反比例函数与一次函数的交点问题

合集下载

反比例函数与一次函数交点问题

反比例函数与一次函数交点问题

自学指导3:(3分钟)
例数:y如2=图x,+反2比得例图函象数交y于1 点mxM(m、≠N0,)M得(图1,象3)与,求一次函
△MON得面积、
y
H
∟ ∟
(0,2) A M (1,3)
3
∟ ∟
(-2,0)H B
1
oG
x
G
N (-3,-1)
变式:如图,在平面直角坐标系xOy中,一次函数 y=kx+b得图象与反比例函数y=m/x得图象交 于A(2,3)、B(-3,n)两点、 (1)求一次函数与反比例函数得解析式; (2)直接写出一次函数值不小于反比例函数值得 自变量x得取值范围;
D (1 ,4)E
(4 ,1)
C
(3)求△OPQ得面积、 y
P(1,4)
Q (4 ,1) E
0C D
x
(1 ,4) (4 ,1)
E F(5,0)y=-x+5
变式:如图,一次函数y1=kx+b得图象与反比例函 数y2= m/x(x>0)得图象交于A(1,6),B(a,2)两点、 (1)求一次函数与反比例函数得解析式;
x
自学指导2:(3分钟)
例y1、如k2图,得正图比象例相函交数于y=Ak、1xB与两反点比,其例中函点数 A得 x坐标为(2,4)
(1)分别写出这两个函数得表达式;
(2)您能求出点B得坐标吗?
您就是怎样求得?
y
oA
x
B
思考12:如正果比正例比 函例数函y=数k1与x反与比反例比函例数函图数象有 交y=点k2,则/x有交几点个,?则而k交1与点k坐2应标满有足什什么么特条点件? ?
x
直角坐标系中得图象可能就是D :

2023年中考九年级数学高频考点拔高训练-反比例函数和一次函数交点问题(含解析)

2023年中考九年级数学高频考点拔高训练-反比例函数和一次函数交点问题(含解析)

