圆柱、圆锥常用的表面积、体积公式
(完整版)圆柱圆锥公式大全
圆柱圆锥公式大全
1.圆柱的侧面积=底面圆周长×高字母表示:S侧=C底h 2.底面圆周长=圆周率×直径=圆周率×2×半径字母表示:C底=πd=2πr 3.求圆柱的表面积三步:
(1)圆柱的底面积=S底=πr²=π(d÷2)²=πd²÷4
(2)圆柱侧面积=S侧=h×C底(底面圆周长)=2πrh=πdh
(3)圆柱表面积=S表=S侧+2S底
4.圆柱体积的公式
圆柱的体积=底面积×高字母表示:V柱=S底h
V柱=S底h=πr²h=π(d÷2)²h
5.圆锥体积的公式
(1)圆锥的体积等于与它等底等高圆柱体积的1/3
V锥=V柱÷3=S底h÷3
(2)已知圆锥底面积(S)和高(h),求体积的公式:V锥=S底h÷3(3)已知圆锥体积(V)和高(h),求底面积的公式:S底=3V锥÷h (4)已知圆锥体积(V)和底面积(S),求高的公式:h=3V锥÷S底。
圆柱和圆锥的表面积和体积公式
圆柱圆锥的表面积公式和体积公式是什么?
圆锥体积:V=1/3Sh(S是底面积,h是高)。
圆锥表面积的计算公式是:圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形。
),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离)。
圆柱体体积公式:圆柱体积=π*r²*h=S底面积*高(h);先求底面积,然后乘高。
圆柱体积公式是用于计算圆柱体体积的公式。
圆柱体表面积公式:S=2πr(r+h)。
π是圆周率,r是圆柱底面的半径,h是圆柱体的高。
相关公式
正方形的周长=边长×4
长方形的面积=长×宽
长方形的周长=(长+宽)×2
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2半径=直径÷2
圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径。
圆柱、圆锥表面积体积公式
圆柱体积:V=底面积×高或V=1/2侧面积×高圆锥体积:V=底面积×高÷3圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积圆柱体积:V=sh圆锥体积:V=sh÷3圆柱侧面积:S=ch/2πrh/πdh圆柱表面积:s=ch+2πr²圆柱体侧面积=底面周长×高圆柱体的表面积=2个底面积+1个侧面积圆柱体的体积=底面积×高(Sh)圆柱体的底面积=圆的面积(πr×r)或(π(d÷2)×(d÷2))圆锥底面积=圆的面积(πr×r)或(π(d÷2)×(d÷2)(只有一个底面)体积=1/3×与它等底等高的圆柱体积=1/3×底面积×高=1/3sh(圆锥的体积等于与它等底等高的圆柱的体积的1/3)说明:“r”是圆的半径,“d”是圆的直径,在同圆或等圆中,r是d的1/2,d是r的2倍,“S”是面积,“h”是高.一个物体所有面的面积之和叫做它的表面积.一个物体所占空间的大小,叫做这个物体的体积.一个圆锥的体积等于与它等底等高的圆柱的体积的1/3,一个圆柱的体积等于一个与它等底等高的圆锥的体积的3倍. 圆的面积或底面积π×1×1=3.14π×2×2 =12.56π×3×3 =28.26π×4×4 =50.24π×5×5 =78.5π×6×6 =113.04π×7×7 =153.86π×8×8 =200.96π×9×9 =254.34π×10×10 =314。
