八年级上册数学基础题
【初中数学】八年级数学上册基础训练卷(48份) 浙教版33
4.3 坐标平面内图形的轴对称和平移(二)1.将点A(2,1)向上平移3个单位得到点B,则点B的坐标是(D)A. (5,1)B. (-1,4)C. (5,4)D. (2,4)2.将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(C)A. (-2,-1)B. (-1,0)C. (-1,-1)D. (-2,0)3.把以(-2,7),(-2,2)为端点的线段向右平移7个单位,所得像上任意一点的坐标可表示为(5,__y)(2≤y≤7).4.(1)如图,线段A1B1是线段AB平移后得到的.若C(a,b)是线段AB上的任意一点,则当AB平移到A1B1后,点C的对应点C1的坐标是(a+6,b+2).(第4题)的坐标为(1,1),若将点P绕原点顺时针旋转45°,得到点P1,则点P1的(3)在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知点A(-2,3),B(-3,1),A1(3,4),则点B1的坐标为(2,2).(4)把点P(a,-4)向右平移2个单位,所得的像与点P关于y轴对称,则a=-1.5.已知△ABC的顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),求点B的对应点B1的坐标.【解】∵点A(0,6)平移后的对应点为A1(4,10),4-0=4,10-6=4,∴△ABC向右平移了4个单位,向上平移了4个单位,∴点B的对应点B1的坐标为(-3+4,-3+4),即(1,1).6.如图,在边长为1个单位的小正方形组成的方格纸中,给出了△ABC(顶点是格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1.(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移后得到的线段A 2C 2,并以它为一边作一个格点三角形A 2B 2C 2,使A 2B 2=C 2B 2.(第6题)【解】 (1)如解图中△A 1B 1C 1所示. (2)如解图中△A 2B 2C 2所示(答案不唯一).(第6题解)7.在平面直角坐标系中,点P 的坐标为(a +1,3a -1).将点P 向下平移2个单位,再向左平移2个单位后得到点Q ,若点Q 在第一象限,求a 的取值范围.【解】 ∵将点P (a +1,3a -1)向下平移2个单位,再向左平移1个单位后得到点Q , ∴点Q 的坐标为(a ,3a -3). ∵点Q 在第一象限,∴⎩⎪⎨⎪⎧a >0,3a -3>0,解得a >1.8.如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为__2__.(第8题)【解】∵点B平移前后的纵坐标分别为1,2,∴线段AB向上平移了1个单位.∵点A平移前后的横坐标分别为2,3,∴线段AB向右平移了1个单位.∴a=0+1=1,b=0+1=1.∴a+b=2.(第9题)9.如图,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)点Q的坐标为(-3,4).(2)若把点Q向右平移m个单位,向下平移2m个单位后,得到的点Q′恰好在第三象限,求m的取值范围.【解】(2)把点Q(-3,4)向右平移m个单位,向下平移2m个单位后,得到的点Q′的坐标为(-3+m,4-2m).∵点Q′在第三象限,∴⎩⎪⎨⎪⎧-3+m <0,4-2m <0,解得2<m <3. 10.对点(x ,y )的一次操作变换记为P 1(x ,y ),定义其变换法则如下:P 1(x ,y )=(x +y ,x -y ),且规定P n (x ,y )=P 1(P n -1(x ,y ))(n 为大于1的整数).比如,P 1(1,2)=(3,-1),P 2(1,2)=P 1(P 1(1,2))=P 1(3,-1)=(2,4),P 3(1,2)=P 1(P 2(1,2))=P 1(2,4)=(6,-2).根据以上规定,求P 2018(1,-1).【解】 根据题意,得 P 1(1,-1)=(0,2), P 2(1,-1)=(2,-2), P 3(1,-1)=(0,4), P 4(1,-1)=(4,-4), P 5(1,-1)=(0,8), P 6(1,-1)=(8,-8), ……∴当n 为正整数时,P 2n (1,-1)=(2n ,-2n ), ∴P 2018(1,-1)=(21009,-21009).11.已知正六边形ABCDEF 在直角坐标系内的位置如图所示,点A (-2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转.若每次翻转60°,则经过2017次翻转之后,点B 的坐标为(4032,0).(第11题)【解】 如解图,易得每6次为一个循环组依次循环.(第11题解)∵2017÷6=336……1,∴经过2017次翻转之后,为第337个循环组的第1次结束.∴点B2017的横坐标为336BB6=336×2×6=4032,纵坐标为0.∴经过2017次翻转之后,点B的坐标为(4032,0).。
(必考题)初中数学八年级数学上册(有答案解析)
专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少?A. 26cmB. 27cmC. 28cmD. 18cm2. 已知函数f(x) = 2x + 3,那么f(1)的值为多少?A. 1B. 1C. 2D. 23. 下列哪个数是素数?A. 21B. 29C. 35D. 394. 一个长方体的长、宽、高分别为10cm、6cm、4cm,那么它的对角线长度为多少?A. 12cmB. 14cmC. 16cmD. 18cm5. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 22二、判断题(每题1分,共5分)1. 两个锐角互余。
()2. 任何两个奇数之和都是偶数。
()3. 两个负数相乘的结果是正数。
()4. 平方根和立方根都是唯一的。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为5cm,那么这个三角形的周长为______cm。
2. 已知一个正方形的边长为6cm,那么它的对角线长度为______cm。
3. 若一个等差数列的首项为2,公差为3,那么第5项的值为______。
4. 若一个函数f(x) = x^2 2x + 1,那么f(1)的值为______。
5. 两个平行线的夹角是______度。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 解释什么是等差数列。
3. 什么是因式分解?请举例说明。
4. 简述二次函数的定义。
5. 解释什么是相似三角形。
五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若长方形的周长是60cm,求长方形的长和宽。
2. 已知一个等差数列的首项为3,公差为2,求第10项的值。
3. 解方程:2x 5 = 3x + 1。
4. 已知一个正方形的对角线长度为10cm,求正方形的面积。
人教版八年级数学上册第十四章基础练习题(含答案)
人教版八年级数学上册第十四章基础练习题(含答案)14.1整式的乘法考点1 同底数幂的乘法1.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 42.已知x a =2,x b =3,则x a+b 的值( )A .1B .-1C .5D .63.已知2a +5b ﹣4=0,则4a ×32b =( )A .8B .16C .32D .644.已知2x +4=m ,用含m 的代数式表示2x 正确的是( )A .16m B .8m C .m ﹣4 D .4m考点2 幂的乘方5.计算()()433a a -⋅-的结果为( )A .15aB .10a -C .15a -D .10a -6.已知:2x a =,5y a =,则32x y a -=( ).A .910B .4125C .825D .357.如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .b >a >cD .b >c >a考点3 积的乘方8.计算:(m 3n )2的结果是( )A .m 6nB .m 5n 2C .m 6n 2D .m 3n 29.已知m ,n 是整数,a≠0,b≠0,则下列各式中,能表示“积的乘方法则”的是( )A .n m m n a a a +=B .()nmmn a a = C .m n m n a a a -÷=D .()nn n ab a b =10.计算()20202019144⎛⎫-⨯- ⎪⎝⎭的结果是( )A .4B .-4C .14D .14-考点4 同底数幂的除法11.计算(﹣a )5÷a 3结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 412.已知a m =9,a n =13,则a m ﹣n 的值为( )A .4B .﹣4C .913D .13913.下列计算正确的是( )A .426a a a +=B .52210()ab a b =C .4312⋅=a a aD .1025a a a ÷=考点5 单项式乘单项式14.计算a 2•ab 的结果是( )A .a 3bB .2a 2bC .a 2b 2D .a 2b15.一个长方形的长为3a 2b ,宽为2ab ,则其面积为( )A .5a 3b 2B .6a 2bC .6a 2b 2D .6a 3b 216.若□·3xy=27x 3y 4 , 则□内应填的单项式是( )A .3x 3y 4B .9x 2y 2C .3x 2y 3D .9x 2y 3考点6 单项式乘多项式17.计算(-3x)(2x 2-5x-1)的结果是( )A .-6x 3-15x 2-3xB .-6x 3+15x 2+3xC .-6x 3+15x 2D .-6x 3+15x 2-118.若11,2a b a c -=--=,则35()228b c b c --++的值是 ( ) A .14B .38C .1D .-119.若()()3x a x -+-的积不含x 的一次项,则a 的值为A .3B .-3C .13D .13-20.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-21.某同学在计算23x -乘一个多项式时错误的计算成了加法,得到的答案是21x x -+,由此可以推断正确的计算结果是( )A .241x x -+B .21x x -+C .4321233x x x -+-D .