2023年中考九年级数学高频考点拔高训练-反比例函数和一次函数交点问题1.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y= kx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y= kx的解析式;(2)若直线y=﹣x+m与反比例函数y= kx(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.2.如图所示,直线y1=−x+6与反比例函数y2=k x(k≠0,x>0)的图象交于点Q(m,2)、点P.(1)求m的值及反比例函数的解析式.(2)根据图象,写出y1>y2时x的取值范围.3.如图,已知反比例函数y= mx(x>0)的图象与一次函数y=﹣x+b的图象分别交于A(1,3)、B两点.(1)求m、b的值;(2)若点M是反比例函数图象上的一动点,直线MC△x轴于C,交直线AB于点N,MD△y轴于D,NE△y轴于E,设四边形MDOC、NEOC的面积分别为S1、S2,S=S2﹣S1,求S的最大值.4.如图,一次函数y=x+5的图象与反比例函数y=k x(k为常数且k≠0)的图象相交于A(−1,m),B两点.(1)求反比例函数的表达式;(2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=k x的图象有且只有一个交点,求b的值.5.如图,一次函数与反比例函数y= mx的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)点P是x轴上的一动点,试确定点P使PA+PB最小,并求出点P的坐标.6.如图,直线y=mx+n(m≠0)与双曲线y=k x(k≠0)交于A、B两点,直线AB与坐标轴分别交于C、D两点,连接OA,若OA=2√10,tan∠AOC=13,点B(−3,b).(1)分别求出直线AB与双曲线的解析式;(2)连接OB,求S△AOB.7.定义:若一次函数y=ax+b与反比例函数y=k x同时经过点P(x,y)则称二次函数y=ax2+bx−k为一次函数与反比例函数的“关联函数”,称点P为关联点.例如:一次函数y=x+2与反比例函数y=8x,都经过(2,4),则y=x2+2x−8就是两个函数的“关联函数”.(1)判断y=2x+1与y=3x是否存在“关联函数”,如果存在,请求出“关联点”和相应“关联函数”.如果不存在,请说明理由;(2)已知:整数a,b,c满足条件c<b<8a,并且一次函数y=(1+b)x+ 2a+2与反比例函数y=2021x存在“关联函数” y=(a+c)x2+(10a−c)x−2021,求a的值.(3)若一次函数y=x+m和反比例函数y=m 2+13x在自变量x的值满足m≤x≤m+6的情况下.其“关联函数”的最小值为6,求其“关联函数”的解析式.8.如图,直线y1=2x−6与反比例函数y2=k x的图象交于点A(4,2),(1)求k的值及另一个交点的坐标;(2)当y1<y2时,求x的取值范围.9.在平面直角坐标系xOy中,反比例函数y=k x的图象经过点A(1,4),B(m,n).(1)求反比例函数y=k x的解析式;(2)若二次函数y=(x−1)2的图象经过点B,求代数式m 2−2m−34−n+1mn的值;(3)若反比例函数y=k x的图象与二次函数y=a(x−1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.10.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数y=k x(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.11.如图,已知A(−4,12),B(−1,m)是一次函数y=kx+b与反比例函数y=−2x(x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)求一次函数解析式及m的值;(2)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.12.如图,在平面直角坐标系中,平行四边形OABC的顶点A在x轴上,B,C在第一象限,反比例函数y=kx(k≠0)的图象经过点C,交AB于D,已知OC=12,OA=4 √3,△AOC=60°(1)求反比例函数y=kx(k≠0)的函数表达式;(2)连结CD,求△BCD的面积;(3)P是线段OC上的一个动点,以AP为一边,在AP的右上方作正方形APEF,在点P的运动过程中,是否存在一点P使顶点E落在△OABC的边所在的直线上,若存在,请求出此时OP的长,若不存在,请说明理由.13.如图所示,一次函数y=kx+b的图象与反比例函数y =mx交于A(1,t+2),B(﹣2t,﹣1)两点.(1)求一次函数和反比例函数的函数表达式;(2)点C(x1,y1)和D(x2,y2)是反比例函数y =mx图象上任意两点,①若x1<x2<0,p =y1+y28,q =2x1+x2,试判断p、q的大小关系,并说明理由;②若x1<﹣4,0<x2<1,过C、D两点分别作直线AB的垂线,垂足分别为E、F,当x1x2=﹣4时,判断四边形CEFD的形状,并说明理由.14.如图,已知点D在反比例函数y= mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan△OAC= 25.(1)求反比例函数y= mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求△BMC的度数.15.如图,直线y=ax+6经过点A(−3,0),交反比例函数y=k x(x>0)的图象于点B(1,m).(1)求k的值;(2)点D为第一象限内反比例函数图象上点B下方的一个动点,过点D作DC⊥y 轴交线段AB于点C,连接AD,求△ACD的面积的最大值.16.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= nx(n为常数且n≠0)的图象在第二象限交于点C.CD△x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤ nx的解集.答案解析部分1.【答案】(1)解:设D 的坐标是(4,a ),则A 的坐标是(4,a+3).又∵点C 是OA 的中点, ∴点C 的坐标是(2, a+32),∴4a=2× a+32 =k ,解得a=1,k=4,∴反比例函数的解析式为y= 4x;(2)m >4;82.【答案】(1)解:将点 Q(m ,2) 代入直线 y 1=−x +6 中得: 2=−m +6 ,解得: m =4 ,将点 Q(4,2) 代入 y 2=k x 得: 2=k 4,∴k =8 ,∴反比例函数的解析式为: y 2=8x;(2)解:联立 {y 1=−x +6y 2=8x 得: −x +6=8x ,整理得: x 2−6x +8=0 ,解得: x =2 或 x =4 , 当 x =2 时, y 1=y 2=4 , 当 x =4 时, y 1=y 2=2 , ∴P(2,4) , Q(4,2) ,∴由函数图象可得,当 y 1>y 2 时x 的取值范围为: 2<x <4 .3.