圆柱体圆锥体面积体积公式
圆、圆柱、圆锥的计算公式
圆的周长=圆周率x直径
=圆周率x半径x2 c=πd c=2 πr
圆的面积=圆周率x半径的平方s=πr²
圆柱的侧面积=底面周长x高
=圆周率x直径x高
=圆周率x半径x2x高S=ch =πdh =2 πrh
圆柱的表面积=侧面积+底面积x2
=圆周率x直径x高+底面积x2
=圆周率x半径x2x高+底面积x2 S=ch+2πr²
=πdh+2πr²=2 πrh+2πr²
圆柱的体积=底面积x高
=圆周率x半径的平方x高v=sh =πr²h
圆锥的体积=底面积x高÷3
=圆周率x半径的平方x高÷3 v=sh÷3 =πr²h÷3
长方体的体积=长x宽x高
长方体的表面积=(长x宽+长x高+宽x高)x2 v=sh=abh
s=(ab+ah+bh) x2
正方体的体积=棱长x棱长x棱长正方体的表面积=棱长x棱长x6 v=sh=aaa=a³s=a²x6。
圆锥圆柱圆台球的表面积和体积公式
圆锥圆柱圆台球的表面积和体积公式圆锥、圆柱和圆台球是几何学中常见的三个立体图形,它们都具有特定的表面积和体积公式。
在本篇文章中,我将为您介绍这三个图形的定义、特点以及如何计算它们的表面积和体积。
一、圆锥圆锥是由一个圆和与圆上每一点相连的一条线段组成的立体图形。
圆锥有一个顶点和一个底面,底面是一个圆,而顶点则位于底面的正上方。
圆锥的表面积公式为:S = πr² + πrl其中,S表示圆锥的表面积,r表示底面圆的半径,l表示圆锥的斜高。
圆锥的体积公式为:V = (1/3)πr²h其中,V表示圆锥的体积,r表示底面圆的半径,h表示圆锥的高。
二、圆柱圆柱是由两个平行圆面和连接两个圆面的侧面组成的立体图形。
圆柱的底面是一个圆,而圆柱的高则是连接两个底面中心的线段。
圆柱的表面积公式为:S = 2πr² + 2πrh其中,S表示圆柱的表面积,r表示底面圆的半径,h表示圆柱的高。
圆柱的体积公式为:V = πr²h其中,V表示圆柱的体积,r表示底面圆的半径,h表示圆柱的高。
三、圆台球圆台球是由两个平行圆面和连接两个圆面的侧面组成的立体图形,其中一个圆面的半径较大,另一个圆面的半径较小。
圆台球的底面是一个圆,而圆台球的高则是连接两个底面中心的线段。
圆台球的表面积公式为:S = π(R+r)l + πR² + πr²其中,S表示圆台球的表面积,R表示底面较大圆的半径,r表示底面较小圆的半径,l表示圆台球的斜高。
圆台球的体积公式为:V = (1/3)πh(R²+r²+Rr)其中,V表示圆台球的体积,R表示底面较大圆的半径,r表示底面较小圆的半径,h表示圆台球的高。
通过以上公式,我们可以方便地计算出圆锥、圆柱和圆台球的表面积和体积。
这些公式的应用范围广泛,例如在建筑设计、工程测量以及日常生活中都有重要的应用。
在实际问题中,我们可以根据给定的数据,将公式中的参数代入,计算出具体的数值。
圆柱圆锥面积及体积计算公式
一圆柱的面积的计算公式(说明:C 表示底面圆的周长,d 底面圆的直径,r 底面圆的半径,h圆柱的高)
圆柱的侧面积s=ch(直接计算) 圆柱表面积:
=2πrh(利用半径)
=πdh(利用直径)
例题:一张长方形铁皮,长12.56分米,宽6.28分米。
用这张铁皮卷成一个
圆柱形铁皮水桶的侧面,另配一个底面制成一个水桶。
做这个水桶共用去多少铁皮?(接头处和铁皮厚度忽略不计)怎样做材料最省材料?怎样做容积最大?