无法确定考点7 多项式乘多项式22.如果x 2+ kx +6=(x +2)(x +3),则k =( )A .1B .2C .3D .523.如果代数式(x ﹣2)(x 2+mx+1)的展开式不含x 2项,那么m 的值为( )A .2B .12C .-2D .12-24.设A =(x ﹣2)(x ﹣7),B =(x ﹣3)(x ﹣6),则A 、B 的大小关系为( )A .A <B B .A =BC .A >BD .无法确定25.已知4322125d x x x x =-+--,则当2250x x --=,d 的值为( )A .25B .20C .15D .1026.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 227.观察下列各式及其展开式()2a b +=2a +2ab+2b()3a b +=3a +32a b+3a 2b +3b()4a b +=4a +43a b+62a 2b +4a 3b +4b()5a b +=5a +54a b+103a 2b +102a 3b +5a 4b +5b……请你猜想()821x -的展开式中含2x 项的系数是( )A .224B .180C .112D .48考点8 单项式除单项式28.若□×2xy =16x 3y 2,则□内应填的单项式是( )A .4x 2yB .8x 3y 2C .4x 2y 2D .8x 2y29.计算(x 3y )3÷(2xy )3的结果应该是( )A .612x B .618x C .418x y D .218x y 30.如果一个单项式与22a b -的积为3225a bc -,则这个单项式为( )A .215acB .15ac C .45acD .245ac 考点9 多项式除单项式31.计算(﹣4a 2+12a 3b )÷(﹣4a 2)的结果是( )A .1﹣3abB .﹣3abC .1+3abD .﹣1﹣3ab32.弟弟把嘉琪的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮她推测出被除式等于( )A .B .C .D .33.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b + D .+a b考点10 整式的混合运算34.若3x 2﹣5x +1=0,则5x (3x ﹣2)﹣(3x +1)(3x ﹣1)=( )A .﹣1B .0C .1D .﹣235.王大爷承包一长方形鱼塘,原来长为2x 米,宽为x 米,现在要把长和宽都增加y 米,那么这个鱼塘的面积增加( )A .(2232x xy y ++)平方米B .(2223x xy y ++)平方米C .2(3)xy y +平方米D .2(64)xy y +平方米36.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2答案1.C 2.D 3.B 4.A 5.C 6.C 7.C 8.C 9.D 10.D 11.B 12.C 13.B 14.A 15.D 16.D 17.B18.C19.B20.A21.C22.D23.A24.A25.A26.C27.C28.D29.B30.A31.A32.B33.C34.A35.C36.D14.2 乘法公式一、选择题(本大题共10道小题)1. 运用乘法公式计算(a+3)(a-3)的结果是()A.a2-6a+9 B.a2-3a+9C.a2-9 D.a2-6a-92. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)3. 将202×198变形正确的是 ( )A.2002-4 B.2022-4C.2002+2×200+4 D.2002-2×200+44. 若(a+3b)2=(a-3b)2+A,则A等于( )A.6ab B.12ab C.-12ab D.24ab5. 计算(x+1)(x2+1)·(x-1)的结果是( )A.x4+1 B.(x+1)4C.x4-1 D.(x-1)46. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]27. 将9.52变形正确的是 ( )A.9.52=92+0.52 B.9.52=(10+0.5)×(10-0.5) C.9.52=92+9×0.5+0.52 D.9.52=102-2×10×0.5+0.528. 若(2x +3y )(mx -ny )=9y 2-4x 2,则m ,n 的值分别为( )A .2,3B .2,-3C .-2,-3D .-2,3 9. 如图,阴影部分是边长为a 的大正方形剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )A .①②B .②③C .①③D .①②③10. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 填空:()22121453259x y x y ⎛⎫-=- ⎪⎝⎭ 12. 如果(x -ay )(x +ay )=x 2-9y 2,那么a = .13. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.14.课本上,公式(a-b)2=a2-2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的.已知(a+b)4=a4+4a3b+6a2b2+4ab3+b4,则(a-b)4=________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式___________.16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是_______ _____________.三、解答题(本大题共4道小题)17.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘25;abba第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的数是8,请帮他计算出最后结果:[(8+1)2-(8-1)2]×25÷8;(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a (a ≠0),请你帮小明完成这个验证过程.18. 探索、归纳与证明:(1)比较以下各题中两个算式结果的大小(在横线上填“>”“<”或“=”): ①32+42________2×3×4;②52+52________2×5×5;③(-2)2+52________2×(-2)×5;④(12)2+(23)2________2×12×23.(2)观察上面的算式,用含字母a ,b 的关系式表示上面算式中反映的一般规律.(3)证明(2)中你所写规律的正确性.19. 如图,王大妈将一块边长为a m的正方形土地租给了邻居李大爷种植,今年,她对李大爷说:“我把你这块地的一边减少4 m,另一边增加4 m,继续租给你,你也没有吃亏,你看如何?”李大爷一听,就答应了.同学们,你认为李大爷吃亏了吗?为什么?20. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,….下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a+b)n展开式中共有多少项?(2)请写出多项式(a+b)5的展开式.14.3《因式分解》一.选择题1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.如果多项式abc+ab2﹣a2bc的一个因式是ab,那么另一个因式是()A.c﹣b+5ac B.c+b﹣5ac C.ac D.﹣ac3.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)4.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5 B.6 C.9 D.15.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.166.下列多项式,在实数范围内能够进行因式分解的是()A.x2+4 B.C.x2﹣3y D.x2+y27.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)9.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±410.多项式x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz因式分解后的结果是()A.(y﹣z)(x+y)(x﹣z)B.(y﹣z)(x﹣y)(x+z)C.(y+z)(x﹣y)(x+z)D.(y+z)(x+y)(x﹣z)11.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4 B.5 C.6 D.812.已知a、b、c是△ABC的三条边,且满足a2+bc=b2+ac,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形13.如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140 B.70 C.35 D.24二.填空题14.分解因式:x2﹣4=.15.因式分解:2x2﹣8=.16.分解因式:x3﹣4x2﹣12x=.17.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.18.若a,b,c分别是△ABC的三条边,a2+c2+2b2﹣2ab﹣2bc=0.则△ABC的形状是.三.解答题(共4小题)19.分解因式(1)(2)9y2﹣(2x+y)2.20.将下列各式因式分解(1)2a3b﹣8ab3 (2)﹣x3+x2y﹣xy2(3)(7x2+2y2)2﹣(2x2+7y2)2 (4)(x2+4x)2+(x2+4x)﹣621.已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;(2)已知a﹣b=4,ab+c2﹣6c+13=0,求a+b+c的值.参考答案一.选择题1.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.