴q =±2.,故舍去.当q =2时,a 1=1,∴S 8=a 1(1-q 8)1-q =255;当q =-2时,a 1=-1,∴S 8=a 1(1-q 8)1-q =85.(2)若q =1,则na 1=40,2na 1=3 280,矛盾.∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q =40, ①a 1(1-q 2n )1-q =3 280, ②②①得:1+q n =82,∴q n=81, ③ 将③代入①得q =1+2a 1. ④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27, ⑤ 由③、④、⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.例2 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n.(1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. 1)证明 ∵a n +S n =n , ① ∴a n +1+S n +1=n +1. ②②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. ∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1=12,∴c 1=-12,公比q =12. 又c n =a n -1,∴{c n }是以-12为首项,12为公比的等比数列.(2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n . ∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n.又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .例3 在等比数列{a n }中,(1)若已知a 2=4,a 5=-12,求a n ;(2)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.解 (1)设公比为q ,则a 5a 2=q 3,即q 3=-18,∴q =-12,∴a n =a 5·q n -5=⎝ ⎛⎭⎪⎫-12n -4.(2)∵a 3a 4a 5=8,又a 3a 5=a 24,∴a 34=8,a 4=2.∴a 2a 3a 4a 5a 6=a 54=25=32.例4已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 规范解答(1)证明 b 1=a 2-a 1=1, [1分]当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n=-12(a n -a n -1)=-12b n -1, [5分]∴{b n }是首项为1,公比为-12的等比数列. [6分](2)解 由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1, [8分]当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) [10分]=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1, ∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1 (n ∈N *). [14分]例4 (07 重庆11)设11a a -+是和的等比中项,则a +3b 的最大值为 2 .(三角函数)例5 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为( )例 6 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形__________.【综合应用】例7.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }与{b n }的通项公式;22,Z 3k k ππ±∈(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解 (1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ).解得d =2 (∵d >0). ∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3, ∴b n =3·3n -2=3n -1.2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c nb n=a n +1-a n =2.∴c n =2b n =2·3n -1 (n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎨⎧3 (n =1)2·3n -1 (n ≥2).∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.知识点3:数列的基本知识1,1-1)1(n n n n n S S n S a S a -==或的关系:与例1:设{}n a 数列的前n 项和2n S n =,则8a 的值为 15 .2,数列的递推公式及应用:利用数列的递推公式求数列的通项公式,一般有三种方法:累加法,累积法,构造法①对形如q pa a a a n n +==+11;的递推公式()1.≠p q p 为常数且,可令()λλ+=++n n a p a 1,整理得()λλλ+=+=+n n a p a p q1,1-,所以是{}λ+n a 等比数列②对形如q pa a a n n n +=+1的递推公式,两边取倒数后换元转化为nn a qp a +=+11,再求出⎭⎬⎫⎩⎨⎧n a 1即可例2:已知数列{}n a 满足n a a a n n 2-,3311==+,则na n的最小值为 10.5。

高中数学必修5等差数列知识点总结和题型归纳

高中数学必修5等差数列知识点总结和题型归纳

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2ba A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S aS a +=奇偶.②若项数为()*21n n -∈N,则()2121n n Sn a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .523.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( )A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) (A )12 (B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( )A .7 B. 6 C. 3 D. 2 5、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( ) (A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)12 7、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=519、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a 10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n 项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( ) A. 0991>+a a B. 0991<+a a C. 0991=+a a D. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S ,则=n 。

等差数列知识点归纳总结

等差数列知识点归纳总结

等差数列知识点归纳总结等差数列是数学中常见的一种数列形式,具有重要的应用价值。

本文将针对等差数列的定义、通项公式、求和公式以及应用进行归纳总结。

一、等差数列的定义等差数列是指数列中后一项与前一项之差始终相等的一种特殊数列。

用常数d表示公差,那么等差数列可以表示为:a₁, a₁+d, a₁+2d,a₁+3d, ...二、等差数列的通项公式等差数列通项公式是指通过已知的首项和公差,计算数列中第n项的公式。