二圆柱的体积:用字母表示为:。
例2、工厂用如下图的长方形铁皮,制作易拉罐,根据
图中的数求这个易拉罐的体积。
例4、有一个高为8厘米,容积为50毫升的圆柱形容器A里面装满
了水。
现把长16厘米的圆柱B垂直放入,使B沉到水底,这时一部
分水从容器中溢出。
当把B从A中拿起后,A中的水高度为6厘米,
求圆柱体B的体积。
字母表示为:
例1、一个圆锥形沙堆,底面半径1米,高4.5分米,用这堆沙在5米宽的公路上铺2厘米厚路面,可以铺几米?。
探究圆柱表面积圆锥体积,圆柱体积。计算公式的推导过程
探究圆柱表面积圆锥体积,圆柱体积。
计算公式的推导过程
圆柱的表面积和体积以及圆锥的体积可以通过数学推导来得到。
下面是它们的计算公式和推导过程:
1、圆柱的表面积:
圆柱的表面积由两部分组成:底面的面积和侧面的面积。
假设圆柱的底面半径为r,高度为h。
底面的面积可以通过圆的面积公式得到:A₁ = πr²
侧面的面积可以看作是一个长方形的面积,长方形的长是圆柱的高度h,宽是圆柱的侧面长度,可以通过圆的周长公式得到:C = 2πr。
因此,侧面的面积为A₂ = Ch = 2πrh
圆柱的表面积等于底面的面积加上侧面的面积,即:A = A₁+ A₂= πr² + 2πrh
2、圆柱的体积:
圆柱的体积是指圆柱内部所能容纳的物体的空间大小。
圆柱的体积可以通过底面积乘以高度来计算。
圆柱的底面积为A₁= πr²,高度为h,因此圆柱的体积V = A₁h = πr²h
3、圆锥的体积:
圆锥的体积是指圆锥内部所能容纳的物体的空间大小。
假设圆锥的底面半径为r,高度为h。
圆锥的体积可以通过底面积乘以高度再除以3来计算。
圆锥的底面积为A₁= πr²,高度为h,因此圆锥的体积V = (A₁h)/3 = (πr²h)/3
这就是圆柱的表面积、圆柱的体积以及圆锥的体积的计算公式和推导过程。
圆柱和圆锥的公式
圆柱和圆锥的公式圆柱圆柱体积:V=底面积×高或V=1/2侧面积×高圆柱侧面积:S侧=底面周长×高圆柱表面积:S表=侧面积+2个底面积圆锥底面积=圆的面积(π r×r)体积:V=底面积×高÷3侧面积=(1/2)(2πr)l=πrl公式中r为底面半径,l为圆锥母线,α为侧面展开图圆心角弧度。
拓展圆柱侧i面积(1) 原柱侧面积=底面周长×圆柱的高S侧=c×h因为c=2πr c=πd 所以圆柱侧面积还可以写出:s侧=2 π r h 或s侧= π d h(2) 底面周长=圆柱侧面积÷圆柱的高C=s侧÷h底面直径=圆柱侧面积÷圆柱的高÷圆周率d=s侧÷h÷ π底面半径=圆柱侧面积÷圆柱的高÷圆周率÷2 r=s侧÷h÷ π ÷2圆柱的表面积圆柱的表面积=底面周长×高+底面面积×2 S表=c×h+ π ×r×r×2圆柱的体积圆柱的体积=底面面积×高V柱=s底×h圆柱底面面积=圆柱体积÷圆柱的高S底=v÷h圆柱的高=圆柱的体积÷圆柱底面面积H= v÷S底圆锥的体积圆锥的体积=圆锥底面积×高V锥=s底×h÷3圆锥的底面积=圆锥的体积×3÷圆锥的高S底=v×3÷h 圆锥的高=圆锥的体积×3÷圆锥的底面积h=v×3÷S底。
圆锥圆柱的表面积和体积公式
圆锥圆柱的表面积和体积公式圆柱、圆锥、圆台、球的表面积和体积知识点包括圆柱的表面积、圆锥的表面积、圆台的表面积、球的表面积、圆柱的体积、圆锥的体积、圆台的体积、球的体积、求球的表面积与体积的一个关键和两个结论、解决几何体与球相切或相接的策略等部分,有关圆柱、圆锥、圆台、球的表面积和体积的详情如下:圆柱的表面积(1)侧面展开图:圆柱的侧面展开图是矩形,其中一边是圆柱的母线,另一边等于圆柱的底面周长.(2)面积:若圆柱的底面半径为r,母线长为l,则圆柱的侧面积S侧=2πrl,表面积S表=2πr(l+r).圆锥的表面积(1)侧面展开图:圆锥的侧面展开图是扇形,扇形的半径是圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)面积:若圆锥的底面半径为r,母线长为l,则圆锥的侧面积S侧=πrl,表面积S表=πr(l+r).圆台的表面积(1)侧面展开图:圆台的侧面展开图是扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到.(2)面积:圆台的上、下底面半径分别为r′、r,母线长为l,则侧面积S侧=π(r+r′)l,表面积S表=π(r2+r′2+rl +r′l).球的表面积若球的半径为R,则它的表面积S=4πR2.圆柱的体积(1)圆柱的高是指两底面之间的距离,即从一底面上任意一点向另一个底面作垂线,这个点与垂足(垂线与底面的交点)之间的距离.(2)若圆柱的底面半径为r,高为h,其体积V=πr2h.圆锥的体积(1)圆锥的高是指从顶点向底面作垂线,顶点与垂足(垂线与底面的交点)之间的距离.(2)若圆锥的底面半径为r,高为h,其体积V=圆台的体积若圆台的上、下底面半径分别为r′、r,高为h,其体积V=球的体积若球的半径为R,那么它的体积V=.求球的表面积与体积的一个关键和两个结论(1)关键:把握住球的表面积公式S球=4πR2,球的体积公式V 球=是计算球的表面积和体积的关键,半径与球心是确定球的条件.把握住公式,球的体积与表面积计算的相关题目也就迎刃而解了.(2)两个结论:①两个球的表面积之比等于这两个球的半径比的平方;②两个球的体积之比等于这两个球的半径比的立方解决几何体与球相切或相接的策略(1)要注意球心的位置,一般情况下,由于球的对称性,球心在几何体的特殊位置,比如几何体的中心或长方体对角线的中点等.(2)解决此类问题的实质就是根据几何体的相关数据求球的直径或半径,关键是根据“切点”和“接点”,作出轴截面图,把空间问题转化为平面问题来计算.。
