第二章力系的简化理论

合集下载

理论力学复习第二章

理论力学复习第二章
17
理论力学· 静力学
例1:(i)求力系对A点的简化结果, (ii)力系对O点的力矩之和。
F1 F2 600N , M 400Nm, l 1m, b 0.5m
F Fi - F1 i - F2 j -600 i j N
i


l M A F1l - F2 - M k 0 3
FO MO ri FC ' rCO O ri MC C rCO FO
Fi


主矢与主矩的点积也是一个不 变量,与简化中心无关。
16
理论力学· 静力学
三、合力矩定理
Varignon(伐里农)合力矩定理
F1 Fi MO F
同一物理的两种思路
' ri Fi rO Fn MO M O M O ' ( F ) M O ' ( Fi )
MO -b i F 300k
Nm
18
理论力学· 静力学
四、空间力系简化的最终结果
1. F 0, MO 0 2. F 0, MO 0
[重点· 难点]
平衡力系 合力
(此时与简化中心有关,换个简化中 心,主矩不为零)
3. F 0, MO 0
4. F 0, MO 0
(1) F MO
合力偶 此时主矩与简化中心的位置无关。(?) F MO 0 F MO F // MO F MO 0 合力
F与MO 不平行也不垂直
19
理论力学· 静力学
M O F d , d
作用在刚体上力为滑移矢量 汇交力系 c F3 d F4 e

理论力学-2-力矩的概念和力系的等效与简化

理论力学-2-力矩的概念和力系的等效与简化

力F对x、y、z轴之矩为: Mx (F) = 0
M y (F) = 0
4 M z (F) = − Fd 5
法2:根据力对轴定义 :
4 M z ( F ) = M z ( Fx ) = − Fd 5
2.1 力对点之矩与力对轴之矩
♣ 分布荷载专题
分布在较大范围内,不能看作集中力的荷载称分布荷 分布在较大范围内,不能看作集中力的荷载称分布荷 若分布荷载可以简化为沿物体中心线分布的平行力, 载。若分布荷载可以简化为沿物体中心线分布的平行力, 则称此力系为平行分布线荷载 简称线荷载 平行分布线荷载, 线荷载。 则称此力系为平行分布线荷载,简称线荷载。
2.1 力对点之矩与力对轴之矩
已知: 三角形分布载荷的q、 已知 : 三角形分布载荷的 、 梁长l, 合力、 梁长 , 求 : 合力 、 合力作用 线位置。 线位置。 l x 1 FR = ∫ qdx = ql 解:合力 0 l 2 设合力作用线距离A点距离为 点距离为d 设合力作用线距离 点距离为 y
B
问题: 如何用数学 问题 工具描述非共点力
F
A B
F
系对刚体的作用效
D
A
F
应?
第2章 力矩的概念和力系的等效与简化 章
2.1 力对点之矩与力对轴之矩
返回
2.1 力对点之矩与力对轴之矩
♣ 力对点之矩 ♣ 力对轴之矩 ♣ 合力矩定理 ♣ 分布荷载专题
2.1 力对点之矩与力对轴之矩
力对点之矩:力使物体绕某一点转动效应的度量 绕某一点转动效应的度量。 ♣ 力对点之矩:力使物体绕某一点转动效应的度量。
2l
3
l
3
q2
q1
l
第2章 力矩的概念和力系的等效与简化 章

工程力学:第2章 力系的简化

工程力学:第2章  力系的简化

F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr

E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C

理论力学第二章

理论力学第二章

第2章 力系的等效与简化2-1试求图示中力F 对O 点的矩。

解:(a )l F F M F M F M M y O y O x O O ⋅==+=αsin )()()()(F (b )l F M O ⋅=αsin )(F(c ))(sin cos )()()(312l l Fl F F M F M M y O x O O +--=+=ααF (d )2221sin )()()()(l l F F M F M F M M y O y O x O O +==+=αF2-2 图示正方体的边长a =0.5m ,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。

解:)(2)()(j i k i Fr F M +-⨯+=⨯=Fa A O m kN )(36.35)(2⋅+--=+--=k j i k j i Fam kN 36.35)(⋅-=F x M2-3 曲拐手柄如图所示,已知作用于手柄上的力F =100N ,AB =100mm ,BC =400mm ,CD =200mm ,α = 30°。

试求力F 对x 、y 、z 轴之矩。

解:)cos cos sin (sin )4.03.0()(2k j i k j F r F M αααα--⨯-=⨯=F D Ak j i αααα22sin 30sin 40)sin 4.03.0(cos 100--+-=力F 对x 、y 、z 轴之矩为:m N 3.43)2.03.0(350)sin 4.03.0(cos 100)(⋅-=+-=+-=ααF x M m N 10sin 40)(2⋅-=-=αF y Mm N 5.7sin 30)(2⋅-=-=αF z M2—4 正三棱柱的底面为等腰三角形,已知OA=OB =a ,在平面ABED 内沿对角线AE 有一个力F , 图中θ =30°,试求此力对各坐标轴之矩。