解:abc+ab2﹣a2bc=ab(c+b﹣5ac),故另一个因式为(c+b﹣5ac),故选:B.3.解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.4.解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=2×3=6.故选:B.5.解:∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.6.解:A、x2+4不能分解,故此选项错误;B、x2﹣x+=(x﹣)2,故此选项正确;C、x2﹣3y不能分解,故此选项错误;D、x2+y2不能分解,故此选项错误;故选:B.7.解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.8.解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.9.解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.10.解:x2y﹣y2z+z2x﹣x2z+y2x+z2y﹣2xyz=(y﹣z)x2+(z2+y2﹣2yz)x+z2y﹣y2z=(y﹣z)x2+(y﹣z)2x﹣yz(y﹣z)=(y﹣z)[x2+(y﹣z)x﹣yz]=(y﹣z)(x+y)(x﹣z).故选:A.11.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选:C.12.解:已知等式变形得:(a+b)(a﹣b)﹣c(a﹣b)=0,即(a﹣b)(a+b﹣c)=0,∵a+b﹣c≠0,∴a﹣b=0,即a=b,则△ABC为等腰三角形.故选:C.13.解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.二.填空题14.解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).15.解:2x2﹣8=2(x+2)(x﹣2).16.解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).故答案为:x(x+2)(x﹣6).17.解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.18.解:∵a2+c2+2b2﹣2ab﹣2bc=0(a2﹣2ab+b2)+(b2﹣2bc+c2)=0(a﹣b)2+(b﹣c)2=0,∴a﹣b=0,b﹣c=0,解得:a=b=c,又∵a,b,c分别是△ABC的三条边,∴△ABC是等边三角形,故答案为等边三角形.三.解答题(共4小题)19.解:(1)原式=(m2﹣2mn+n2)=(m﹣n)2;(2)原式=[3y+(2x+y)][3y﹣(2x+y)]=4(x+2y)(y﹣x).20.解:(1)2a3b﹣8ab3=2ab(a2﹣4b2)=2ab(a+2b)(a﹣2b);(2)﹣x3+x2y﹣xy2=﹣x(x2﹣xy+y2)=﹣x(x﹣y)2;(3)(7x2+2y2)2﹣(2x2+7y2)2=(7x2+2y2+2x2+7y2)(7x2+2y2﹣2x2﹣7y2)=(9x2+9y2)(5x2﹣5y2)=9×5(x2+y2)(x2﹣y2)=45((x2+y2)(x﹣y)(x+y);(4)(x2+4x)2+(x2+4x)﹣6=(x2+4x﹣2)(x2+4x+3)=(x2+4x﹣2)(x+1)(x+3).21.解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.22.解:(1)∵x2+2xy+2y2+2y+1=0,∴(x2+2xy+y2)+(y2+2y+1)=0,∴(x+y)2+(y+1)2=0,∴x+y=0,y+1=0,解得,x=1,y=﹣1,∴2x+y=2×1+(﹣1)=1;(2)∵a﹣b=4,∴a=b+4,∴将a=b+4代入ab+c2﹣6c+13=0,得b2+4b+c2﹣6c+13=0,∴(b2+4b+4)+(c2﹣6c+9)=0,∴(b+2)2+(c﹣3)2=0,∴b+2=0,c﹣3=0,解得,b=﹣2,c=3,∴a=b+4=﹣2+4=2,∴a+b+c=2﹣2+3=3.。
(基础题)冀教版八年级上册数学第十七章 特殊三角形含答案
冀教版八年级上册数学第十七章特殊三角形含答案一、单选题(共15题,共计45分)1、如图钢架中,∠A=a,焊上等长的钢条P1P2, P2P3, P3P4, P4P5来加固钢架,若P1A=P1P2,∠P5P4B=95°,则a等于()A.18°B.23.75°C.19°D.22.5°2、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab =8,大正方形的面积为25,则小正方形的边长为()A.9B.6C.4D.33、已知一个直角三角形两边的长分别为3和4.分别以此三角形的三边为边作正方形,则这三个正方形面积的和为()A.50B.32C.50或32D.以上都不对4、在中,斜边AB=2,则的值是()A.6B.8C.10D.125、如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.106、已知等腰三角形的两条边长分别为4和8,则它的周长为()A.16B.20C.16或20D.147、如图,在矩形ABCD中,AB=4,AD=8,点E、点F分别在边AD,BC上,且EF⊥AD,点B关于EF的对称点为G点,连接EG,若EG与以CD为直径的⊙O恰好相切于点M,则AE的长度为()A.3B.C.6+D.6﹣8、在△ABC中,∠C=90°,BC=2,sinA= ,则边AC的长是()A. B.3 C. D.9、Rt△ABC中,CD是斜边AB上的高,∠B=30°,AD=2cm,则AB的长度是()A.2cmB.4cmC.8cmD.16cm10、如图,在中,,且.若,,则的长度为()A. B. C. D.811、已知等腰三角形的两边长是4和10,则它的周长是()A.18B.24C.18或24D.1412、在平面直角坐标系中,已知点A(a,3),点P在坐标轴上,若使得△AOP 是等腰三角形的点P恰有6个,则满足条件的a值有()A.2个B.3个C.4个D.5个13、如图所示,△ABC≌△AED,点E在线段BC上,∠1 = 40°,则∠AED的度数是( )A.70°B.68°C.65°D.60°14、如图,矩形ABCD的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为().A.4B.6C.8D.1015、如图,在△ABC中,AO⊥BC,垂足为O,若AO=4,∠B=45°,△ABC的面积为10,则AC边长的平方的值是()A.16B.17C.6D.18二、填空题(共10题,共计30分)16、如图,是的中线,,把沿着直线对折,点C落在点E的位置,则的形状是________.17、如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________.18、已知等腰三角形的一个外角为150°,则它的底角为________.19、一个等腰直角三角尺不小心掉到两墙之间(如图),已知,从三角尺的刻度可知为三块砖的厚度,为两块砖的厚度,小聪很快就知道了砌墙所用砖块的厚度(每块砖的厚度相等,两块砖间的缝隙忽略不计)为________ .20、如图,在△ABC中,∠ACB=90°,∠ACB与∠CAB的平分线交于点P,PD⊥AB于点D,若△APC与△APD的周长差为,四边形BCPD的周长为12+ ,则BC等于________.21、在△ABC中,AB=AC=10,cosB= ,如果圆O的半径为2 ,且经过点B、C,那么线段AO的长等于________.22、如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为________.23、如图,定义:若双曲线与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线的对径.若双曲线的对径是4,则k=________.24、在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2 ,则CF的长为________。
《常考题》初中八年级数学上册第十二章《全等三角形》基础练习(含答案解析)
一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .64B解析:B【分析】 过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD =OE =OF =3是解此题的关键.2.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.3.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .4C解析:C【分析】 过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质得:OE =OF =OD 然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.4.如图,AB是线段CD的垂直平分线,则图中全等三角形的对数有()A.2对B.3对C.4对D.5对B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD,BC=BD,OC=OD,然后根据”HL”可判断Rt△AOC≌Rt△AOD,Rt△BOC≌Rt△BOD;根据“SSS”可判断△ABC≌△ABD.【详解】解:∵AB是线段CD的垂直平分线,∴AC=AD,BC=BD,OC=OD,∴Rt△AOC≌Rt△AOD(HL),Rt△BOC≌Rt△BOD(HL),△ABC≌△ABD(SSS).故选:B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对C解析:C【分析】 根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .7.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A.4:3B.16:9C.3:4D.9:16A解析:A【分析】过点D作DE垂直于AB,DF垂直于AC,由AD为角BAC的平分线,根据角平分线定理得到DE=DF,再根据三角形的面积公式表示出△ABD与△ACD的面积之比,把DE=DF以及AB:AC的比值代入即可求出面积之比.