【答案】(1)解:把A (1,3)的坐标分别代入y= mx 、y=﹣x+b ,∴m=xy=3,3=﹣1+b , ∴m=3,b=4(2)解:由(1)知,反比例函数的解析式为y= 3x ,一次函数的解析式为y=﹣x+4,∵直线MC△x 轴于C ,交直线AB 于点N ,∴可设点M 的坐标为(x , 3x),点N 的坐标为(x ,﹣x+4),其中,x >0,又∵MD△y 轴于D ,NE△y 轴于E ,∴四边形MDOC 、NEOC 都是矩形, ∴S 1=x• 3x=3,S 2=x•(﹣x+4)=﹣x 2+4x ,∴S=S 2﹣S 1=(﹣x 2+4x )﹣3=﹣(x ﹣2)2+1.其中,x >0, ∵a=﹣1<0,开口向下,∴有最大值,∴当x=2时,S取最大值,其最大值为14.【答案】(1)解:由题意,将点A(−1,m)代入一次函数y=x+5得:m=−1+5=4∴A(−1,4)将点A(−1,4)代入y=k x得:k−1=4,解得k=−4则反比例函数的表达式为y=−4 x;(2)解:将一次函数y=x+5的图象沿y轴向下平移b个单位得到的一次函数的解析式为y=x+5−b联立{y=x+5−b y=−4x整理得:x2+(5−b)x+4=0∵一次函数y=x+5−b的图象与反比例函数y=−4x的图象有且只有一个交点∴关于x的一元二次方程x2+(5−b)x+4=0只有一个实数根∴此方程的根的判别式Δ=(5−b)2−4×4=0解得b1=1,b2=9则b的值为1或9.5.【答案】(1)解:将A(1,4)代入y= m x,∴m=4,∴反比例函数的解析式为:y= 4 x(2)解:将B(4,n)代入y= 4 x,∴n=1,设C与A关于x轴对称,∴C(1,﹣4),设直线BC的解析式为:y=kx+b,将C(1,﹣4)和B(4,1)代入y=kx+b,∴解得{k=53b=−173∴一次函数的解析式为:y= 53x﹣173令y=0代入y= 53x﹣173∴x= 175∴P ( 175,0)6.【答案】(1)解:如图,作 AE ⊥x 轴于点 E∵tan∠AOC =AE OE =13 ,∴ 设 AE =x , OE =3x ,则 OA =√AE 2+OE 2=√10x =2√10 , ∴x =2 ,∴ 点 A 的坐标为 (−6,2) ,代入 y =kx,得: k =−12 ,则反比例函数解析式为 y =−12x,当 x =−3 时, y =4 , ∴ 点 B 的坐标为 (−3,4) ,将点 A(−6,2) 、 B(−3,4) 代入 y =mx +n ,得: {−6m +n =2−3m +n =4, 解得: {m =23n =6, ∴ 直线 AB 的解析式为 y =23x +6 ;(2)解:在直线 y =23x +6 中,当 x =0 时, y =6 ,即点 D(0,6) ,当 y =0 时, 23x +6=0 ,解得 x =−9 ,即点 C(−9,0) ,∴S △AOB =S △COD −S △AOC −S △BOD=12×9×6−12×9×2−12×6×3 =9 .7.【答案】(1)解:存在关联点和关联函数,理由如下:{y =2x +1y =3x, 整理得: 2x 2+x −3=0 ,(x −1)(2x +3)=0 ,解得: x 1=1 , x 2=−32, 所以,关联点为(1,3)或( −32,-2), 关联函数为: y =2x 2+x −3(2)解:由题意知: {y =(1+b)x +2a +2y =2021x, 整理得: (1+b)x 2+(2a +2)x −2021=0 ,因此可得: {1+b =a +c 10a −c =2a +2, 解得: {b =9a −3c =8a −2, ∵c <b <8a ,∴8a −2<9a −3<8a ,解得: 1<a <3 ,∵ a 是整数,∴a =2(3)解:由一次函数 y =x +m 和反比例函数 y =m 2+13x得:“关联函数”的解析式为 y =x 2+mx −(m 2+13) ,函数的对称轴为:x =− 12m ; 当m +6≤− 12m 时,即m≤−4, x =m +6,函数取得最小值,即 (m +6)2+m ⋅(m +6)−(m 2+13)=6 , 解得:m =-17或-1(舍去);当m <− 12m <m +6,即−4<m <0, 函数在x =− 12 m 处取得最小值,即 (−12m)2+m ⋅(−12m)−(m 2+13)=6 ,无解;当m≥0时,函数在x =m 处,取得最小值,即 m 2+m ⋅m −(m 2+13)=6 , 解得:m =± √19 (舍去− √19 ),综上,m =-17或 √19 ,故“关联函数”的解析式为y=x2−17x−302或y=x2+√19x−32.8.【答案】(1)把A(4,2)代入y=k x中得:2=k4,解得k=8,∴y=8 x联立方程组得{y=2x−6y=8x,解得,{x=4y=2或{x=−1y=−8∵A(4,2)∴另一个交点坐标为(−1,−8).(2)由图象可知,不等式y1<y2的解集为0<x<4或x<−1 9.【答案】(1)解:将A(1,4)代入函数y=k x得:k=4反比例函数y=kx的解析式是y=4x(2)解:∵B(m,n)在反比例函数y=kx上,∴mn=4,又二次函数y=(x-1)2的图象经过点B(m,n),∴(m−1)2=n,即n-1=m2-2m∴m 2−2m−34−n+1mn=mn(m2−2m−3)−4(n+1)4mn=−54(3)解:由反比例函数的解析式为y=4x,令y=x,可得x2=4,解得x=±2.∴反比例函数y=4x的图象与直线y=x交于点(2,2),(-2,-2).如图,当二次函数y=a(x-1)2的图象经过点(2,2)时,可得a=2;当二次函数y=a(x-1)2的图象经过点(-2,-2)时,可得a=-2 9.∵二次函数y=a(x-1)2图象的顶点为(1,0),∴由图象可知,符合题意的a的取值范围是0<a<2或a<-2 9.10.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数y=k x的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y= 2 x(2)解:反比例函数y= 2x,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= 1 3,∴当1≤x≤6时,反比例函数y的值:13≤y≤211.【答案】(1)解:把B(−1,m)代入反比例函数y=−2x得,m=2,y=kx+b的图象过点A(−4,12),B(−1,2),则{−4k+b=1 2−k+b=2,解得{k=12b=52,∴一次函数的解析式为y=12x+5 2(2)解:连接PC、PD,如图,设P(x,12x+52),由△PCA和△PDB面积相等得1 2×12×(x+4)=12×|−1|×(2−12x−52),解得x=−52,∴y=12x+52=54,∴P点坐标是(−52,5 4)12.