假设首项为a₁,公差为d,则等差数列的通项公式为:an =a₁ + (n-1)d三、等差数列的求和公式等差数列求和公式是指通过已知的首项、末项和项数,计算数列所有项之和的公式。

假设首项为a₁,末项为an,项数为n,则等差数列的求和公式为:Sn = (n/2)(a₁+an)四、等差数列的性质1. 等差数列的任意三项成一等差数列。

2. 等差数列的任意两项之和与中间项的和相等。

3. 等差数列的任意相邻两项之和相等。

4. 等差数列的对称性:数列中的相等距离的项之和相等。

五、等差数列的应用等差数列广泛应用于数学、物理、经济等领域,以下是一些常见的应用场景:1. 金融贷款:假设每月还款金额等差递增,可利用等差数列求得贷款总额和还款期限。

2. 平均速度问题:假设行程中速度等差减小,可利用等差数列求得平均速度。

3. 等差数列的和与平均数关系:等差数列的和即为等差数列所有项的平均数乘以项数。

4. 数列排序问题:对于给定的一组数据,若满足等差关系,可通过等差数列的求和公式快速求得该数列的和。

六、等差数列的扩展1. 差数列:每一项与其后一项之差构成的数列。

2. 等差中项:等差数列中,若某项的前后两项之和为定值,该项称为等差数列的中项。

总结:本文对等差数列的定义、通项公式、求和公式进行了详细介绍,并归纳了其性质和应用场景。

了解等差数列的相关知识,对于解决实际问题及培养数学思维能力都具有重要的帮助。

希望读者通过本文的阅读,对等差数列有更深入的理解。

人教高中数学必修5等差数列复习

人教高中数学必修5等差数列复习

例6、已知下列各数列的前n项和Sn的 公式,求通项公式 (1)Sn=2n2-3n; (2)Sn=3n-2 例7、在等差数列中,分别按下列要求 计算 (1)若a1=5,a10=95,求S10 (2)若a1=100,d=-2,求S50 (3)若a1=20,an=54,Sn=999,求n,d (4)若d=2,S100=10000,求a1,an
5、在等差数列中,已知an-5=-11,a1=1, d=-2,求项数n和a2012 6、已知三个数成等差数列,其和为15, 首末两项的积为9,求这三个数 7、在等差数列中,若a4+a5+a6+a7=56, a4a7=187,求通项公式 在数列 a n 中,如果 a 1 2 , a 2 1, 2 a n 1 a n 1 8、
a n a n 1 1 a n a n 1 , 试判断 an 是否是等差
数列,并求出通项公式
五、等差数列的前n项和公式
1、 S n na 1 n ( a1 a n ) 2 n ( n 1) 2 d
2、倒序相加法 3、从函数角度理解和公式
2+Bn Sn=An
六、等差数列的性质 1、 d
an am n m
2、若m+n=P+q,则am+an=ap+aq 若m+n=2p,则am+an=2ap 5、“片段和”性质
七、等差数列前n项和的最值 1、存在性 (1)若a1>0,d<0,Sn存在最小值 (2)若a1<0,d>0,Sn存在最大值 2、求法 (1)根据项的正负变化决定 (2)根据二次函数的最值求法
四、等差数列的通项公式 1、an=a1+(n-1)d an=am+(n-m)d 2、累加法 3、从函数角度理解通项公式

(完整版)高考复习高中必修五等差数列知识点总结梳理

(完整版)高考复习高中必修五等差数列知识点总结梳理

高考复习高中必修五等差数列知识点总结梳理知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

2、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。

3、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。

其中2a b A += a ,A ,b 成等差数列⇔2a b A +=。

4、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+。

5、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列{}n a 中,相隔等距离的项组成的数列是AP ,如:1a ,3a ,5a ,7a ,……;3a ,8a ,13a ,18a ,……;(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m-=-()m n ≠; (4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 说明:设数列{}n a 是等差数列,且公差为d ,(Ⅰ)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ②1n n S a S a +=奇偶; (Ⅱ)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1S n S n =-奇偶。