习题2-1图A r A习题2-2图(a )习题2-3图(a)ABr 解:)sin 45sin cos 45cos cos ()(k j i i F r F M θθθ+︒+︒-⨯=⨯=F a A O )45sin cos sin (k j ︒+-=θθaF 力F 对x 、y 、z 轴之矩为:0)(=F x M230sin )(aF aF M y -=︒-==F Fa aF M z 4645sin 30cos )(=︒︒=F2-5 如图所示,试求力F 对A 点之矩及对x 、y 、z 轴之矩。

《理论力学》第二章力系的简化习题解

《理论力学》第二章力系的简化习题解

第二章力系的简化习题解[习题2-1] 一钢结构节点,在沿OA,OB,OC的方向上受到三个力的作用,已知,,,试求这三个力的合力.解:作用点在O点,方向水平向右.[习题2-2] 计算图中已知,,三个力分别在轴上的投影并求合力. 已知,,.解:合力的大小:方向余弦:作用点:在三力的汇交点A.[习题2-3] 已知,,,,求五个力合成的结果(提示:不必开根号,可使计算简化).解:合力的大小: 方向余弦:作用点:在三力的汇交点A.[习题2-4] 沿正六面体的三棱边作用着三个力,在平面OABC内作用一个力偶. 已知,,,.求力偶与三个力合成的结果.解:把,,向平移,得到:主矢量:的方向由E指向D.主矩:方向余弦:[习题2-5] 一矩形体上作用着三个力偶,,.已知,,,,求三个力偶合成的结果.解:先把在正X面上平行移动到x轴.则应附加力偶矩:把沿轴上分解:主矩:方向余弦:[习题2-6] 试求图诸力合成的结果.解:主矢量:竖向力产生的矩顶面底面斜面-0.76 0.2 0.75 主矩:方向余弦:[习题2-7] 柱子上作有着,,三个铅直力, 已知,,,三力位置如图所示.图中长度单位为,求将该力系向点简化的结果.解:主矢量:竖向力产生的矩3.5 1.7 0主矩:方向余弦:[习题2-8] 求图示平行力系合成的结果(小方格边长为)解:主矢量:ABCD8.4 -4.35主矩:方向余弦:[习题2-9] 平板OABD上作用空间平行力系如图所示,问应等于多少才能使该力系合力作用线通过板中心C.解:主矢量:由合力矩定理可列出如下方程:[习题2-10] 一力系由四个力组成。

已知F1=60N,F2=400N,F3=500N,F4=200N,试将该力系向A点简化(图中长度单位为mm)。

解:主矢量计算表0 0 600 200 0300 546.41 -140方向余弦:-110.564 120 0 主矩大小:方向余弦:[习题2-11]一力系由三力组成,各力大小、作用线位置和方向见图。

第二章 力系的简化

第二章 力系的简化
主矩 MO =m1 +m2 +m3 +… =mO (F1)+mO (F2 )+…=∑mO (Fi )
大小: 大小 R' = R'x + R' y = (∑ X ) + (∑ Y )
2 2 2 2
主矢 R ′ (移动效应)方向 移动效应 方向:
α =tg−1
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
④ R ′ ≠0,MO ≠0,为最一般的情况。此种情况还可以继续 可以继续 简化为一个合力 R 。
合力 R 的大小等于原力系的主矢 合力 R 的作用线位置
MO d= R
综合上述, 综合上述,有:
合力偶M 平面任意力系的简化结果 :①合力偶 O ; ②合力 注意: (1)由于力系向任一点简化其主失都等于诸力的矢量和, )由于力系向任一点简化其主失都等于诸力的矢量和, 故主失与简化中心的选择无关。 故主失与简化中心的选择无关。 (2)主矩一般与简化中心有关,故提到主矩,应说明是 )主矩一般与简化中心有关,故提到主矩, 对哪一点的主矩。 对哪一点的主矩。 (3)主失(大小、方向)与合力(三要素)是两个不同 )主失(大小、方向)与合力(三要素) 的概念。 的概念。
二、平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 (未知力系) (已知力系) 汇交力系 力偶系 力 , R'(主矢 , (作用在简化中心) 主矢) 主矢 力偶 ,MO (主矩 , (作用在该平面上) 主矩) 主矩
主 R' = F + F + F +…= ∑F 矢 1 2 3 i