圆柱和圆锥的所有公式
圆柱和圆锥的所有公式圆柱和圆锥是几何学中的基本图形。
圆柱有两个平行的圆形底面和一条连接两个底面的侧面,而圆锥有一个圆形底面和一条斜面,连接底面和顶点。
在数学和工程学中,圆柱和圆锥是经常出现的形状,因此了解其相关公式尤为重要。
下面将详细介绍有关圆柱和圆锥的公式及其相关应用。
一、圆柱的公式1. 侧面积公式圆柱的高为h,半径为r,侧面积公式为:S = 2πrh2. 重心公式圆柱的重心位于其对称轴的中心点处。
因此,圆柱的重心坐标为(0,0,h / 2)。
其中h为圆柱的高度。
3. 体积公式圆柱的高为h,半径为r,体积公式为:V = πr²h4. 母线长圆柱的母线长为:L = √(r² + h²)其中,r为圆柱底面的半径,h为圆柱的高。
二、圆锥的公式1. 母线长圆锥的母线长为:L = √(r² + h²)其中,r为圆锥底面的半径,h为圆锥的高。
2. 侧面积公式圆锥的侧面积为:S = πrl其中,r为圆锥底面的半径,l为圆锥的斜高。
3. 重心公式圆锥的重心位于其对称轴的中心点处。
因此,圆锥的重心坐标为(0,0,h / 4)。
其中h为圆锥的高度。
4. 体积公式圆锥的高为h,半径为r,体积公式为:V = 1/3 πr²h三、圆柱和圆锥的应用1. 圆柱的应用圆柱是为制作一些容器和管道设计的。
例如,液体罐、油桶和炉子的烟囱都是圆柱形状。
圆柱的体积公式可以用于计算这些设备的容量和内部空间大小,这对于生产和制造是非常有用的。
2. 圆锥的应用圆锥形状的应用非常广泛。
最常见的例子是冰激凌圆锥,这是许多人在夏天最爱的冰品之一。
圆锥形状还可以用于制作各种建筑物、雕塑和艺术品。
此外,圆锥的母线长可以用于计算斜面上的长度和高度,这对于设计倾斜结构非常有用。
综上所述,圆柱和圆锥是几何学中重要的图形。
它们的公式和应用不仅涉及到数学和工程学,还包括食品工业、建筑学和艺术等多个领域。
正方体,长方体,圆柱体,圆锥体的表面积,体积,容积公式
正方体,长方体,圆柱体,圆锥体的表面积,体积,容积公式
1.正方体的表面积公式是S=6a²
2.正方体的体积公式是V=a³或V=Sh
3.正方体的容积公式是V=a³或V=Sh
4.长方体的表面积公式是S=2ab+2ah+2bh
5.长方体的体积公式是V=abh或V=Sh
6.长方体的容积公式是V=abh或V=Sh
7.圆柱体的表面积公式是S=πdh+2πr²或S=2πrh+2πr²
8.圆柱体的体积公式是V=πr²h或V=Sh
9.圆柱体的容积公式是V=πr²h或V=Sh
10.圆锥体的表面积=圆锥的表面积=圆锥的侧面积+圆锥的底面积
S=πr²+πrl r——圆锥底面半径;l--圆锥底面周长
11.圆锥体的体积V=1/3×S×H(就是同底同高的圆柱体体积的1/3)
12.圆锥体的容积V=1/3×S×H(就是同底同高的圆柱体体积的1/3)。
圆柱和圆锥的表面积和体积的计算公式
圆柱和圆锥的表面积和体积的计算公式
圆柱和圆锥是两种常见的几何形状。
以下是它们的表面积和体积的计算公式:
圆柱
表面积
圆柱的表面积由底面和侧面组成。
底面积:π × r^2(每个底面)
侧面积:2 × π × r × h(两个侧面)
所以,圆柱的总表面积为:
表面积= 2 × (π × r^2) + 2 × π × r × h
体积
圆柱的体积计算公式为:
体积= π × r^2 × h
圆锥
表面积
圆锥的表面积由底面和侧面组成。
底面积:π × r^2
侧面积:π × r × s(s 是圆锥的斜边,也称为母线)
注意:s 可以通过勾股定理计算,s = √(r^2 + h^2)
所以,圆锥的总表面积为:
表面积= π × r^2 + π × r × √(r^2 + h^2)
体积
圆锥的体积计算公式为:
体积= (1/3) × π × r^2 × h
这些公式是计算圆柱和圆锥表面积和体积的基础。
在实际应用中,可以根据具体的问题和条件,使用这些公式进行计算。
圆柱圆锥表面积体积计算题
圆柱圆锥表面积体积计算题一、圆柱和圆锥的表面积和体积的公式圆柱的表面积公式为:S = 2πr(h + r),其中 r 是底面半径,h 是高。
圆柱的体积公式为:V = πr^2h。
圆锥的表面积公式为:S = πr^2 + πrl,其中 r 是底面半径,l 是斜边(母线)长度。
圆锥的体积公式为:V = 1/3πr^2h,其中 h 是高。