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=4:3,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=4:3.故选:A.【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题.8.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF , 在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键; 9.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.10.如图所示,已知∠A=∠C,∠AFD=∠CEB,那么给出的条件不能得到△≌△是()ADF CBEA.∠B=∠D B.EB=DF C.AD=BC D.AE=CF A解析:A【分析】直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS、SAS、AAS、ASA;【详解】A∵∠A=∠C,∠AFD=∠CEB,∠B=∠D,三个角相等,不能判定三角形全等,该选项不符合题意;B∵∠A=∠C,∠AFD=∠CEB,EB=DF,符合AAS的判定,该选项符合题意;C∵∠A=∠C,∠AFD=∠CEB,AD=BC,符合AAS的判定,该选项符合题意;D∵∠A=∠C,∠AFD=∠CEB,AE=CF,∴AF=CE,符合ASA的判定,该选项符合题意;故选:A.【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;二、填空题11.如图,△ABC≌△DEF,由图中提供的信息,可得∠D=__________°.【分析】先根据三角形的内角和定理求出∠A的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC≌△DEF∴∠D=∠A=故答案为:【点睛】此题考查全等三角解析:70【分析】先根据三角形的内角和定理求出∠A的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.12.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.13.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .(1)(2)(3)(4)【分析】在△ABC 中AB=ACAD 是△ABC 的平分线可知直线AD 为△ABC 的对称轴再根据图形的对称性逐一判断【详解】解:(1)∵在中是的角平分线∴∵∴∴∴平分故(1)正确;(解析:(1)(2)(3)(4)【分析】在△ABC 中,AB=AC ,AD 是△ABC 的平分线,可知直线AD 为△ABC 的对称轴,再根据图形的对称性,逐一判断.【详解】解:(1)∵在ABC 中,AB AC =,AD 是ABC 的角平分线,∴BAD CAD ∠=∠.∵DE AB ⊥,DF AC ⊥,∴ADE 90BAD ∠∠=︒-,ADF 90CAD ∠∠=︒-,∴ADE ADF ∠∠=, ∴DA 平分EDF ∠,故(1)正确;(2)由(1)可知,ADE ADF ∠∠=,在AED 和AFD 中,EAD FAD,AD AD,ADE ADF,∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AED AFD ASA ≅,∴AE AF =,DE DF =,故(2)正确;(3)在AD 上取一点M ,连结BM ,CM .在ABM 和ACM 中,AB AC BAD CAD AM AM =⎧⎪∠=∠⎨⎪=⎩∴()ABM ACM SAS ≅,∴BM CM =,故(3)正确;(4)在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS ≅.∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°在ADE 和ADF 中,AED=AFD BAD CAD AD AD ∠∠⎧⎪∠=∠⎨⎪=⎩∴()ADE ADF AAS ≅. ∵ABD ACD ≅∴∠ABC=∠ACB ,BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠BED=∠CFD在BED 和CFD △中,EBD FCD BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED CFD AAS ≅,∴图中共有3对全等三角形,故(4)正确.故答案为:(1)(2)(3)(4).【点睛】本题考查了等腰三角形的性质,利用三角形全等是正确解答本题的关键.14.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;15.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SASASAAASSSS )即可得出答案【详解】解:添加条件:AB =AC 在△ABE 和△ACD 中∴△ABE ≌△A解析:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一)【分析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )即可得出答案.【详解】解:添加条件:AB =AC ,在△ABE 和△ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS );添加条件:∠B =∠C ,在△ABE 和△ACD 中,B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS );添加条件:∠AEB =∠ADC ,在△ABE 和△ACD 中,AEB ADC AE ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ACD (ASA );故答案为:AB =AC 或∠B =∠C 或∠AEB =∠ADC (答案不唯一).【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .16.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.17.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.18.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).AB=DC (答案不唯一)【分析】因为和公共边BC根据全等证明方法即可求得【详解】当AB=DC 时根据全等证明方法SAS 可证故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件掌握五种解析:AB=DC (答案不唯一)【分析】因为ABC DCB ∠=∠和公共边BC ,根据全等证明方法即可求得.【详解】当AB=DC 时根据全等证明方法SAS 可证ACB DBC ≌故答案为:AB=DC (答案不唯一)【点睛】本题考查三角形全等的判定条件,掌握五种全等证明方法是解题的关键.19.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,点B 、E 、C 、F 在同一条直线上,A D ∠=∠,//AB DE ,BE CF =.求证://AC DF .解析:见解析.【分析】根据//AB DE 可知B DEF ∠=∠,又根据∠A=∠D ,BE=CF 可以判定ABC DEF △≌△,即可求证//AC DF ;【详解】∵//AB DE ,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△,∴ACB F ∠=∠,∴//AC DF .【点睛】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出ABC DEF △≌△,注意全等三角形的对应边相等;22.如图,已知点D ,E 分别在等边三角形ABC 的边BC ,CA 上,且BD CE =,连接AD ,BE 相交于点F ,AH BE ⊥于点H ,求FAH ∠的度数.解析:30【分析】根据条件可证明( SAS )ABD BCE ≅,得到BAD CBE ∠=∠,通过三角形的外角等于不相邻的两个内角和可知AFE ABF BAD ∠=∠+∠,最后推出60AFE ABC ︒∠=∠=,求出结果即可.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABD C ︒∠=∠=在ABD △和BCE 中,,AB BC ABD C BD CE =⎧⎪∠=∠⎨⎪=⎩∴( SAS )ABD BCE ≅.∴BAD CBE ∠=∠.∵AFE ABF BAD ∠=∠+∠.∴60AFE ABF CBE ABC ︒∠=∠+∠=∠=∵AH BE ⊥于点H ,∴90AHF ︒∠=,9030FAH AFH ∴∠=︒-∠=︒.【点睛】本题主要考查全等三角形的判定以及性质,涉及三角形的外角,属于基础题,熟练掌握全等三角形的判定以及性质是解决本题的关键.23.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E ,若9AD =,6DE =,求BE 的长.解析:3【分析】根据同角的余角相等可得EBC DCA ∠=∠,根据“AAS”可证CEB △≌ADC ,可得9AD CE ==,即可求BE 的长.【详解】解:∵BE CE ⊥,AD CE ⊥,∴90E ADC ∠=∠=︒,∴90EBC BCE ∠+∠=︒.∵90BCE ACD ∠+∠=︒,∴EBC DCA ∠=∠.在CEB △和ADC 中,E ADC EBC ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CEB △≌ADC (AAS ),∴BE CD =,9AD CE ==,∴963BE CD CE DE ==-=-=.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,熟练运用全等三角形的判定是本题的关键.24.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.解析:见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .解析:见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.如图,点E ,F 在BC 上,A D ∠=∠,AF DE =,AFC DEB ∠=∠.求证:BE CF =.解析:见详解【分析】先证明∠AFB=∠DEC ,再根据ASA 证明∆AFB ≅∆DEC ,进而即可得到结论. 【详解】∵AFC DEB ∠=∠,∴∠AFB=∠DEC ,又∵A D ∠=∠,AF DE =,∴∆AFB ≅∆DEC (ASA ),∴BF=CE ,∴BF-EF= CE-EF ,∴BE CF =.【点睛】本题主要考查三角形全等的判定和性质定理,熟练掌握ASA 证明三角形全等,是解题的关键.27.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.28.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.解析:(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF=2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.。