理论力学平面力系的简化和平衡

理论力学平面力系的简化和平衡

原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束

mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0

工程力学(1)-第2章

工程力学(1)-第2章

力的平移定理:可以把作用在刚体上点 的力 平行移到任一 力的平移定理 可以把作用在刚体上点A的力 F 可以把作用在刚体上点 点B,但必须同时附加一个力偶。这个力偶 ,但必须同时附加一个力偶。 对新作用点B的矩 的矩。 的矩等于原来的力 F对新作用点 的矩。 [证] 力F 证 力系 F,F′, F′ ′
• 简化的含义
力系的简化
力系简化的基础是力向一点平移定理 力系简化的基础是力向一点平移定理。 力向一点平移定理。
力系的简化
♣ 力向一点平移定理
力系的简化
♣ 力向一点平移定理
力向一点平移
F :力; O :简化中心; α :F与O所在平面;
r
n :α 平面的法线; en :n 方向的单位矢。
F
力系的简化ห้องสมุดไป่ตู้
平面一般力系向一点简化
向一点简化 一般力系(任意力系) 汇交力系+力偶系 一般力系(任意力系) 汇交力系 力偶系 未知力系) 已知力系) (未知力系) (已知力系) 主矢) 作用在简化中心) 汇交力系 力 , R'(主矢 , (作用在简化中心 主矢 作用在简化中心 主矩) 作用在该平面上) 力偶系 力偶 ,MO (主矩 , (作用在该平面上 主矩 作用在该平面上
Ry Y −1 ∑ =tg Rx ∑X
简化中心 (与简化中心位置无关) [因主矢等于各力的矢量和]
大小: 大小 主矩M 主矩 O 方向: 方向
MO =∑mO (Fi )
方向规定 + —
(转动效应 转动效应) 简化中心: (与简化中心有关 转动效应 简化中心: 与简化中心有关 与简化中心有关) (因主矩等于各力对简化中心取矩的代数和) 因主矩等于各力对简化中心取矩的代数和)

理论力学第二章(力系的等效与简化)

理论力学第二章(力系的等效与简化)

z
x c
F
b
o
o x
a
M y ( F ) M o ( F ) Fc
F
M z ( F ) M o ( F ) Fa
15
2019年4月16日星期二
《理论力学》
3、力对点之矩与力对通过 该点的轴之矩的关系 (转动效果的度量)
z
Fz F
y
x A
o
y
力对点之矩矢:
M o (F ) r F
Fx Fxy cos Fx F sin cos
Fy
F
O Fx x
Fy Fxy sin
y F y F sin sin
Fxy
2019年4月16日星期二
Fz F cos
6
力的分解:
F Fx Fy Fz
力F在直角坐标系中的
Fz z
F
O x
Fy
解析式
Fx
2019年4月16日星期二
力矩的符号
M O F
2019年4月16日星期二
力偶矩的符号
M
27
《理论力学》
力偶系和力偶系的合成
MR =M1+M2+…+Mn
M
力偶系
2019年4月16日星期二 28
《理论力学》
§2-3 力系等效定理
1.力系的主矢和主矩 Fn 。 设刚体上作用一平面任意力系F 1 、F 2 · · · · · ·
的夹角可为任意值。 的夹角为90o。
36
在平面任意力系, M与 R
2019年4月16日星期二
思考: 主矢,主矩与简化中心的位置有无关系?
主矢:作用在简化中心,大小和方向却与中心的位 置无关; 主矩:作用在该刚体上,大小和方向一般与中心的 位置有关。

华北电力大学理论力学第二章 力系简化理论

华北电力大学理论力学第二章 力系简化理论

第二章力系简化理论◆力的平移定理◆力系的主矢和主矩◆力系向一点简化◆力系简化结果分析§2–2 主矢和主矩·力系向一点的简化∑∑⨯==ii i O O F r )F (M M R i ix iy ix F F F i F j F k'==++∑∑∑∑ 称为该力系对O 点的主矩(principal moment )称为该力系的主矢(principal vector )式中, 分别表示各力对x ,y ,z 轴的矩。

(),(),()x y z M F M F M F空间任意力系的n 个力的矢量和1. 力系的主矢、主矩取任意点O , n 个力对O 点之矩的矢量和kF M j F M i F M M i z i y i x O ∑∑∑++=)()()(由F 1、F 2组成的空间力系,已知:F 1 = F 2 = F 。

试求力系的主矢F R 以及力系对O 、A 、E 三点的主矩。

1. 计算力系主矢令i 、j 、k 为x 、y 、z 方向的单位矢量,则力系中的二力可写成力系的主矢为:)43(51j i F +=F)43(52j i F -=FiF F F F F i i R 562121=+==∑= 例:求主矢、主矩解:解: 2. 计算主矩应用矢量叉乘方法,力系对O 、A 、E 三点的主矩分别为:()2211M M F r F O O i i i i i ====⨯∑∑2211F r F r ⨯+⨯=)43(53j i k +⨯=F )43(54j i j -⨯+F)12912(5k j i -+-=F)43(51j i F +=F)43(52j i F -=F∑=⨯+⨯=⨯=2121i EC EA i i E F r F r F r M )12912(5k j i ---=F)12912(k j i +--=F)43(5)34(j i k j -⨯-=F )43(53)43(54j i k j i j -⨯-+⨯-=FF 2210F r F r M ⨯+=⨯=∑=AC i i i A 对O 点对A 三点对E 点其中,各 ,各i iF F '= ()i o i M M F =该汇交力系与力偶系与原任意力系等效。