【答案】(1)解:如图1,过点C作CG△x轴于点G∴△OGC=90°∵OC=12,△AOC=60°∴cos△AOC=OGOC=12,sin△AOC=OGOC=√32∴OG=12OC=6,CG=√32OC=6 √3∴C(6,6 √3)∵反比例函数y=kx(k≠0)的图象经过点C∴6 √3=k6解得:k=36 √3∴反比例函数的函数表达式为y=36√3x(2)解:如图2,过点D作DH△BC于点H∵OA=4 √3,点A在x轴上∴A(4 √3,0)∵四边形OABC是平行四边形∴BC△OA,BC=OA=4 √3∴x B=x C+BC=6+4 √3,y B=y H=y C=6 √3∴B (6+4 √3 ,6 √3 )设直线AB 解析式为y =ax+b∴{4√3a +b =0(6+4√3)a +b =6√3 解得: {a =√3b =−12∴直线AB :y = √3 x ﹣12∵点D 为线段AB 与反比例函数图象的交点∴{y =36√3x y =√3x −12 解得: {x 1=6√3y 1=6 或 {x 2=−2√3y 2=−18 (舍去) ∴D (6 √3 ,6)∴DH =6 √3 ﹣6∴S △BCD = 12 BC•DH = 12×4 √3 ×(6 √3 ﹣6)=36﹣12 √3 (3)解:存在点P 使顶点E 落在△OABC 的边所在的直线上. 如图3,过点P 作PM△x 轴于点M ,过点E 作EN△直线PM 于点N∴△AMP =△PNE =90°∵C (6,6 √3 )∴直线OC 解析式为y = √3 x∵点P 在线段OC 上∴设点P 坐标为(m , √3 m )(0≤m≤6)∴OM =m ,PM = √3 m∴AM =OA ﹣OM =4 √3 ﹣m∵四边形APEF 是正方形∴AP =PE ,△APE =90°∴△EPN+△APM =△APM+△PAM =90°∴△EPN =△PAM在△PNE 与△AMP 中{∠PNE =∠AMP ∠EPN =∠PAM PE =AP∴△PNE△△AMP(AAS)∴PN=AM=4 √3﹣m,NE=PM=√3m∴x E=x N+NE=m+ √3m,y E=y N=MN=PM+PN=√3m+4 √3﹣m∴E(m+ √3m,√3m+4 √3﹣m)①若点E落在直线OC上,则√3m+4 √3﹣m=√3(m+ √3m)解得:m=√3∴P(√3,3),OP=√(3+√3)2=2√3②若点E落在直线BC上,则√3m+4 √3﹣m=6 √3解得:m=3+ √3∴P(3+ √3,3 √3+3),OP=√(3+√3)2+(3√3+3)2=6+2√3③若点E落在直线AB上时,直线AB:y=√3x﹣12∴√3(m+ √3m)﹣12=√3m+4 √3﹣m解得:m=3+ √3,即点E落在直线BC与直线AB交点处综上所述,OP=2 √3或(6+2 √3)时,点E落在△OABC的边所在的直线上.13.【答案】(1)解:将点A、B的坐标代入反比例函数表达式得:1×(t+2)=﹣1×(﹣2t),解得:t=2,故点A、B的坐标分别为(1,4)、(﹣4,﹣1),故反比例函数表达式为:y =4 x;将点A、B的坐标代入一次函数表达式并解得:k=1,b=3,故一次函数的表达式为:y=x+3;(2)解:①p<q,理由:设反比例函数过点C(x1,y1)、D(x2,y2),则y1=4x1,y2=4x2,p =18(y1+y2) =18(4x1+4x2)=x1+x22x1x2,q =2x1+x2,p﹣q =x1+x22x1x2−2x1+x2=(x1−x2)22x1x2(x1+x2),∵x1<x2<0,∴x1x2>0,x1+x2<0,∴p﹣q<0,故p<q;②由题意知,点C 、D 的坐标分别为(x 1, 4x 1 )、(x 2, 4x 2), 设直线CD 的表达式为:y=ax+b ,将点C 、D 的坐标代入上式得 {ax 1+b =4x 1ax 2+b =4x 2 ,解得:a =−4x 1x 2 , ∵x 1x 2=﹣4=﹣4a ,解得:a=1.∵a=k=1,∴CD△AB ,又∵CE△DF ,∴四边形CEFD 为平行四边形,又∵CE△AB ,∴四边形CEFD 为矩形.14.【答案】(1)解:∵A (5,0),∴OA=5.∵tan∠OAC =25, ∴OC OA =25,解得OC=2, ∴C (0,﹣2),∴BD=OC=2,∵B (0,3),BD△x 轴,∴D (﹣2,3),∴m=﹣2×3=﹣6,∴y =−6x, 设直线AC 关系式为y=kx+b ,∵过A (5,0),C (0,﹣2),∴{0=5k +b −2=b ,解得 {k =25b =−2, ∴y =25x −2 ; (2)解:∵B (0,3),C (0,﹣2),∴BC=5=OA ,在△OAC 和△BCD 中{OA =BC ∠AOC =∠DBC OC =BD∴△OAC△△BCD (SAS ),∴AC=CD ,∴△OAC=△BCD ,∴△BCD+△BCA=△OAC+△BCA=90°,∴AC△CD ; (3)解:△BMC=45°.如图,连接AD ,∵AE=OC ,BD=OC ,AE=BD ,∴BD△x 轴,∴四边形AEBD 为平行四边形,∴AD△BM ,∴△BMC=△DAC ,∵△OAC△△BCD ,∴AC=CD ,∵AC△CD ,∴△ACD 为等腰直角三角形,∴△BMC=△DAC=45°. 15.【答案】(1)解:把A(−3,0)代入y =ax +6,得−3a +6=0, 解得a =2,∴直线的函数表达式为y =2x +6,∴当x =1时,y =2×1+6=8,∴B(1,8),把B(1,8)代入反比例函数y =k x,得k =1×8=8. (2)解:设点C 的坐标为(x ,2x +6),由于DC ⊥y 轴,所以点D 的纵坐标为2x +6,∴点D(82x+6,2x +6), ∴S △ACD =12CD ×(2x +6)=12(82x+6−x)×(2x +6)=−x 2−3x +4=−(x +32)2+254, ∴当x =−1.5时,S △ACD 最大值=254,答:S △ACD 的最大值为254. 16.【答案】(1)解:∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD△OA ,∴DC△OB ,∴OB CD =AO AD, ∴6CD = 35, ∴CD=10,∴点C 坐标(﹣2,10),B (0,6),A (3,0),∴{b =63k +b =0 解得 {k =−2b =6, ∴一次函数为y=﹣2x+6.∵反比例函数y= n x 经过点C (﹣2,10),∴n=﹣20,∴反比例函数解析式为y=﹣ 20x(2)解:由 {y =−2x +6y =−20x解得 {x =−2y =10 或 {x =5y =−4 , 故另一个交点坐标为(5,﹣4)(3)解:由图象可知kx+b≤ n x 的解集:﹣2≤x <0或x≥5。