二、圆柱和圆锥的表面积和体积的题目题型一:已知圆柱的半径或直径和高,求表面积和体积1.已知圆柱的底面半径是2cm,高是5cm,求圆柱的表面积和体积。
2.已知圆柱的底面直径是6cm,高是4cm,求圆柱的表面积和体积。
题型二:已知圆柱的底面周长和高,求表面积和体积3.已知圆柱的底面周长是25.12cm,高是3cm,求圆柱的表面积和体积。
4.已知圆柱的底面周长是15.7cm,高是4cm,求圆柱的表面积和体积。
题型三:已知圆柱的侧面积和高,求表面积和体积5.已知圆柱的侧面积是50.24m²,高是8m,求表面积和体积。
6.已知圆柱的侧面积是219.8m²,高是10m,求表面积和体积。
题型四:已知圆柱的体积和半径或直径,求高和表面积7.已知圆柱的体积是157m³,半径是5m,求高和表面积。
8.已知圆柱的体积是3.14m³,半径是0.1m,求高表面积。
题型四:已知圆锥的半径或直径和高,求体积9.已知圆锥的底面半径是5cm,高是6cm,求圆锥的体积。
10.已知圆锥的底面直径是6cm,高是4cm,求圆锥的体积。
题型五:已知圆锥的底面周长和高,求体积11.已知圆锥的底面周长是18.84cm,高是3cm,求圆锥的体积。
12.已知圆锥的底面周长是9.42cm,高是9cm,求圆锥的体积。
题型六:已知圆锥的体积和半径或直径,求高13.已知圆锥的体积是78.5m³,半径是3m,求高。
14.已知圆锥的体积是1.884m³,直径是4m,求高。
圆柱和圆锥公式汇总
圆柱和圆锥公式汇总圆柱和圆锥是几何学中常见的几何体,它们具有很多重要的性质和公式。
下面将对圆柱和圆锥的几何性质和常用公式进行详细的介绍。
1.圆柱的性质和公式圆柱是一个由一个圆沿其直径旋转一周所形成的立体。
下面是关于圆柱的性质和公式:(1)面积公式:-底面积公式:圆柱的底面积可以用圆的面积公式计算,即A=πr^2,其中r是底圆的半径。
- 侧面积公式:圆柱的侧面积可以通过展开圆柱的侧面得到,即 A = 2πrh,其中 r 是底圆的半径,h 是圆柱的高度。
-总面积公式:圆柱的总面积等于底面积加上侧面积,即A=2πr(r+h)。
(2)体积公式:圆柱的体积可以用底面积乘以高度得到,即V=πr^2h,其中r是底圆的半径,h是圆柱的高度。
2.圆锥的性质和公式圆锥是一个由一个圆沿其直径旋转一周并连接到一个定点所形成的立体。
下面是关于圆锥的性质和公式:(1)面积公式:-底面积公式:圆锥的底面积可以用圆的面积公式计算,即A=πr^2,其中r是底圆的半径。
- 侧面积公式:圆锥的侧面积可以通过展开圆锥的侧面得到,可以得到一个扇形,由于圆锥的侧面是斜面,需要额外计算弧长。
假设侧面的斜边是 l,圆锥的斜高是 s,底圆的半径是 r,则侧面积可以计算为 A =πrl。
-总面积公式:圆锥的总面积等于底面积加上侧面积,即A=πr(r+l),其中l是斜边长度。
(2)体积公式:圆锥的体积可以用底面积乘以高度再除以3得到,即V=(1/3)πr^2h,其中r是底圆的半径,h是圆锥的高度。
3.圆柱和圆锥的相似性质圆柱和圆锥有一些相似性质,其中最重要的是相似三角形的性质:(1)相似三角形的性质:如果两个三角形的对应角度相等,则它们是相似的。
在圆柱和圆锥中,如果两个相似的三角形分别属于两个具有相同形状和大小的底面,那么它们的顶角也是相等的。
(2)应用:利用相似三角形的性质,可以推导出圆柱和圆锥的一些重要关系。
例如,如果圆柱和圆锥具有相同的高度,但半径不同,那么它们的体积之比等于半径之比的立方。
圆柱、圆锥常用的表面积、体积公式
圆柱的侧面积=底面圆周长×高 字母表示:S 侧=C 底h 2. 底面圆周长=圆周率×直径=圆周率×2×半径 字母表示:C 底=πd=2πr 3. 求圆柱的表面积三步:(1)圆柱的底面积=S 底=πr ²=π(d÷2)²=πd ²÷4 (2)圆柱侧面积=S 侧=h×C 底(底面圆周长)=2πrh=πdh (3)圆柱表面积=S 表=S 侧+2S 底圆柱体积的公式 圆柱的体积=底面积×高 字母表示:V 柱=S 底h 圆锥体积的公式(1) 圆锥的体积等于与它等底等高圆柱体积的1/3 V 锥=V 柱÷3=S 底h÷3 (2) 已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3 (3) 已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h (4) 已知圆锥体积(V )和底面积(S ),求高的公式:h=3V 锥÷S 底立体图形 表面积体积圆柱hr222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥h r22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米(π取3.14)1110.511.5例题精讲【例 2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米【例 3】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米(π 