清华理论力学课后答案2

清华理论力学课后答案2

kh da
(b)
w.
co
m
4
三角块 V4
V4 = 2 × 3 × 3 ÷ 2 = 9
(1, 7, 1)
2-5 均质折杆及尺寸如图示,求此折杆形心坐标。 解: 将图示折杆简化为折线计算。 折杆有 5 段直线组成, 每一段的长度及形心坐标如表所示。 按形心计算公式,有
xc =
∑iLi xi 200 × (−100) + 100 × (−50) + 100 × 0 + 200 × 100 + 100 × 200 = 200 + 100 + 100 + 200 + 100 ∑iLi = 21.43(mm)
kh da

w.
FRx ' = F1 cos 45� − F2 cos 45� = 0 ,

co
在坐标轴上的投影为
m
解: 各力均在与坐标平面平行的面内, 且与所在平面的棱边成 45°角。 将力系向 A 点简化, 主矢 FR '
a b c + + = 0。 F1 F2 F3
当主矢与主矩平行时,力系能简化为力螺旋,即从 FR '× M O = 0 得,
yc =



(200,100,-50)
ww w.
3
kh da
题 2-5 图
w.
co
m
题 2-6 图
解: 由对称性知,该图形的形心一定在 x 轴上,即 yc = 0 。用负面积法计算其横坐标。此平面图
按形心计算公式,有
xc =
2-7 工字钢截面尺寸如图示,求此截面的形心坐标。
题 2-7 图

ch2力矩、力偶、力系的简化

ch2力矩、力偶、力系的简化

力对点之矩与力对轴之矩的关系
MO (F )
= ( yFz - zFy )i + ( zFx - xFz ) j + ( xFy - yFx )k
= [ M O ( F )]x i + [ M O ( F )] y j + [ M O ( F )] y k
M x ( F ) = -zFy + yFz
F z = F ⋅ cos γ = F ⋅ sin θ
与平面情形类似
F = Fx2 + Fy2 + Fz2
Fy F F x cosα = ,cos β = ,cosγ = z F F F
Fz Fy Fx
Fx = Fx , Fy = Fy , Fz = Fz
Fx = Fx i , Fy = Fy j,Fz = Fz k F = Fx + Fy + Fz = Fx i + Fy j + Fz k
②投影法(解析法) 投影法(解析法) 建立坐标系如图所示, 建立坐标系如图所示, 三个力在坐标轴上的投影分 别为
F1 x = 0
F2 x = 4kN
F1 y = −3kN
F2 y = 0
F3 x = 5cos 30o = 4.33kN
F3 y = 5sin 30o = 2.5kN
合力F 合力 R 在坐标轴上的投影为
= [MO (F )]x i +[MO (F )]y j +[MO (F )]z k
力矩矢的合成
力对点之矩矢服从矢量合成法则。 力对点之矩矢服从矢量合成法则。力系对刚体产 矢量合成法则 生的绕某点的转动效应可用一个矩矢度量。 一个矩矢度量 生的绕某点的转动效应可用一个矩矢度量。

胡汉才编著《理论力学》课后习题答案第2章力系的简化

胡汉才编著《理论力学》课后习题答案第2章力系的简化

第二章力系的简化2-1.通过A(3,0,0),B(0,4,5)两点(长度单位为米),且由A指向B的力F,在z轴上投影为,对z轴的矩的大小为。

答:F/2;62F/5。

2-2.已知力F的大小,角度φ和θ,以及长方体的边长a,b,c,则力F在轴z和y上的投影:Fz= ;Fy= ;F对轴x的矩M x(F)= 。

答:Fz=F·sinφ;Fy=-F·cosφ·cosφ;Mx(F)=F(b·sinφ+c·cosφ·cosθ)图2-40 图2-412-3.力F通过A(3,4、0),B(0,4,4)两点(长度单位为米),若F=100N,则该力在x轴上的投影为,对x轴的矩为。

答:-60N;320N.m2-4.正三棱柱的底面为等腰三角形,已知OA=OB=a,在平面ABED内有沿对角线AE 的一个力F,图中α=30°,则此力对各坐标轴之矩为:M x(F)= ;M Y(F)= ;M z(F)= 。

答:M x(F)=0,M y(F)=-Fa/2;M z(F)=6Fa/42-5.已知力F的大小为60(N),则力F对x轴的矩为;对z轴的矩为。

答:M x(F)=160 N·cm;M z(F)=100 N·cm图2-42 图2-432-6.试求图示中力F 对O 点的矩。

解:a: M O (F)=F l sin αb: M O (F)=F l sin αc: M O (F)=F(l 1+l 3)sin α+ F l 2cos αd: ()2221l l F F M o +=αsin2-7.图示力F=1000N ,求对于z 轴的力矩M z 。