2022一次函数与反比例函数交点问题精选20题

2022一次函数与反比例函数交点问题精选20题

2021-2022学年北师大九年级数学上册6.2.1—一次函数与反比例函数交点问题精选20题 1.如图,正比例函数y 1=k 1x 的图象与反比例函数y 2=2k x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >22.如图,直线l 与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =kx(x >0)的图象交于点C ,若S △AOB =S △BOC =1,则k =( )A .1B .2C .3D .43.一次函数y =﹣x +a ﹣3(a 为常数)与反比例函数y =﹣4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时a 的值是( )A .0B .﹣3C .3D .44.如图,在平面直角坐标系中,函数y =4x(x >0)与y =x ﹣1的图象交于点P (a ,b ),则代数式11a b的值为( )A .﹣12B .12C .﹣14D .145.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,﹣2),则点F 的坐标是( )A .(54,0) B .(74,0) C .(94,0) D .(114,0) 6.如图,在平面直角坐标系中,直线y =x 与函数y =kx(x >0)的图象交于点A ,直线y =x ﹣1与函数y =kx(x >0)的图象交于点B ,与x 轴交于点C .若点B 的横坐标是点A 的横坐标的2倍,则k 的值为( )A .23B .2C .1D .497.如图,直线y =k 1x +b 与双曲线y =2k x交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x+b 的解集是 .8.如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=kx(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为.9.设函数y=3x与y=﹣2x﹣6的图象的交点坐标为(a,b),则12a b的值是.10.如图,直线y=﹣x+b与双曲线y=kx(k<0),y=mx(m>0)分别相交于点A,B,C,D,已知点A的坐标为(﹣1,4),且AB:CD=5:2,则m=.11.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.12.如图,直线AB交双曲线y=kx于A、B两点,交x轴于点C,且B恰为线段AC的中点,连接OA.若S△OAC=72,则k的值为.13.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为.14.如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣2x(x<0)上,D点在双曲线y=kx(x>0)上,则k的值为.16.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B,C两点,若函数(0)ky k x=>的图象与△ABC 的边有2个公共点,则k 的取值范围是 .17.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y =kx +b 和反比例函数y =mx图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b ﹣mx>0的解集.18.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.19.如图,已知反比例函数y=kx的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=mx的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.参考答案1.D 2.D 3.C 4.C 5.C 6.D 7.﹣5<x <﹣1或x >0 8.4 9.﹣2 10.54 11.2 12.7313.0 14.8 15.6 16.5<k <8或9<k <2017.解:(1)把A (﹣4,2)代入y =mx,得m =2×(﹣4)=﹣8, 所以反比例函数解析式为y =﹣8x, 把B (n ,﹣4)代入y =﹣8x,得﹣4n =﹣8, 解得n =2,把A (﹣4,2)和B (2,﹣4)代入y =kx +b ,解得,所以一次函数的解析式为y =﹣x ﹣2; (2)y =﹣x ﹣2中,令y =0,则x =﹣2, 即直线y =﹣x ﹣2与x 轴交于点C (﹣2,0), ∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6; (3)由图可得,不等式kx +b ﹣mx>0的解集为:x <﹣4或0<x <2.18.解:(1)∵点A 的坐标为(﹣1,4),点B 的坐标为(4,n ). 由图象可得:k 1x +b >2k x的x 的取值范围是x <﹣1或0<x <4; (2)∵反比例函数y =2k x的图象过点A (﹣1,4),B (4,n ), ∴k 2=﹣1×4=﹣4,k 2=4n , ∴n =﹣1,∴B(4,﹣1),∵一次函数y=k1x+b的图象过点A,点B,∴,解得:k1=﹣1,b=3,∴一次函数的解析式y=﹣x+3,反比例函数的解析式为y=﹣4x;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=12×3×1=32,∴S△AOB=S△AOC+S△BOC=12×3×1+132×4=152,∵S△AOP:S△BOP=1:2,∴S△AOP=152×13=52,∴S△AOC<S△AOP,S△COP=52﹣32=1,∴12×3•x P=1,∴x P=32,∵点P在线段AB上,∴y=﹣23+3=73,∴P(23,73).19.解:(1)把A点(1,4)分别代入反比例函数y=kx,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=4x的图象上,∴n=4-4=﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.20.解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣43 x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=mx图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣4x.。