部编数学八年级上册期末真题必刷基础60题(60个考点专练)(解析版)含答案
期末真题必刷基础60题(60个考点专练)一.科学记数法—表示较小的数(共1小题)1.(2022秋•朔城区期末)银农科技董事长钱炫舟公开宣布:银农科技的终极目标——做真正的纳米农药,发挥更好的药效,创造更多的价值!银农的粒径新标准达到600﹣900纳米(1纳米=10﹣9米),也标志着银农产品正式步入纳米时代.将600纳米用科学记数法表示为( )A.0.6×10﹣11米B.0.6×10﹣9米C.6×10﹣9米D.6×10﹣7米【分析】首先把600纳米化成以米为单位的量;然后根据:绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,将600纳米用科学记数法表示即可.【解答】解:∵1纳米=10﹣9米,∴600纳米=600×10﹣9=6×10﹣7米.故选:D.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二.同底数幂的乘法(共1小题)2.(2022秋•南关区校级期末)若a•2•23=26,则a等于( )A.4B.8C.16D.32【分析】根据同底数幂的乘除法则求解.【解答】解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.【点评】本题考查了同底数幂的乘法,掌握同底数幂的运算法则是解答本题的关键.三.幂的乘方与积的乘方(共1小题)3.(2022秋•东丽区期末)计算(﹣2a2b3)3的结果是( )A.﹣2a6b9B.﹣8a6b9C.8a6b9D.﹣6a6b9【分析】根据幂的乘方法则:底数不变,指数相乘,求解即可.【解答】解:原式=﹣8a6b9,故选:B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则:底数不变,指数相乘.四.同底数幂的除法(共1小题)4.(2022秋•嘉陵区校级期末)已知(a x)y=a6,(a x)2÷a y=a3.(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【分析】(1)根据幂的乘方的法则计算,即可求出xy的值,根据同底数幂除法的法则计算,即可求出2x ﹣y;(2)利用2x﹣y的值,结合完全平方公式即可计算.【解答】解:(1)∵(a x)y=a6,∴a xy=a6,∴xy=6;∵(a x)2÷a y=a3,∴a2x﹣y=a3,∴2x﹣y=3,∴xy和2x﹣y的值分别为6和3;(2)∵2x﹣y=3,∴(2x﹣y)2=9,∴4x2﹣4xy+y2=9,∵xy=6,∴4x2﹣4×6+y2=9,∴4x2+y2=33.∴4x2+y2的值为33.【点评】本题考查了幂的乘方、同底数幂除法的法则以及完全平方公式,解题的关键是熟练掌握相关运算法则并灵活运用.五.单项式乘单项式(共1小题)5.(2022秋•原州区校级期末)计算:﹣3x2y2•2xy+(xy)3【分析】根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【解答】解:原式=﹣6x3y3+x3y3=﹣5x3y3.【点评】本题考查了积的乘方、单项式的乘法、合并同类项,熟记法则并根据法则计算是解题关键.六.单项式乘多项式(共1小题)6.(2022秋•西青区期末)计算的结果是( )A.﹣24a3+8a2B.﹣24a3﹣8a2﹣10aC.﹣24a3+8a2﹣10a D.﹣24a2+8a+10【分析】直接利用单项式乘多项式,进而计算得出答案.【解答】解:原式=﹣12a•2a2﹣(﹣12a)•a+(﹣12a)•=﹣24a3+8a2﹣10a.故选:C.【点评】此题主要考查了单项式乘多项式,正确掌握相关运算法则是解题关键.七.多项式乘多项式(共1小题)7.(2022秋•澄迈县期末)如果代数式(x﹣2)(x2+mx+1)的展开式不含x2项,那么m的值为( )A.2B.C.﹣2D.﹣【分析】根据题意先将原式展开,然后将含x2的项进行合并,最后令其系数为0即可求出m的值.【解答】解:(x﹣2)(x2+mx+1)=x3+mx2+x﹣2x2﹣2mx﹣2=x3+(m﹣2)x2+(1﹣2m)x﹣2,因为不含x2项,所以m﹣2=0,解得:m=2,故选:A.【点评】本题考查多项式乘以多项式,关键是根据题意先将原式展开.八.完全平方公式的几何背景(共1小题)8.(2022秋•广州期末)如图,某小区规划在边长为x m的正方形场地上,修建两条宽为2m的甬道,其余部分种草,以下各选项所列式子是计算通道所占面积的为( )A.4x+4B.x2﹣(x﹣2)2C.(x﹣2)2D.x2﹣2x﹣2x+22【分析】用正方形场地的面积减去正方形场地除去甬道部分的面积即可.【解答】解:由图可知边长为x m的正方形场地的面积为:x2,除去甬道剩余部分的面积为:(x﹣2)2,∴甬道所占面积为:x2﹣(x﹣2)2.故选:B.【点评】本题考查了完全平方公式及正方形的面积等知识点,属于基础知识的考查,比较简单.九.完全平方式(共1小题)9.(2022秋•新兴县期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为( )A.4B.4或﹣2C.±4D.﹣2【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.一十.平方差公式的几何背景(共1小题)10.(2022秋•邯山区校级期末)如图,实线内图形的面积可以用来验证下列的某个等式成立,该等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)【分析】分别用代数式表示两个图中阴影部分的面积即可.【解答】解:左图阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,右图,拼成长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),由两个图形中阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故选:C.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.一十一.整式的除法(共1小题)11.(2022秋•双阳区期末)计算(﹣4a2+12a3b)÷(﹣4a2)的结果是( )A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.一十二.因式分解的意义(共1小题)12.(2022秋•荔湾区期末)下列等式中,从左到右的变形是因式分解的是( )A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x+2=x(1+)D.x2﹣4=(x+2)(x﹣2)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.【解答】解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.从左到右的变形属于因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.一十三.因式分解-提公因式法(共1小题)13.(2022秋•朝阳区校级期末)将多项式a2x+ay﹣a2xy因式分解时,应提取的公因式是( )A.a B.a2C.a x D.a y【分析】直接利用公因式的定义得出答案.【解答】解:a2x+ay﹣a2xy=a(ax+y﹣axy),则应提取的公因式是a.故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.一十四.因式分解-运用公式法(共1小题)14.(2022秋•肇源县期末)若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值是( )A.13B.13或﹣11C.﹣11D.无法确定【分析】根据完全平方公式的结构特点即可得出答案.【解答】解:∵4x2﹣(k﹣1)x+9能用完全平方公式因式分解,4x2﹣(k﹣1)x+9=(2x)2﹣(k﹣1)x+32,∴k﹣1=±2×2×3,解得:k=13或﹣11,故选:B.【点评】本题考查了完全平方公式,熟知完全平方公式的结构特点是解本题的关键,即(a±b)2=a2±2ab+b2.一十五.因式分解-分组分解法(共1小题)15.(2022秋•武昌区校级期末)分解因式(1)a2﹣b2﹣2a+1;(2)a3b﹣ab.【分析】(1)先分组,再根据平方差公式和完全平方公式分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【解答】解:(1)a2﹣b2﹣2a+1=a2﹣2a+1﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).【点评】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式.一十六.因式分解-十字相乘法等(共1小题)16.(2022秋•新都区期末)若x2+ax+b=(x+1)(x﹣4),则a+b的值为 ﹣7 .【分析】将(x+1)(x﹣4)利用多项式乘多项式的计算法则展开即可求解.【解答】解:∵(x+1)(x﹣4)=x2﹣3x﹣4,∴a=﹣3,b=﹣4,则a+b=﹣7.故答案为:﹣7.【点评】本题考查多项式乘多项式,掌握相应计算法则即可.