题2-7图 题2-8图2-8.在图示平面力系中,已知:F 1=10N ,F 2=40N ,F 3=40N ,M=30N ·m 。

试求其合力,并画在图上(图中长度单位为米)。

解:将力系向O 点简化R X =F 2-F 1=30N R V =-F 3=-40N ∴R=50N主矩:Mo=(F 1+F 2+F 3)·3+M=300N ·m 合力的作用线至O 点的矩离 d=Mo/R=6m合力的方向:cos (R ,i )=0.6,cos (R ,i )=-0.8(R,i)=-53°08’(R,i)=143°08’2-9.在图示正方体的表面ABFE内作用一力偶,其矩M=50KN·m,转向如图;又沿GA,BH作用两力R、R',R=R'=502KN;α=1m。

理论力学-2-力矩的概念和力系的等效与简化

理论力学-2-力矩的概念和力系的等效与简化
力的可传递性
在刚体上作用三个相互平行的力,这三个力是等效的,即 它们可以互相替换而不改变刚体的运动状态。
04
CATALOGUE
刚体的转动
刚体的定轴转动
定义
刚体绕某一固定轴线旋转的转动称为定轴转动 。
描述参数
定轴转动的角速度、角加速度和转动惯量。
运动特点
刚体上任意一点到旋转轴的距离保持不变,刚体上各点的线速度大小相等,但 方向不同。
刚体的平面运动
描述参数
刚体的平动和绕某轴的转动。
定义
刚体的运动轨迹位于一个平面内,称为平面 运动。
运动特点
刚体上任意一点的速度方向与平面平行,刚 体上各点的速度大小相等。
刚体的定点运动
定义
刚体绕通过某固定点O的轴线旋转的转动称为定点转动。
描述参数
刚体的角速度、角加速度和转动惯量。
运动特点
刚体上任意一点到定点O的距离保持不变,刚体上各点的线速度 大小相等,但方向不同。
国际单位制中,力矩的单位是牛顿米(N·m )。
力矩的几何意义
表示方法
力矩的几何意义可以通过向量点积来 表示,即M=r×F,其中r表示从转动 轴到作用点的矢量,×表示向量点积 。
方向
力矩的方向与力臂的方向垂直,遵循 右手定则,即右手握拳,四指指向转 动方向,大拇指指向即为力矩的方向 。
力矩的物理意义
转动效果
力矩描述了力对物体转动的效应,它决定了物体转动 的角速度和角加速度。
转动平衡
在转动平衡状态下,合外力矩为零,即物体不发生转 动。
转动惯量
力矩和转动惯量共同决定了物体的转动效果,转动惯 量越大,物体对力矩的响应越慢。
02
CATALOGUE

理论力学 第二章 平面力系的等效简化

理论力学  第二章   平面力系的等效简化

y
MO R'
Ox
简化结果:主矢 R ,主矩 MO 。
1. R' 0 , MO 0
2 . R' 0 , MO 0
3 . R' 0 , MO 0
4 . R' 0 , MO 0 力系平衡。
1. R' 0 , MO 0
F1 F2
AB
I
Fi
y
MO Ox
1. R ' = 0,MO≠0 简化结果
系,否则为空间平行力系。
6
五、 任意力系(一般力系) 若力系中各力的作用线既不汇交于一点,又不全部相互
平行,则该力系称为任意力系。 如各力作用线还位于同一平面内,则称为平面任意力系,
简称平面力系;否则称为空间任意力系,简称空间力系。
空 间 力 系
7
平面力系 P26.图2.6
8Байду номын сангаас
§2.2 力的平移定理
这种合成方法叫力系向O点简化,O称为简化中心。
17
y
MO
AB
R'
主矢: R' F 'i
OI x
大小:R' R'x2 R'y2 ( Fx)2 ( Fy)2
主矢 R
方向:
arccosRx R
arccos Fx F
与简化中心位置无关.
主矩MO
大小:MO mO (Fi )
方向:方向规定
+,
为一合力偶,MO=M 与简化中心 O 无关。
20
2 R' 0 , MO 0
F1 F2
AB
I
Fi
y
R'
Ox

理论力学 第二章 力系的等效简化(20P) (2)

理论力学 第二章 力系的等效简化(20P) (2)