反比例函数与一次函数相交,求2线段相等

反比例函数与一次函数相交,求2线段相等

反比例函数与一次函数相交,求2线段相等。

1. 反比例函数与一次函数的定义反比例函数是指y=k/x形式的函数,其中k为比例常数。

一次函数是指y=kx+b形式的函数,其中k为斜率,b为截距。

2. 反比例函数与一次函数相交的条件当反比例函数y=k/x和一次函数y=kx+b相交时,它们在相交点(x,y)满足k/x=kx+b。

解方程k/x=kx+b可得到相交点的横坐标x,再代入y=k/x或y=kx+b中的一个函数即可得到相交点的纵坐标y。

3. 求两线段相等的条件若两线段的长度相等,则它们的端点的横坐标和纵坐标的差的平方和也相等。

即若两线段的端点分别为(x1,y1)和(x2,y2),则当且仅当(x2-x1)^2+(y2-y1)^2=(0)^2+(0)^2时,两线段的长度相等。

4. 求解反比例函数与一次函数相交的示例假设反比例函数为y=2/x,一次函数为y=3x+4,求它们相交点的坐标。

解方程2/x=3x+4得到x,再代入y=2/x或y=3x+4中即可得到相交点的坐标。

5. 求解两线段相等的示例假设有两线段,它们的端点分别为(1,2)和(3,4),(5,6)和(7,8),求它们的长度是否相等。

计算(3-1)^2+(4-2)^2和(7-5)^2+(8-6)^2,若结果相等,则两线段的长度相等。

6. 总结通过对反比例函数与一次函数相交和求两线段相等的示例分析,可以得出以上结论。

在实际问题中,若遇到相关问题,可根据这些条件进行求解。

经过以上对反比例函数与一次函数相交和求两线段相等的基本理论的讨论,我们可以进一步探讨具体的例子和应用。

在实际问题中,我们经常会遇到需要求解两线段相等或者分析反比例函数与一次函数的交点问题,这些问题在数学和实际生活中都具有重要意义。

首先我们来看一个具体的例子,假设有一块土地,被划分成两个不规则形状的区域A和B,现在我们想要确定在A和B的分界线上有多少个点满足反比例函数y=k/x和一次函数y=kx+b相交的情况。