一十七.因式分解的应用(共1小题)17.(2022秋•罗湖区期末)如果一个自然数能表示成两个自然数的平方差,就称这个数为“智慧数”.如3=22﹣12,所以3是“智慧数”,又如:1=12﹣02,5=32﹣22,8=32﹣12,所以1,5,8都是“智慧数”.下列不是“智慧数”的是( )A.44B.45C.46D.49【分析】根据智慧数的定义求解即可.【解答】解:∵44=122﹣102,∴44是“智慧数”A正确;∵45=92﹣62,∴45是“智慧数”B正确;∵49=72﹣02,∴49是“智慧数”D正确;故选:C.【点评】本题考查了因式分解的应用,读懂题意,理解”智慧数“定义是解决问题的关键.一十八.分式的定义(共1小题)18.(2022秋•双辽市期末)下列各式中:﹣3x,,,,,分式的个数是( )A.2B.3C.4D.5【分析】根据分式的定义(A与B为整式,B≠0,且B中含有字母,形如的式子称为分式),即可得出答案.【解答】解:分式的个数是,,共2个.故选:A.【点评】本题主要考查分式的定义,熟练掌握分式的定义是解决本题的关键.一十九.分式有意义的条件(共1小题)19.(2022秋•海丰县期末)要使分式有意义,x应满足的条件是( )A.x>﹣3B.x<﹣3C.x≠﹣3D.x=﹣3【分析】根据分式有意义的条件是分母不等于零可得答案.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:C.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二十.分式的值为零的条件(共1小题)20.(2023春•巴中期末)若分式的值为0,则x的值为( )A.±2B.﹣2C.0D.2【分析】根据分式值为零条件可得x2﹣4=0,且x﹣2≠0,再解即可.【解答】解:根据分式值为零条件:x2﹣4=0,且x﹣2≠0,解得:x=﹣2,故选:B.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.二十一.分式的基本性质(共1小题)21.(2022秋•东港区校级期末)若分式中a、b的值同时扩大到原来的2倍,则分式的值( )A.不变B.扩大2倍C.扩大4倍D.扩大6倍【分析】把分式中的a、b换成2a、2b得到新的分式,再比较原分式与新分式即可得到答案.【解答】解:把分式中a、b的值同时扩大到原来的2倍,得到的新分式为,∴分式的值扩大了4倍,故选:C.【点评】本题主要考查了分式的基本性质,熟知分式的基本性质是解题的关键.二十二.最简分式(共1小题)22.(2022秋•平谷区期末)下列分式中是最简分式的是( )A.B.C.D.【分析】直接利用分式的性质结合最简分式的定义分析得出答案.【解答】解:A.=,故此选项不合题意;B.是最简分式,故此选项符合题意;C.=x+1,故此选项不合题意;D.=x﹣2,故此选项不合题意.故选:B.【点评】此题主要考查了最简分式,正确化简分式是解题关键.二十三.分式的乘除法(共1小题)23.(2022秋•双峰县期末)计算的结果是( )A.B.C.D.【分析】首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可.【解答】解:原式=﹣•÷=﹣••=﹣,故选:B.【点评】解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.二十四.分式的加减法(共1小题)24.(2022秋•增城区期末)化简的结果是( )A.a﹣b B.a+b C.D.【分析】先通分,再计算,然后化简,即可求解.【解答】解:====.故选:D.【点评】本题主要考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.二十五.分式的混合运算(共1小题)25.(2022秋•九龙坡区期末)计算题.(1)(x﹣2)2+x(x+4);(2).【分析】(1)直接利用完全平方公式、单项式乘多项式运算法则化简,进而合并同类项得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=x2﹣4x+4+x2+4x=2x2+4;(2)原式=•=•=•=.【点评】此题主要考查了分式的混合运算、整式的混合运算,正确掌握相关运算法则是解题关键.二十六.分式的化简求值(共1小题)26.(2022秋•长沙县期末)先化简,再求值:,其中a=3.【分析】原式先根据除法法则变形,再利用同分母分式的减法法则计算,同时利用约分得到最简结果,把a的值代入计算即可求出值.【解答】解:===,当a=3时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.二十七.零指数幂(共1小题)27.(2022秋•磁县期末)若(2x﹣1)0有意义,则x的取值范围是( )A.x=﹣2B.x≠0C.x≠D.x=【分析】直接利用零指数幂:a0=1(a≠0),进而得出答案.【解答】解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.【点评】此题主要考查了零指数幂,正确掌握零指数幂的定义是解题关键.二十八.列代数式(分式)(共1小题)28.(2022秋•西青区校级期末)已知A、B两地相距100米,甲、乙两人分别从A、B两地同时出发,相向而行,速度分别为x米/秒、y米/秒,甲、乙两人第一次相距a(a<100)米时,行驶时间为( )A.秒B.秒C.秒D.秒【分析】根据第一次相距a千米,可知他们一共行驶了(100﹣a),然后根据路程除以速度即可求出时间.【解答】解:由题意可得,两人第一次相距a米的运动时间为秒.故选:D.【点评】此题考查列代数式,理解题意掌握路程、速度与时间之间的关系是解题的关键.二十九.解分式方程(共1小题)29.(2022秋•汉阳区校级期末)解分式方程:(1);(2)+1.【分析】利用解分式方程的步骤解各方程即可.【解答】解:(1)原方程去分母得:(x+1)2=x2﹣1+5,整理得:x2+2x+1=x2﹣1+5,移项,合并同类项得:2x=3,系数化为1得:x=,经检验,x=是分式方程的解,故原方程的解为x=;(2)原方程去分母得:3x=2x﹣1+3x+3,移项,合并同类项得:﹣2x=2,系数化为1得:x=﹣1,经检验,x=﹣1是分式方程的增根,故原方程无解.【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.三十.分式方程的增根(共1小题)30.(2022秋•兴隆县期末)若方程+=3有增根,则a的值为( )A.1B.2C.3D.0【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.【解答】解:方程两边都乘(x﹣2),得x﹣1﹣a=3(x﹣2)∵原方程增根为x=2,∴把x=2代入整式方程,得a=1,故选:A.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三十一.由实际问题抽象出分式方程(共1小题)31.(2022秋•同江市期末)A,B两地航程为48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )A.B.C.D.【分析】直接根据题意得出顺水速以及逆水速,进而表示出所用时间即可得出答案.【解答】解:设该轮船在静水中的速度为x千米/时,则可列方程为:+=9,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间是解题关键.三十二.分式方程的应用(共1小题)32.(2022秋•韩城市期末)某公司生产A、B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台,请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)A、B两种设备每台的售价分别是6万元、10万元,且该公司生产台,现公司决定对两种设备优惠出售,A种设备按原来售价8折出售,B种设备在原来售价的基础上优惠10%,若设备全部售出,该公司一共获利多少万元?【分析】(1)设A种设备每台成本为x元,则B种设备每台设备成本为1.5x元,根据题意列出方程即可求出答案.(2)根据题意列出算式即可求出答案.【解答】解:(1)设A种设备每台成本为x元,则B种设备每台设备成本为1.5x元,,解得:x=4,经检验,x=4是原方程的解,∴1.5x=6,答:A、B两种设备每台的成本分别是4和6万元.(2)由(1)可知:A种设备共有4台,B种设备6台,A种设备获利为:4×(6×0.8﹣4)=3.2万元,B种设备获利为:6×(10×0.9﹣6)=18万元,∴该公司共获利为3.2+18=21.2万元,答:该公司共获利为21.2万元.【点评】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.三十三.三角形的角平分线、中线和高(共1小题)33.(2022秋•葫芦岛期末)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 3 .【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=5,∴△ABD和△BCD的周长差=8﹣5=3.答:△ABD和△BCD的周长差为3.故答案为:3.【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD的周长差=AB﹣BC是解题的关键.三十四.三角形的稳定性(共1小题)34.(2023春•香坊区期末)如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的( )A.全等形B.稳定性C.灵活性D.对称性【分析】根据三角形具有稳定性解答.【解答】解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三十五.三角形三边关系(共1小题)35.(2022秋•广宗县期末)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.三十六.三角形内角和定理(共1小题)36.(2022秋•祁阳县期末)若一个三角形三个内角度数的比为1:2:3,那么这个三角形是( )A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°,∴k°=30°,2k°=60°,3k°=90°,所以这个三角形是直角三角形.故选:D.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.