矩形均布载荷: 矩形均布载荷:
Fq = ql
三角形分布载荷: 三角形分布载荷:
1 Fq = ql 2
AB的分布载荷对 例7:如图所示,求作用于悬臂梁AB的分布载荷对A点 :如图所示,求作用于悬臂梁AB的分布载荷对A 的矩。 的矩。 解:
L 2L M A = − Fq1 − Fq 2 2 3 1 2 = − (q1 + 2q2 )L 6
V
A
A 积分法 A A 均质细杆: 长度L×截面积A) 均质细杆:P=γLS, (比重γ ×长度 ×截面积 比重
∫ =
A
xd A
∫ =
A
yd A
∫ =
A
zd A
xc=∑Li xi/L ∑
yc=∑Li yi/L ∑
zc=∑Li zi/L ∑
∫ =
L
xd L L
积分法
∫ =
L
ydL L
∫ =
L
L
zdL L
OO′ = d = FR × M O
2 FR
2、平面任意力系的简化
F1 A1 A2 An
主矢: 主矢: 主矢, 主矢,主矩
F2 Fn
F1 M1
=
简化中心
M2 F2 Mn O
Fn
=
附加力偶
FR MO
F R = Σ Fi
FRx = ∑ Fix FRy = ∑ Fiy
FRX FRY cos α = , sin α = FR FR
合力: 合力:
Fq = ∫ q ( x )d x
b
作用点: 作用点:
xc
∫a q( x )dx ⋅ x =
Fq
a b
∫a xq( x )dx = b ∫a q( x )dx

第二章力系的简化理论

第二章力系的简化理论
M
z
F1
x
O
F3
a
C
b
y
0
A
B
M O ( Fa Fc)i Fbj
15
2-3 力偶
16
1. 力在轴上投影是代数量,力对轴之矩是代数量。 2. 刚体上的力是滑移矢量;
力对点之矩是定位矢量;
力偶矩矢是自由矢量。
16
2-3 力偶
17
作业:P7 2;P8 5
17
18
2-4 力系的简化理论
(2)对轴
M x (FR ) M x (Fi )
合力对任一点(轴)之矩等于各分力对 同一点(轴)之矩的矢量(代数)和。
8
2-3 力偶
1.力偶的概念 1)定义: 两个等值、反向、不共线平行力,记为 (F , F ) 2)实例:
9
F
F
力偶不能合成为一个力,也不能与一个力平 衡,是产生转动效果的度量,是一个基本力学量。
23
1.空间一般力系向任一点简化 (1)过程: 选O点为简化中心
z
z
Fn
rn r2 O r1
F2
MOn
y
Fn
x
O
F1
MO2 F2 F1 M O1
y
x
z
空间汇交力系:
FR
O
Fi Fi
空间力偶系: M Oi M O ( Fi )
y
MO
合力 力偶
Fi Fi FR
M O M Oi M O ( Fi )
y
500 N
0.8 m 80 N m
100 N 0.6 m
O
1m 200 N
1m

理论力学:第2章 力系的简化

理论力学:第2章 力系的简化
第 2 章 力系的简化
2-3 沿着直棱边作用五个力,如题 2-3 图所示。已知 F1=F3=F4=F5=F,F2= 2 F,
OA=OC=a,OB=2a。试将此力系简化。
解:将所有力向 O 点简化
Fy=0 Fz=F2sin45F4=0
Fx=F1F2cos45=0
M ox | OC | F | OB | F 3aF

Si xi Si

4

2

2.5

0.75

6.25

11 6
4 2.5 6.25
1.67(m)
yc

Si yi Si

4

0.5

2.5

3.5

6.25

8 3
4 2.5 6.25
2.15(m)
所以有 xC 1.67 m, yC 2.15 m 。
2-12 题 2-12 图所示由正圆柱和半球所组成的物体内挖去一正圆锥,求剩余部分物体 的重心。

6)
圆锥: V3

1 3
π

5 2
2

4
题 2-12 图
zc
Vi zi Vi

2 3


5 2
3 10.9375源自 5 2
2

(4

6)

5



5 2

2

4 3
2 3


5 2
3



5 2
2

(4
此力系简化结果。

第二章力系简化

第二章力系简化

例 在图示长方体的顶点B处作 用一力F,F=700N。分别求力F 对各坐标轴之矩,并写出力F对 点O之矩矢量Mo(F)。 解1:力F矢量作用点坐标为: B( x, y, z ) B(2,3,0) 力F矢量在三个坐标轴的投影为:
( Fx , Fy , Fz ) ( 100 14,150 14,50 14)
F2
z
M1 M3
45°
F2 F3 O F1
y
M2
F3 F1
O
45°
y
x
x
M x M 1x M 2 x M 3 x 0
M y M 1 y M 2 y M 3 y 11.2 N m
M z M 1z M 2 z M 3 z 41.2 N m
3. 平面力偶系的合成与平衡
作为空间力偶系的特例,平面力偶系合成的结果 是位于各分力偶作用平面内的一个合力偶, 该合力偶矩等于各分力偶矩的代数和。即
M M1 M 2 M n M i
代数和
平面力偶系平衡的必要和充分条件是:各分力偶 的代数和等于零。即
M Mi 0
[ M O ( F )]x M x ( F ) [ M O ( F )] y M y ( F ) [ M O ( F )]z M z ( F )
力矩关系定理: 力对点之矩矢量 在过该点之轴上 的投影等于该力 对该轴之矩.
M O ( F ) M x ( F )i M y ( F ) j M z ( F )k
M D
30 30
B R C
A
E
解: 1.研究AB杆
M i 0
M FD AD 3R FD
M D