6、数列最值(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值;(2)n S 最值的求法:①若已知n S ,可用二次函数最值的求法(n N +∈);②若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或100n n a a +≤⎧⎨≥⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列一.等差数列知识点:知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示知识点2、等差数列的判定方法:②定义法:对于数列,若(常数),则数列是等差数列③等差中项:对于数列,若,则数列是等差数列知识点3、等差数列的通项公式:④如果等差数列的首项是,公差是,则等差数列的通项为该公式整理后是关于n的一次函数知识点4、等差数列的前n项和:⑤⑥对于公式2整理后是关于n的没有常数项的二次函数知识点5、等差中项:⑥如果,,成等差数列,那么叫做与的等差中项即:或在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果是等差数列的第项,是等差数列的第项,且,公差为,则有⑧对于等差数列,若,则也就是:⑨若数列是等差数列,是其前n项的和,,那么,,成等差数列如下图所示:10、等差数列的前项和的性质:①若项数为,则,且,.②若项数为,则,且,(其中,).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、。

等差数列{a n}的前三项依次为a-6,2a -5, -3a +2,则a 等于()A . -1B . 1C 。

—2 D. 22.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为( )A.49 B.50 C.51 D.523.等差数列1,-1,-3,…,-89的项数是()A.92 B.47 C.46 D.454、已知等差数列中,的值是()()A 15B 30C 31D 645. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是()A.d>B.d<3 C。

≤d<3 D.<d≤36、。

在数列中,,且对任意大于1的正整数,点在直上,则=_____________。

7、在等差数列{a n}中,a5=3,a6=-2,则a4+a5+…+a10=.8、等差数列的前项和为,若()(A)12 (B)10 (C)8 (D)69、设数列的首项,则______。

10、已知{a n}为等差数列,a3 + a8 = 22,a6 = 7,则a5 = __________11、已知数列的通项a n= —5n+2,则其前n项和为S n= 。

12、设为等差数列的前n项和,=14,,则=。

题型二、等差数列性质1、已知{a n}为等差数列,a2+a8=12,则a5等于()(A)4 (B)5 (C)6 (D)72、设是等差数列的前项和,若,则()A. B. C. D.3、若等差数列中,则4、记等差数列的前n项和为,若,,则该数列的公差d=( )A.7 B. 6 C。

3 D. 25、等差数列中,已知,,,则n为()(A)48 (B)49 (C)50 (D)516.、等差数列{a n}中,a1=1,a3+a5=14,其前n项和S n=100,则n=()(A)9 (B)10 (C)11 (D)127、设S n是等差数列的前n项和,若()A.1 B.-1 C.2 D.8、已知等差数列{a n}满足α1+α2+α3+…+α101=0则有()A.α1+α101>0B.α2+α100<0C.α3+α99=0D.α51=519、如果,,…,为各项都大于零的等差数列,公差,则()(A)(B) (C)++ (D)=10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()(A)13项(B)12项(C)11项(D)10项题型三、等差数列前n项和1、等差数列中,已知,,则其前项和.2、等差数列的前n项和为()A. B。

C。

D。

3、已知等差数列满足,则()A。

B. C。

D.4、在等差数列中,,,则。

5、等差数列的前n项和为,若( )A.12 B.18 C.24 D.426、若等差数列共有项,且奇数项的和为44,偶数项的和为33,则项数为()A. 5 B。

7 C. 9 D. 117、设等差数列的前项和为,若,,则8、若两个等差数列和的前项和分别是,已知,则等于()A.B.C.D.题型四、等差数列综合题精选1、等差数列{}的前n项和记为S n.已知(Ⅰ)求通项;(Ⅱ)若S n=242,求n。

2、已知数列是一个等差数列,且,.(1)求的通项;(2)求前n项和的最大值。

3、设为等差数列,为数列的前项和,已知,,为数列的前项和,求。

4、已知是等差数列,,;也是等差数列,,.(1)求数列的通项公式及前项和的公式;(2)数列与是否有相同的项? 若有,在100以内有几个相同项?若没有,请说明理由。

5、设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(Ⅰ)若a11=0,S14=98,求数列{a n}的通项公式;(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{a n}的通项公式。