三十七.三角形的外角性质(共1小题)37.(2022秋•息县期末)将一副三角板按如图所示的方式放置,图中∠CAF的大小等于( )A.50°B.60°C.75°D.85°【分析】利用三角形内角和定理和三角形的外角的性质计算即可.【解答】解:∵∠DAC=∠DFE+∠C=60°+45°=105°,∴∠CAF=180°﹣∠DAC=75°,故选:C.【点评】本题考查了三角形外角的性质,三角形的内角和,熟练掌握三角形的外角的性质是解题的关键.三十八.全等图形(共1小题)38.(2022秋•通许县期末)下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D,AB=EF.A.1个B.2个C.3个D.4个【分析】根据全等形的定义,全等三角形的判定与性质判断即可.【解答】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,AB的对应边为DE,所以AB=DE,故④说法错误;说法正确的有③,共1个.故选:A.【点评】本题主要考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.三十九.全等三角形的性质(共1小题)39.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为( )A.2B.3C.4D.5【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.【点评】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.四十.全等三角形的判定(共1小题)40.(2023春•泉州期末)如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是( )A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四十一.直角三角形全等的判定(共1小题)41.(2022秋•安化县期末)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.1B.2C.3D.4【分析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE﹣EH=4﹣3=1.【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA,AAS、HL,要熟练掌握并灵活应用这些方法.四十二.全等三角形的判定与性质(共1小题)42.(2022秋•盱眙县期末)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是( )A.30B.50C.60D.80【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF ≌△BAG ,(AAS )同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80,S △AEF =S △ABG =AF •FE =9,S △BCG =S △CDH =CH •DH =6,∴图中实线所围成的图形的面积S =80﹣2×9﹣2×6=50,故选:B .【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF ≌△BAG ,△BCG ≌△CDH 是解题的关键.四十三.全等三角形的应用(共1小题)43.(2022秋•东昌府区校级期末)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去( )A .①B .②C .③D .①和②【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C .【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.四十四.角平分线的性质(共1小题)44.(2022秋•渌口区期末)如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为15,AB =6,DE =3,则AC 的长是( )A.8B.6C.5D.4【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S=×6×3+AC×3=15,△ABC解得AC=4.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.四十五.线段垂直平分线的性质(共1小题)45.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【解答】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选:D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.),难度一般.四十六.等腰三角形的性质(共1小题)46.(2022秋•利通区期末)若等腰三角形的两边长分别是2和10,则它的周长是( )A.14B.22C.14或22D.12【分析】本题没有明确已知的两边的具体名称,要分为两种情况即:①2为底,10为腰;②10为底,2为腰,可求出周长.注意:必须考虑三角形的三边关系进行验证能否组成三角形.【解答】解:∵等腰三角形的两边分别是2和10,∴应分为两种情况:①2为底,10为腰,则2+10+10=22;②10为底,2腰,而2+2<10,应舍去,∴三角形的周长是22.故选:B.【点评】本题考查了等腰三角形的性质及三角形三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.四十七.等腰三角形的判定(共1小题)47.(2022秋•保康县期末)如图所示,共有等腰三角形( )A.4个B.5个C.3个D.2个【分析】由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.【解答】解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选:B.【点评】此题考查了三角形的内角和定理、三角形的外角的性质以及等腰三角形的判定方法.得到各角。
八年级上册数学基础训练卷子
八年级上册数学基础训练卷子全文共四篇示例,供读者参考第一篇示例:八年级上册数学基础训练卷子一、选择题1. 下列哪个数与3/5等值?A. 0.6B. 1.2C. 2.5D. 0.35. 已知a=3,b=5,则a+b的平方等于多少?A. 4B. 16C. 25D. 64二、填空题1. 36的平方根是_______。
2. 90的一半是_______。
3. 0.25用分数表示为_________。
4. 12%用小数表示为_________。
5. 已知a=3,b=4,则a的平方加b的平方等于_______。
三、计算题四、应用题1. 一条长为5米的绳子,剪成了3段,第一段长2.3米,第二段长1.1米,问第三段长多少米?2. 一辆自行车由A到B共走了15公里,第一小时速度为10km/h,第二小时为15km/h,请问A到B的距离是多少公里?3. 一个玻璃罐装满了水果罐头,已知这个罐头的质量为1500克,玻璃罐的质量为300克,问罐头的质量占了总重量的百分之多少?4. 成本为1500元的商品打6.5折后售价是多少?5. 甲乙两地相距120公里,两辆车同时出发,甲车每小时行驶30公里,乙车每小时行驶40公里,问几个小时后两车相遇?以上就是八年级上册数学基础训练卷子的内容,希望同学们能认真完成,加油!第二篇示例:【八年级上册数学基础训练卷子】一、选择题1. 下列哪一组数中,只有一个是质数。
A. 13、17、21、29B. 3、5、7、11C. 2、4、6、8D. 19、23、25、272. 下列哪个数能整除24?A. 5B. 6C. 8D. 93. 若3a - 2 = 10,那么a 的值是多少?A. 2B. 4C. 6D. 84. 一个长方形的长为12厘米,宽为8厘米,它的周长是多少?A. 28厘米B. 32厘米C. 36厘米D. 40厘米二、填空题1. 48 ÷ 6 = ______2. 7 x 4 = ______3. 0.3 x 5 = ______4. 19 - 8 = ______5. 15 + 6 = ______三、解答题1. 某商店原价出售一本书是25元,现在打8折出售,打折后的价格是多少?2. 一条绳子长10米,需要剪成3段,其中一段为4米,一段为2米,剩下的一段是多长?3. 某地区去年的降雨量为560毫升,今年比去年增加了30%,今年的降雨量是多少?4. 甲乙两人分别向同一方向同时前进,甲的速度是每小时4千米,乙的速度是每小时6千米。
2024年数学八年级上册几何基础练习题(含答案)
2024年数学八年级上册几何基础练习题(含答案)试题部分一、选择题1. 在一个等腰三角形中,如果底边长为10cm,腰长为13cm,那么这个三角形的周长是多少?A. 26cmB. 36cmC. 46cmD. 56cm2. 一个直角三角形的两个锐角分别是30度和60度,如果斜边长为20cm,那么直角边长是多少?A. 10cmB. 10√3 cmC. 20cmD. 20√3 cm3. 一个圆的半径为5cm,那么它的直径是多少?A. 2.5cmB. 5cmC. 10cmD. 20cm4. 一个正方形的对角线长为10cm,那么它的边长是多少?B. 10cmC. 10√2 cmD. 20cm5. 一个等边三角形的边长为6cm,那么它的高是多少?A. 3cmB. 3√3 cmC. 6cmD. 6√3 cm6. 一个长方形的长是宽的两倍,如果长方形的周长是30cm,那么长和宽分别是多少?A. 长为15cm,宽为7.5cmB. 长为10cm,宽为5cmC. 长为20cm,宽为10cmD. 长为12cm,宽为6cm7. 一个圆的周长是31.4cm,那么它的半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm8. 一个正方形的面积是36cm²,那么它的边长是多少?A. 6cmB. 9cmC. 12cm9. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少?A. 16cmB. 20cmC. 24cmD. 28cm10. 一个直角三角形的两个锐角分别是45度和45度,如果斜边长为10cm,那么直角边长是多少?A. 5cmB. 5√2 cmC. 10cmD. 10√2 cm二、判断题1. 一个圆的半径是直径的一半。