《理论力学》第二章-力系的简化试题及答案

《理论力学》第二章-力系的简化试题及答案

第2章 力系的等效简化2-1 一钢结构节点,在沿OC 、OB 、OA 的方向受到三个力的作用,已知F 1=1kN ,F 2=2kN ,F 3=2kN 。

试求此力系的合力。

解答 此平面汇交力学简化为一合力,合力大小可由几何法,即力的多边形进行计算。

作力的多边形如图(a ),由图可得合力大小kN F R 1=,水平向右。

2-2 计算图中1F 、2F 、3F 三个力的合力。

已知1F =2kN ,2F =1kN ,3F =3kN 。

解答 用解析法计算此空间汇交力系的合力。

kN F F F F ix Rx 424.26.0126.0222221=´´+=´´+=S =kN F F F iy Ry 566.08.018.022222=´´=´´=S =kN F F F F iz Rz 707.313222223=´+=´+=S =kN F F F F Rz Ry Rx R 465.4222=++=合力方向的三个方向余弦值为830.0cos ,1267.0cos ,5428.0cos ======RRz R Ry R Rx F FF F F F g b a2-3已知 N F N F N F N F 24,1,32,624321====,F 5=7N 。

求五个力合成的结果(提示:不必开根号,可使计算简化)。

解答 用解析法计算此空间汇交力系的合力。

N F F F F F ix Rx 0.460cos 45cos 537550043=´´++-=S =N F F F F F iy Ry 0.460sin 45cos 547550042=´´+-=S =N F F F F F iz Rz 0.445sin 7625041=´++-=S =N F F F F Rz Ry Rx R 93.634222==++=合力方向角:4454),(),(),(¢°=Ð=Ð=Ðz F y F x F R R R 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23
1.空间一般力系向任一点简化 (1)过程: 选O点为简化中心
z
z
Fn
rn r2 F2
O r1 F1
y
x
z
MOn
MO2
F2
Fn O
F1
y
MO1
x
空间汇交力系: Fi Fi
FR
空间力偶系: MOi MO (Fi )
O MO
y
合力 FR Fi Fi
x
23
力偶 MO MOi MO(Fi )
(3)解析表达式
(4)平面力系中,
i j k 力对点之矩可以
MO F r F x y z
用代数量来描述。
Fx Fy Fz
5
2-2 力矩
2.力对轴之矩是代数量
(1)定义
M z (F ) Fxy d
6
d为Fxy到z轴的距离。
(2)性质 当力的作用线与轴平行或相交时, 力对该轴之矩等于零。
a) FR M O时, 进一步简化为一合力。
MO
O
FR
O1 h FR
O
FR FR
O1 h •
FR
O
30
FR FR FR ,
h | M 0 | FR
h表示O点到合力作用线的距离。
2-4-3 力系的简化结果
31
b)FR与MO平行时,即为力螺旋
FR
M0
O
FR
M0
O
h MO /F
M z (F ) [MO (F )]z 力对点之矩在通过该点的某轴上的投影等于力 对该轴之矩。
7
2-2 力矩
8
4. 合力矩定理
(1)对点
FR Fi
MO(FR ) r FR r Fi r Fi MO(Fi )
(2)对轴
Mx (FR ) Mx (Fi )
力螺旋。
z
F1
O
x F2
A
F3 y
2.某平面力系对不共线的三个简化中心主矩相同,
该力系最简形式?
37
力偶或平衡。
2-4-3 力系的简化结果 试将下图分布力简化。
q
l
ql
l2
38
q0
l 1 2 q0l
l3
梯形分布力如何简化?
38
2-4-3 力系的简化结果
39
3.试求图示平面力系向O点简化结果及最简形式。
3
2-1-2 力的投影
4
1.力在平面上投影是矢量 Fxy | Fxy | F cos
2.力在轴上投影是代数量
(1)直接投影 (2)二次投影
Fx F cos Fx Fx Fcos cos x
z
F