6、已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上. (Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前n项和,求使得对所有都成立的最小正整数m;五、等差数列习题精选1、等差数列的前三项依次为,,,则它的第5项为()A、B、C、5 D、42、设等差数列中,,则的值等于( )A、11B、22C、29D、123、设是公差为正数的等差数列,若,,则( )A.B.C.D.4、若等差数列的公差,则( )(A) (B)(C)(D)与的大小不确定5、已知满足,对一切自然数均有,且恒成立,则实数的取值范围是( ) A.B.C.D.6、等差数列为()(A) 3 (B) 2 (C) (D) 2或7、在等差数列中,,则A、B、C、0 D、8、设数列是单调递增的等差数列,前三项和为12,前三项的积为48,则它的首项是A、1B、2C、4D、89、已知为等差数列,,则等于()A。

-1 B. 1 C. 3 D.710、已知为等差数列,且-2=-1,=0,则公差d=A.-2 B。

- C. D。

211、在等差数列中, ,则其前9项的和S9等于()A.18 B 27 C 36 D 912、设等差数列的前项和为,若,,则()A.63 B.45 C.36 D.2713、在等差数列中,,,则。

14、数列是等差数列,它的前项和可以表示为( )A. B.C. D.小结1、等差中项:若成等差数列,则A叫做与的等差中项,且2、为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,…(公差为);偶数个数成等差,可设为…,,…(公差为2)3、当公差时,等差数列的通项公式是关于的一次函数,且斜率为公差;若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。

4、当时,则有,特别地,当时,则有。

5、若、是等差数列,则、(、是非零常数)、、,…也成等差数列,而成等比数列;等差数列参考答案题型一:计算求值题型二、等差数列的性质1、C2、D3、12(a3+a7—a10+a11-a4=8+4=a7=12)4、C5、C6、B7、A8、C9、B 10、A题型三、等差数列前n项和1、5n(p+q)2、B3、C4、n=105、246、S奇/S偶=n/n—1=4/3, n=47、45 8、D(a5/b5=S9/T9)题型四:等差数列综合题精选1、解:(Ⅰ)由得方程组……4分解得所以(Ⅱ)由得方程……10分解得2、解:(Ⅰ)设的公差为,由已知条件,得,解出,.所以.(Ⅱ).所以时,取到最大值.3、解:设等差数列的公差为,则∵,,∴即解得,。

∴ ,∵ ,∴数列是等差数列,其首项为,公差为,∴。

4、解:(1)设{a n}的公差为d1,{b n}的公差为d2 由a3=a1+2d1得所以,所以a2=10,a1+a2+a3=30依题意,得解得,所以b n=3+3(n—1)=3n(2)设a n=b m,则8n-6=3m, 既①,要是①式对非零自然数m、n成立,只需m+2=8k,,所以m=8k—2 ,②②代入①得,n=3k,,所以a3k=b8k—2=24k-6,对一切都成立.所以,数列与有无数个相同的项。

令24k—6<100,得又,所以k=1,2,3,4。

即100以内有4个相同项.5、解:(Ⅰ)由S14=98得2a1+13d=14,又a11=a1+10d=0,故解得d=-2,a1=20。

因此,{a n}的通项公式是a n=22-2n,n=1,2,3…(Ⅱ)由得即由①+②得-7d<11。

即d>-。

由①+③得13d≤-1 即d≤-于是-<d≤-,又d∈Z, 故d=-1,将④代入①②得10<a1≤12。

又a1∈Z,故a1=11或a1=12。

所以,所有可能的数列{a n}的通项公式是a n=12—n和a n=13-n,n=1,2,3,…6、解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则f`(x)=2ax+b,由于f`(x)=6x-2,得a=3 ,b=-2, 所以f(x)=3x2-2x.又因为点均在函数的图像上,所以=3n2-2n.当n≥2时,a n=S n-S n-1=(3n2-2n)-=6n-5。

当n=1时,a1=S1=3×12-2=6×1-5,所以,a n=6n-5 ()(Ⅱ)由(Ⅰ)得知==,故T n===(1-)。

因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10题型五、精选练习。

相关文档
最新文档