3.14=)【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少4cm【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米 (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】 输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米合多少升26【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少(π取3)253015【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.7cm4cm5cm【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米(π3)5cm【例 11】(第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 12】有两个棱长为8厘米的正方体盒子,A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A盒注满水,把A盒的水倒入B盒,使B盒也注满水,问A盒余下的水是多少立方厘米【例 13】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【例 16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米【例 17】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米【例 18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长【例 19】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米【例 20】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例 21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多多的是少的的几倍甲乙【例 22】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米【例 23】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 24】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆∆绕AC旋转一周,求ABC 扫出的立体图形的体积.(π 3.14=)CB A 【例 25】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米(π取3.14)【巩固】如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少ABC【例 26】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米(π取3)AB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米BA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刘老师'圆柱的侧面积=底面圆周长×高 字母表示:S 侧=C 底h 2.底面圆周长=圆周率×直径=圆周率×2×半径 字母表示:C 底=πd=2πr 3. 求圆柱的表面积三步:(1)圆柱的底面积=S 底=πr²=π(d÷2)²=πd²÷4(2)圆柱侧面积=S 侧=h×C 底(底面圆周长)=2πrh=πdh (3)圆柱表面积=S 表=S 侧+2S 底圆柱体积的公式 圆柱的体积=底面积×高 字母表示:V 柱=S 底h 圆锥体积的公式(1) 圆锥的体积等于与它等底等高圆柱体积的1/3 V 锥=V 柱÷3=S 底h÷3 (2) 已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3 ](3) 已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h (4) 已知圆锥体积(V )和底面积(S ),求高的公式:h=3V 锥÷S 底—立体图形 表面积体积圆柱hr222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱 圆锥h r22ππ360nS l r =+=+圆锥侧面积底面积注:l 是母线,即从顶点到底面圆上的线段长…21π3V r h =圆锥体板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米(π取3.14)1110.511.5例题精讲圆柱与圆锥【例 2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米:【例 3】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】!【例 5】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米(π 3.14=)!【例 6】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米¥【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少4cm【例 7】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)^【例 8】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米 (π 3.14=)?【例 9】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.(【例 10】 输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升【例 11】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米合多少升26【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少(π取3)253015…【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米(π3 )5cm【例 12】 (第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 13】 <【例 14】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米【例 15】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)%【例 16】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.,【例 17】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米,【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米}【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【例 18】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米>【例 19】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米)【例 20】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长;【例 21】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米!【例 22】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例 23】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多多的是少的的几倍甲乙【例 24】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.$20cm8cm100cm【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米【例 25】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.~板块二旋转问题【例 26】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆∆绕AC旋转一周,求ABC 扫出的立体图形的体积.(π 3.14=)CB A 【例 27】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米(π取3.14)【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少ABC【例 28】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米(π取3)AB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米BA。