2023年中考九年级数学高频考点拔高训练--反比例函数与一次函数交点的问题

2023年中考九年级数学高频考点拔高训练--反比例函数与一次函数交点的问题

2023年中考九年级数学高频考点拔高训练--反比例函数与一次函数交点的问题1.阅读材料:已知:一次函数y=﹣x+b与反比例函数y=4x(x>0),当两个函数的图象有交点时,求b的取值范围.(1)方方给出了下列解答:﹣x+b=4 xx2﹣bx+4=0∵两个函数有交点∴△=b2﹣16≥0但是方方遇到了困难:利用已学的知识无法解b2﹣16≥0这个不等式;此时,圆圆提供了另一种解题思路;第1步:先求出两个函数图象只有一个交点时,b=▲ ;第2步:画出只有一个交点时两函数的图象(请帮圆圆在直角坐标系中画出图象);第3步:通过平移y=﹣x+b的图象,观察得出两个函数的图象有交点时b的取值范围是▲ .应用:如图,Rt△ABC中,△C=90°,BC的长为x,AC的长为y,且S△ABC=12.(2)求y关于x的函数表达式;(3)设x+y=m,求m的取值范围.2.若反比例函数y=mx与一次函数y=kx+b的图象都经过点(﹣2,﹣1),且当x=1时,这两个函数值相等.(1)求反比例函数的解析式;(2)求一次函数的解析式.3.如图,一次函数y=ax+b的图象与反比例函数y= k x的图象交于A(﹣2,m),B(4,﹣2)两点,与x轴交于C点,过A作AD△x轴于D.(1)求这两个函数的解析式:(2)求△ADC的面积.4.如图,直线y=45x−45交x轴于点M,四边形OMAE是矩形,S矩形OMAE=4,反比例函数y=kx(x>0)的图象经过点A,EA的延长线交直线y=45x−45于点D.(1)求反比例函数的解析式;(2)若点B在x轴上,且AB=AD,求点B的坐标.5.在平面直角坐标系xOy中,一次函数y=−x+5的图象与反比例函数y=kx(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为52.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB 向下平移了几个单位长度?6.如图,点A在反比例函数y=k x(x>0)的图象上,AB⊥x轴,垂足为B(3,0),过C(5,0)作CD⊥x轴,交过B点的一次函数y=32x+b的图象于D点,交反比例函数的图象于E点,S△AOB=3.(1)求反比例函数y=k x(x>0)和一次函数y=32x+b的表达式:(2)求DE的长.7.在平面直角坐标系中,反比例函数y= k x(k>0,x>0)图象上的两点(n,3n)、(n+1,2n).(1)求n的值;(2)如图,直线l为正比例函数y=x的图象,点A在反比例函数y= kx(k>0,x>0)图象上,过点A作AB△l于点B,过点B作BC△x轴于点C,过点A作AD△BC于点D,记△△BOC的面积为S1,△ABD的面积为S2,求S1-S2的值.8.如图,在平面直角坐标系xOy中,一次函数y=mx+1(m≠0)与反比例函数y=nx(x<0)的图象交于点A(−1,2),与x轴交于点B.(1)求一次函数与反比例函数的解析式;(2)点C是反比例函数图象上一点,过点C作x轴的平行线CD交直线AB于点D,作直线AC交x轴于点E,若S△ACD:S△AEB=1:4,求点E的坐标.9.如图,反比例函数y= k x的图象与一次函数y= 14x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较△PAQ与△PBQ的大小,并说明理由.10.如图,一次函数y=−12x+52的图像与反比例函数y=k x(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.11.如图,正方形AOCB的边长为4,反比例函数y= k x(k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE.(1)求k的值;(2)反比例函数图象与线段BC交于点D,直线y= 12x+b过点D与线段AB交于点F,延长OF交反比例函数y= kx(x<0)的图象于点N,求N点坐标.12.如图,直线y=ax+1与x轴、y轴分别相交于A,B两点,与双曲线y=k x(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(−2,0) .(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.13.在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y=mx(x>0)的图象G交于A,B两点.(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.①当m=2时,直接写出区域W内的整点的坐标;②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.14.模具厂计划生产面积为4,周长为m的矩形模具.对于m的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x,y,由矩形的面积为4,得xy=4,即y=4x;由周长为m,得2(x+y)=m,即y=−x+m2.满足要求的(x,y)应是两个函数图象在第象限内交点的坐标.(2)画出函数图象函数y=4x(x>0)的图象如图所示,而函数y=−x+m2的图象可由直线y=−x平移得到.请在同一直角坐标系中直接画出直线y=−x.(3)平移直线y=−x,观察函数图象①当直线平移到与函数y=4x(x>0)的图象有唯一交点(2,2)时,周长m的值为▲ ;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m的取值范围为.15.如图,直线y=−x+3与反比例函数y=2x(x>0)的图象交于A,B两点.(1)求点A,B的坐标;(2)如图1,点E是线段AC上一点,连接OE,OA,若∠AOE=45°,求AEEC的值;(3)如图2,将直线AB沿x轴向右平移m个单位长度后,交反比例函数y=2x(x>0)的图象于点P,Q,连接AP,BQ,若四边形ABQP的面积恰好等于m2,求m的值.16.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=−8x的图象交于A(−2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.答案解析部分1.【答案】(1)解:4;函数图象如图1所示:;b≥4(2)解:∵Rt△ABC 中,△C =90°,BC 的长为x ,AC 的长为y ,且 S △ABC =12 , ∴12⋅x ⋅y =12 , ∴y =24x(x >0) (3)解:∵x+y=m , ∴m =x +24x, ∴x 2-mx+24=0 ∴m 2-96≥0 ∵m >0 ∴m ≥4√62.【答案】(1)解:∵反比例函数y= m x 的图象经过点(-2,-1), ∴-1= m−2 ,解得:m=2,∴反比例函数的解析式:y= 2x ;(2)解:当x=1时,y= 21=2,∴一次函数y=kx+b 的图象经过点(1,2)(-2,-1), ∴{−2k +b =−1k +b =2 ,解得 {k =1b =1 ,∴一次函数的解析式:y=x+1.3.【答案】(1)解:∵反比例函数y= k x的图象过B (4,﹣2)点,∴k=4×(﹣2)=﹣8,∴反比例函数的解析式为y=﹣ 8x;∵反比例函数y= k x 的图象过点A (﹣2,m ),∴m=﹣ 8−2=4,即A (﹣2,4).∵一次函数y=ax+b 的图象过A (﹣2,4),B (4,﹣2)两点, ∴{−2a +b =44a +b =−2 , 解得 {a =−1b =2∴一次函数的解析式为y=﹣x+2; (2)解:∵直线AB :y=﹣x+2交x 轴于点C , ∴C (2,0).∵AD△x 轴于D ,A (﹣2,4), ∴CD=2﹣(﹣2)=4,AD=4, ∴S △ADC = 12 •CD•AD= 12×4×4=8.4.【答案】(1)解:求得直线 y =45x −45与 x 轴交点坐标为M (1,0),则OM =1, 而S 矩形OMAE =4,即OM·AM =4, ∴AM =4, ∴A (1,4);∵反比例函数的图象过点A (1,4), ∴k =4 ,∴所求函数为 y =4x(x >0) ;(2)解:∵点D在EA延长线上,∴直线AD:y=4,求得直线y=45x−45与直线y=4的交点坐标为D(6,4),∴AD=5;设B(x,0),则BM=|x−1|,Rt△ABM中,AB=AD=5,AM=4,∴BM=3,即|x−1|=3,则x1=−2,x2=4,∴所求点B为B1(-2,0),B2(4,0).5.【答案】(1)解:作BF⊥OC令y=0,−x+5=0,x=5∴C(5,0),即OC=5∵S△OBC=52∴12BF⋅OC=52∴BF=1∴B点的纵坐标为1令y=1,−x+5=1,x=4∴B(4,1)将B点坐标代入y=kx(k>0)中,得k=4×1=1∴反比例函数表达式:y=4 x(2)解:设平移a个单位长度则平移后直线解析式为y =−x +5−a ∵两个图象只有1个交点 ∴{y =−x +5−a y =4x, 整理,得−x 2+(5−a)x −4=0,此方程有两个相等的实数根 ∴Δ=0∴(5−a)2−4×(−1)×(−4)=025−10a +a 2−16=0a 2−10a +9=0 (a −1)(a −9)=0∴a −1=0,a −9=0 a =1或a =96.【答案】(1)解:∵点A 在反比例函数y = k x(x >0)的图象上,AB△x 轴,∴S △AOB = 12 |k|=3,∴k =6,∴反比例函数为y = 6x,∵一次函数y = 32x+b 的图象过点B (3,0),∴32 ×3+b =0,解得b = −92 , ∴一次函数为 y =32x −92;(2)解:∵过C (5,0)作CD△x 轴,交过B 点的一次函数y = 32x+b 的图象于D 点,∴当x =5时y = 6x = 65 ; y =32x −92=3 ,∴E (5, 65),D (5,3),∴DE =3﹣65=95. 7.【答案】(1)解:将(n ,3n)和(n+1,2n)代入y= k x 得:3n= k n,2n= k n+1∴3n 2=2n(n +1)解得n=2或n=0(舍去), ∴n=2(2)解:由(1)得:点(2,6)在反比例函数y= kx(k>0,x>0)的图象上,将点(2,6)代入y= kx,得k=12.反比例函数为y= 12 x设OC=a,又点B在直线y=x,.点B(a,a).又BC△x轴,∴△BOC为等腰直角三角形。

2023年中考九年级数学高频考点 专题训练--反比例函数与一次函数交点问题

2023年中考九年级数学高频考点 专题训练--反比例函数与一次函数交点问题

2023年中考九年级数学高频考点专题训练--反比例函数与一次函数交点问题一、综合题1.如图,直线y1=3x﹣5与反比例函数y2= k−1x的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.2.如图,在平面直角坐标系中,双曲线L:y= k x(x>0)过点A(a,b)(0<a<2)、B(2,1)。