k
y
O
ij

Fxy
(3)力的坐标表示 F Fx i Fy j Fz k 其中 Fx F i
39
2-4-3 力系的简化结果
40
主矩:
MO MO (F)
5000.8 80 100 2 300 2.6
100N m
OO M O 100 1m FR 100
y
500 N
0.8 m 80 N m 100 N
O 1m
200 N
x
1m
0.6 m 3 500 N
M x (F ) yFz zFy 2 (5) 10N m
M y (F) zFx xFz 45 3 1(5) 39.64N m Mz (F) xFy yFx 25 3 17.32N m MO (F ) 10i 39.64 j 17.32k
合力对任一点(轴)之矩等于各分力对 同一点(轴)之矩的矢量(代数)和。
8
2-3 力偶
9
1.力偶的概念
1)定义: 两个等值、反向、不共线平行力,记为 (F , F )
F
2)实例: F
力偶不能合成为一个力,也不能与一个力平 衡,是产生转动效果的度量,是一个基本力学量。
A MA
9
M A 端受力如何?
Fz FR
x
z
FR
O MO
y
x
2-4-2 一般力系向一点简化
27
主矩
Mo M oxi M oy j M ozk
Mxi M y j Mzk
主矩大小 MO Mx 2 M y 2 Mz 2
主矩方向
z
cos(MO ,i)
Mx , MO
如何确定力对点的矩的大小和方向?
14
2-3 力偶
15
2.图示长方体沿三个不相交又不平行的棱作用三力
F1、F2、F3,棱长为a、b、c。若F1=F2=F3=F, 求该力系对
O点的矩。
建立图示坐标
M x F2c F3a Fa Fc My Fb Mz 0
D z F2
H
E
1
第二章 力系的简化
2-1 力的分解和力的投影
2-2 力矩 2-3 力偶 2-4 力系的简化理论 2-5 物体的重心
1
2
2-1 力的分解和力的投影
2-1-1 力的分解 2-1-2 力的投影
2
2-1-1 力的分解
3
1.理论依据: 力的平行四边行法则
F 1
A●
FR
F 2
F F F
R
1
2
分力是矢量。
2-3 力偶
10
F
M
静止时力偶M 与F 平衡吗?
不平衡。
F 2.力偶矩矢
定 义: MO F ,F rA F rB F
uuur

rA AB rB , F F '
uuur
uuur
MO F ,F AB F BA F M
10
A
F
d
rA
F
B
rB
O
2-3 力偶
11
M
A
F
d
F
B

M
rA rB
O
uuur
uuur
MO F ,F AB F BA F M
显然:力偶矩矢与矩心O位置无关,称为自由矢量.
三要素:
大小: F d
d:力偶臂
方位: 垂直于力偶作用面
指向: 用右手螺旋法则来判断
平面力系中,力偶矩矢可以用代数量来表示。
Mo

FR O
O1 h FR
FR
FR O
O1 h
FR
O
FR FR FR ,
36
h | M 0 | ,h表示O点到合力作用线的距离。
FR
2-4-3 力系的简化结果
37
结论: 平面力系的最简形式有平衡,合力、力偶3种情形。
1.图示力系沿正方体棱边作用, F1=F2=F3=F,其向O点简化结果是什么?
F'
FR
F
h
力螺旋是由一个力和一个力偶组成的力系, 其中力垂直于力偶作用面。
力螺旋是力系的最简形式
力学基本参量。
31
2-4-3 力系的简化结果
32
c)FR与M O斜交时,进一步简化得力螺旋
A
FR
MO //
MO
O
F M O // R
O
O
MO //
FR
O
O
MO
B
结论:
FR FR
OO M O FR
2-4-2 一般力系向一点简化
24
(2)主矢与主矩——原力系的特征量
1)定义
主矢 FR Fi Fi ,与简化中心无关
主矩 MO MO(Fi ),与简化中心有关
z
z
MOn Fn O
x
MO2 F2
F1 MO1
24
FR
y
O MO
y
x
2-4-2 一般力系向一点简化
25
2)简化结论
6
2-2 力矩
7
(3)解析表达式
M z (F ) xFy yFx
i jk
MO F r F x y z
Fx Fy Fz
M x (F ) yFz zFy
[M O (F )]x i
M y (F ) zFx xFz
[MO (F )]y j
3.力对点之矩与力对轴之矩的关系 [M O (F )]z k
空间力系的最简形式有平衡,合力、力偶和
力螺旋4种情形。
32
2-4-3 力系的简化结果
33
33
2-4-3 力系的简化结果
34
34
2-4-3 力系的简化结果
35
35
2-4-3 力系的简化结果
36
2.平面力系的简化结果
(1) FR 0,M O 0 与零力系等效,平衡 。 (2) FR 0,M O 0 简化为一力偶 。 (3) FR 0,M O 0 简化为一合力 。 (4) FR 0,M O 0 进一步简化为一合力 。
cos(MO , j)
My , MO
Fn
rn r2 O r1
F2 F1
y
cos(MO ,k)
Mz MO
x
27
z
FR
O MO
y
x
2-4-2 一般力系向一点简化
28
3.平面一般力系向任一点简化
主矢
FR FRxi FRy j
Fxi Fy j
主矩(代数量)
MO MO(F) MO
相关文档
最新文档