()2. 一个等腰三角形的底边和腰的长度相等。
()3. 一个直角三角形的两个锐角之和是90度。
()4. 一个正方形的对角线长等于边长的两倍。
()5. 一个等边三角形的高等于边长的根号3倍。
八年级上册数学基础题试卷
一、选择题(每题3分,共30分)1. 下列数中,是偶数的是()A. 3.14B. 2.5C. 6D. 0.82. 已知一个数的绝对值是5,这个数可能是()A. 5B. -5C. 10D. 153. 下列代数式中,正确的是()A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 5C. 4x + 1 = 2x + 4D. 5x - 2 = 3x + 14. 下列图形中,对称轴最多的是()A. 等腰三角形B. 正方形C. 矩形D. 圆5. 若a > b,且a + b = 10,则a - b的值是()A. 5B. 10C. 15D. -56. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 4x + 1 = 9D. 5x - 2 = 17. 下列分式中有意义的是()A. 2x / (x - 1)B. 3 / (x + 2)C. 4 / (x - 3)D. 5 / (x^2 - 1)8. 已知一个数的平方根是2,这个数是()A. 4B. -4C. 16D. -169. 下列图形中,内角和最大的图形是()A. 三角形B. 四边形C. 五边形D. 六边形10. 若x^2 - 5x + 6 = 0,则x的值是()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 计算:(-2) × 3 + 4 ÷ 2 - 1 = _______12. 简化表达式:3x^2 - 2x + 4x^2 - 5x = _______13. 已知a = 3,b = 5,则a^2 + b^2的值是 _______14. 下列图形中,边长为2的等边三角形的面积是 _______15. 已知x = 2,代入表达式2x - 1,计算得:2x - 1 = _______16. 若x + 3 = 0,则x的值是 _______17. 下列分式有意义的条件是:x _______18. 若x^2 - 4x + 3 = 0,则x的值是 _______19. 已知a > b,且a - b = 5,则a + b的值是 _______20. 下列图形中,中心对称图形是 _______三、解答题(每题10分,共40分)21. 解方程:2(x - 3) = 5x + 422. 计算下列分式的值:(2x - 1) / (x + 2),其中x = 123. 已知等腰三角形的底边长为8,腰长为10,求该三角形的面积。
最新人教版八年级上册数学期末常考题基础题归纳
八年级上册数学期末考试常考基础题型一、科学记数法1、某种感冒病毒的直径是0.00000012米,用科学记数法表示为米2、用科学记数法表示-0.000 000 406,结果是3、同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为()二、三角形(三边关系、内外角、等腰三角形、多边形)1、已知:等腰三角形三边长分别是4,,则此三角形的周长等于()A. 6或10或18B. 6C. 10D. 6或182、若三条线段中a=3,b=5,c为奇数,那么由a,b,c为边组成的三角形共有()A. 1个B. 3个C. 无数多个D. 无法确定3、下列长度的各组线段首尾相接能构成三角形的是()A.3、5、8 B.3、5、6 C.3、3、6D.3、5、104、一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.85、若一个多边形的内角和等于,则这个多边形的边数是()(A)8 (B)7 (C)6 (D)56、点A关于x轴的对称点坐标为(3,-5),则A点坐标为()A.(-3,5) B.(-3,-5) C.(3,5) D.(3,-5)7、点A(2,-1)关于x轴对称的点的坐标在第__________象限。
8、等腰三角形的一边长等于4,一边长等于9,则它的周长是()A.17 B.22 C.17或22 D.139、等腰三角形的一个内角是50。
,则另外两个角的度数分别是( )A、 65°,65°.B、50°,80°.C、 65°,65°或50°,80°.D、 50°,50°.10、到三角形的三边距离相等的点是 ( )A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点D.三条边的垂直平分线的交点三、整式与分式10、在式子、、、、中,分式的个数有()个11.下列各式:①,②,③,④ ,⑤,⑥中,是分式的()A.①④⑥B.①②⑤C.①②④⑥D.③⑤12、若分式的值为零,则的值是( )A.3 B. C. D.013、若分式无意义,则()(A)a=2 (B)a=0 (C)a>2 (D)a>014、下列运算正确的是()A. B. C. D.15、下列运算正确的是()A. B. C. D.16、下列计算结果正确的是. ( )A. B. C. D. .四、轴对称1.如图,轴对称图形有()A.3 个 B.4个 C.5个 D.6个2、在北大、清华、复旦和浙大4所大学的校标LOGO中,轴对称图形是(3)、下列图案是轴对称图形的有()A.1个 B.2个 C.3个 D.4个(4)左边图形与右边图形成轴对称的是()A B C D(5)下图是几个国家的国旗图案,其中只有一条对称轴的有()A .2个B .3个C .4个D .5个3、三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________.4、若分式 无意义,则实数的值是____________.5、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________6、等腰三角形的两边长为3和6,则这个三角形的周长为 .7.五、解下列各题:1、计算:(每小题5分,共10分)(1)()20213.1433π-⎛⎫--+ ⎪⎝⎭ (2)327674)(31)4(ab b a b a ÷-2、先化简,再求值:(8分)⎪⎭⎫ ⎝⎛--+÷--37334x x x x ,其中21-=x .3、解分式方程:(每小题5分,共10分)(1)23132--=--x x x (2)1657222-=-++x x x x x4、如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴的对称图形.(2)写出点的坐标(直接写答案).A1 ______________ B1 ______________ C1 ______________(3)求三角形ABC的面积5.6、(12分)某商店为了准备“元旦节”,购进甲、乙两种商品进行销售.若每个甲种商品的进价比每个乙种商品的进价少2元,且用80元购进甲种商品的数量与用100元购进乙种商品的数量相同.(1)求每个甲种商品、每个乙种商品的进价分别为多少元?(2)若该商店本次购进甲种商品的数量比购进乙种商品的数量的3倍还少5个,购进两种商品的总数量不超过95个,该商店每个甲种商品的销售价格为12元,每个乙种商品的销售价格为15元,则将本次购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润(利润=售价-进价)超过371元,通过计算求出该商店本次购进甲、乙两种商品有几种方案?请你设计出来.。
八年级上册数学试卷基础题
一、选择题(每题4分,共40分)1. 下列各数中,正数是()A. -1/2B. -3/4C. 1/2D. 02. 下列各数中,有理数是()A. √2B. πC. 1/3D. √-13. 已知 a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. -a + b > 0D. -a - b > 04. 下列各数中,绝对值最大的是()A. -3B. -2C. 1D. 05. 已知 a、b、c 是等差数列,且 a + b + c = 0,则 b 的值是()A. 0B. -aC. -cD. a + c6. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²7. 已知 a、b、c 是等比数列,且 a + b + c = 0,则 b 的值是()A. 0B. -aC. -cD. a + c8. 下列各式中,正确的是()A. (a + b)(a - b) = a² - b²B. (a - b)(a + b) = a² + b²C. (a + b)(a - b) = a² + 2ab + b²D. (a - b)(a + b) = a² - 2ab + b²9. 已知 a、b、c 是等差数列,且a² + b² + c² = 0,则 b 的值是()A. 0B. -aC. -cD. a + c10. 下列各式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)(a - b) = a² + 2ab + b²D. (a - b)(a + b) = a² - 2ab + b²二、填空题(每题5分,共25分)11. 已知 a、b、c 是等差数列,且 a + b + c = 0,则 b 的值是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册基础试题
实数
1.下列说法正确的是()
A.因为1的平方是1,所以1的平方根是1;
B.因为任何数的平方都是正数,所以任何数的平方根都是正数;
C.36的负的平方根是-6;
D.任何数的算术平方根都是正数;
2.立方根等于本身的数有()
A.1,0,-1;B.1,0;C.-1,1;D.0,-1;3.下列判断正确的是()
A、正数的算术平方根是正数
B、的平方根是3
C、任何数的平方是正数
D、1的平方根是1
4.某数的绝对值和算术平方根都等于它本身,这个数是()
A.1或-1;B.1或0;C.-1或0;D.1,-1,0;
5.-27的立方根与的平方根之和是()
A.0;B.6;C.0或-6;D.-12或6 6.下列四个命题中,正确的是()
A.数轴上任意一点都表示惟一的一个有理数;
B.数轴上任意一点都表示惟一的一个无理数;
C.两个无理数之和一定是无理数;
D.数轴上任意两个点之间还有无数个点;
7.下列说法错误的是()
A、平方根一定有两个,它们是互为相反数
B、负数没有平方根
C、0的平方根是0
D、-3的平方是9
8.16的平方根是()
A、±4
B、4
C、±2
D、2
9.49的算术平方根的相反数是()。