过点A作AC△x轴,垂足为C。

(1)求L的解析式;(2)当△ABC的面积为2时,求点A的坐标;(3)点P为双曲线L上A,B之间(包括A,B两点)的动点,直线l1:y=mx+1过点P。

在(2)的条件下,若y=mx+1具有y随x的增大而增大的性质,请直接写出m的取值范围(不必说明理由)。

3.如图,已知正比例函数y=k1x的图象与反比例函数y=k2x的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足为Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.(1)求正比例函数解析式、反比例函数解析式.(2)当点D的纵坐标为9时,求ΔAEP的面积.(3)若直线OD上存在一点M,点M的横坐标为m,ΔAEM的面积为S,直接写出S关于m的解析式,并写出定义域.4.在平面直角坐标系中,过点P(0,a)作直线l分别交y=mx(m>0、x>0)、y=n x(n<0、x<0)于点M、N,(1)若m=4,MN△x轴,S△MON=6,求n的值;(2)若a=5,PM=PN,点M的横坐标为3,求m-n的值;(3)如图,若m=4,n=-6,点A(d,0)为x轴的负半轴上一点,B为x轴上点A右侧一点,AB=4,以AB为一边向上作正方形ABCD,若正方形ABCD与y=mx(m>0、x>0)、y=nx(n<0、x<0)都有交点,求d的范围.5.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0,x<0)的图象交于点A(-3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)求sin△ABO的值;(3)当x<0时,比较y1与y2的大小.6.如图,已知反比例函数y1=k x的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2).(1)求这两个函数的关系式;(2)如果在x轴上找一点C使△ABC的面积为18,求点C坐标.7.如图,一次函数y=ax+b与反比例函数y=k x的图象交于A(2,2),B(4,1)两点.(1)求这两个函数的表达式;(2)在反比例函数y=k x第三象限的图象上有一点P,且点P到直线AB的距离最短,求点P的坐标.8.已知一次函数y=kx+b的图象与反比例函数y=-8x的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.9.如图,在平面直角坐标系中,反比例函数y =k x(x>0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y =k x(x>0)的图象上,过A,B两点的直线与y轴交于点C.(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.10.如图,已知直线y=mx+b(m≠0)与双曲线y= k x(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.11.如图,在平面直角坐标系中,O为坐标原点,已知△ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=k x(k≠0)的图象经过点D.(1)求反比例函数的解析式;(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.12.若反比例函数y=k x与一次函数y=2x-4的图象都经过点A(a,2).(1)求反比例函数y=kx的表达式;(2)当反比例函数y=kx的值大于一次函数y=2x-4的值时,求自变量x的取值范围.13.如图,已知直线y=ax+b与双曲线y=k x(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).14.如图,直线y1=mx与双曲线y2=k x交于点A、B,过点A作AP△x轴,垂足P点的坐标是(−2,0),连接BP,且S△ABP=4.(1)求正比例函数y1=mx和反比例函数y2=k x的解析式.(2)当y1<y2时,求x的取值范围.15.如图,一次函数y=kx+b与反比例函数y=4x(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M,N两点.(1)求一次函数的表达式;(2)根据图象直接写出kx+b-4x>0中x的取值范围;(3)求△AOB的面积.16.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=k x(k≠0)的图象交于A(﹣3,2),B(2,n).(1)求反比例函数y=k x的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<kx的解集.答案解析部分1.【答案】(1)解:∵点B(n,﹣6)在直线y=3x﹣5上.∴-6=3n-5,解得:n= −1 3.∴B(−13,-6);∵反比例函数y=k−1x的图象也经过点B(−13,-6),∴k-1=-6×( −13)=2,解得:k=3;(2)解:设直线y=3x﹣5分别与x轴,y轴相交于点C,点D,当y=0时,即3x﹣5=0,x= 5 3,∴OC= 5 3,当x=0时,y=3×0-5=-5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2-5=1,即A(2,1).∴S△AOB=S△AOC+S△COD+S△BOD=12×(53×1+53×5+13×5)=356(3)解:由图象可知y1>y2时自变量x的取值范围为:−13<x<0或x>2.2.【答案】(1)解:将B(2,1)代入y= k x,得k=2,∴L的解析式为y= 2 x(2)解:∵点A(a,b)在反比例函数上,∴b= 2 a,∵S△ABC= 12b(2-a)=2,即12b(2−2b)=2,∴b=3,点A的坐标为( 23,3)(3)解:m的取值范围为0<m≤3提示:当点P与点A重合时,把( 23、3)代入y=mx+1,解得m=3∵y=mx+1具有y随x的增大而增大的性质,∴m>0,∴m的取值范围为0<m≤33.【答案】(1)解:∵正比例函数y=k1x的图象与反比例函数y=k2x的图象都经过点P(2,3),∴3=2k1,3=k22,∴k1=32,k2=6,∴正比例函数解析式为y=32x ,反比例函数解析式为y=6x;(2)解:当y=9=6x时,x=23,∴A(23,9),把x=23代入y=32x,得y=1,∴E(23,1),∴AE=9−1=8,∴S△AEP=12⋅AE⋅|x P−x A|=12×8×|2−23|=163;(3)解:由题意得,S△AEM=12⋅AE⋅|x M−x E|=12×8×|m−23|,∴S关于m的解析式为S={4m−83(m>23)−4m+83(m<23).4.【答案】(1)解:点P(0,a),则点M、N的坐标分别为(ma,a)、(na,a),则S△MON=6= 12×MN×OP= 12×(4a- na)×a解得:n=-8(2)解:点M、N的坐标分别为(ma,a)、(na,a),∵PM=PN,则ma=-na,解得:m=-n,若a=5,点M的横坐标为3,则点M(3,5),故m=3×5=15=-n,故m-n=30(3)解:点A(d,0),则点B(d+4,0),点D、C的坐标分别为(d,4)、(d+4,4),设正方形交两个反比例函数于点G、H,则点G、H的坐标分别为(d,- 6d)、(d+4,4d+4),若正方形ABCD与y= mx(m>0、x>0),y=nx(n<0,x<0)都有交点,则HD≥0且CG≥0,即{4+6d≥04−4d+4≥0,且d<0,d+4>0,解得:-3≤d≤ −3 2,故d的范围为:-3≤d≤ −3 2 .5.【答案】(1)解:把A(-3,1)代入y2=mx得m=xy=-3×1=-3,∴反比例函数的解析式为y=−3x.过点A做AD△y轴于D,∵A(-3,1),∴AD=3.∵S△AOB=12OB•AD,∴12OB•3=6,OB=4.∴B(0,4).把A(-3,1).B(0,4)代入y1=kx+b得{−3k+b=1b=4,∴{k=1b=4,.∴一次函数的解析式为y=x+4(2)解:∵在Rt△ABD中,AD=3,BD=BO-OD=4-1=3∴△ABO=45°∴sin△ABO=sin45°=√22(3)解:由{y=−3xy=x+4得{x1=−1y1=3,{x2=−3y2=1.∴C(-1,3).∴当x<-3或-1<x<0时,y2> y1当-3<x<-1时, y 2 > y 16.【答案】(1)解:∵函数y 1=k x的图象过点A(1,4), ∴4=k 1, ∴k=4,即y 1=4x, 又∵点B(m ,-2)在y 1=4x的图象上, ∴m=-2,∴B(-2,-2),又∵一次函数y 2=ax+b 的图象过A ,B 两点,∴{−2a +b =−2a +b =4,解之得{a =2b =2, ∴y 2=2x+2.综上可得y 1=4x,y 2=2x+2. (2)解:设直线AB 交x 轴于点D ,易求D (-1 ,0)设C(x ,0),∵s ΔABC =s ΔADC +s ΔBCD ,∴12y A |x +1|+12|y B ||x +1|=18, 12×4×|x +1|+12×2×|x +1|=18 3|x+1|=18,解得:x=5或x=-7,∴C(5,0)或(-7,0).7.【答案】(1)解:设反比例函数的表达式为 y =k x, 将点 A(2,2) 代入 y =k x中,得 k =4 , ∴反比例函数的表达式为 y =4x;设一次函数的表达式为 y =kx +b ,将点 A(2,2) , B(4,1) 代入 y =kx +b 中,得 {2k +b =24k +b =1, 解得 {k =−12b =3, ∴一次函数的表达式为 y =−12x +3 (2)解:如图,作直线 AB 的平行线,当其与反比例函数的图象只有一个交点 P 时,此时点 P 到直线 AB 的距离最短,设直线 PM 的解析式为 y =−12x +n ,则 4x =−12x +n , 去分母,得 x 2−2nx +8=0 ,由题意得, Δ=0 ,∴4n 2−32=0 ,解得 n 1=−2√2 , n 2=2√2 (不合题意,舍去).∴x 2+4√2x +8=0 ,解得 x 1=x 2=−2√2 ,∴在 y =4x中,当 x =−2√2 时, y =−√2 . ∴点 P 的坐标为 (−2√2,−√2) .8.【答案】(1)解:令反比例函数y=- 8x中x=-2,则y=4, ∴点A 的坐标为(-2,4); 反比例函数y=- 8x 中y=-2,则-2=- 8x,解得:x=4, ∴点B 的坐标为(4,-2). ∵一次函数过A 、B 两点, ∴{4=−2k +b −2=4k +b ,解得: {k =−1b =2, ∴一次函数的解析式为y=-x+2 (2)解:设直线AB 与y 轴交于C , 令为y=-x+2中x=0,则y=2, ∴点C 的坐标为(0,2),∴S △AOB = 12 OC•(x B -x A )= 12×2×[4-(-2)]=6 (3)解:观察函数图象发现: 当x <-2或0<x <4时,一次函数图象在反比例函数图象上方, ∴一次函数的函数值大于反比例函数的函数值时x 的取值范围为x <-2或0<x <4.9.【答案】(1)解:把点 A(2,6) 代入 y =k x, k =2×6=12 , ∴ 反比例函数的解析式为 y =12x, ∵ 将点 A 向右平移2个单位,∴x =4 ,当 x =4 时, y =124=3 , ∴B(4,3) ,设直线 AB 的解析式为 y =mx +n ,由题意可得 {6=2m +n 3=4m +n, 解得 {m =−32n =9, ∴y =−32x +9 ,当 x =0 时, y =9 ,∴C(0,9) ;(2)解:由(1)知 CD =9−5=4 ,∴S ΔABD =S ΔBCD −S ΔACD =12CD ⋅|x B |−12CD ⋅|x A |=12×4×4−12×4×2=4 .10.【答案】(1)解:把(﹣3,﹣1)代入y= k x 得k=3, 则反比例函数的解析式是y= 3x; 把(n ,6)代入y= 3x 得n= 12. 根据题意得: {−3m +b =−112m +b =6 , 解得: {m =2b =5, 则一次函数的解析式是y=2x+5(2)解:在y=2x+5中,令x=0,解得y=5,则S △AOB = 12 ×5×( 12 +3)= 35411.【答案】(1)解:∵A (0,2),C (6,2),∴AC=6,∵△ABC 是等腰直角三角形,∴AC=BC=6,∵S △ABC =3S △ADC ,∴BC=3DC ,∴DC=2,∴D (6,4),∵反比例函数y 1=k x(k≠0)的图象经过点D , ∴k=6×4=24,∴反比例函数的解析式为y 1=24x; (2)解:∵C (6,2),BC=6,∴B (6,8),把点B 、A 的坐标分别代入y 2=ax +b 中,得{6a +b =8b =2, 解得:{a =1b =2, ∴直线AB 的解析式为y 2=x +2,解方程x+2=24x, 整理得:x 2+2x-24=0,解得:x=4或x=-6,∴直线y 2= x+2与反比例函数y 1=24x的图象的交点为(4,6)和(-6,-4), ∴当y 1>y 2时,0<x<4或x<-6.12.【答案】(1)解:将A (a ,2)代入一次函数y=2x-4中得:2=2a-4,即a=3, ∴A (3,2),将x=3,y=2代入反比例解析式得:k=6,则反比例解析式为y= 6x; (2)解:联立两函数解析式得: {y =6x y =2x −4,解得: {x =3y =2 或 {x =−1y =−6 ,即两函数的两交点分别为(3,2),(-1,-6),作出两函数图象,如图所示:则由函数图象得:反比例函数y= 6x的值大于一次函数y=2x-4的值时,自变量x 的取值范围为x <-1或0<x <3.13.【答案】(1)解:∵直线y=ax+b 与双曲线y=k x(x >0)交于A (1,3), ∴k=1×3=3,∴y=3x, ∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1, ∴B (3,1),∵直线y=ax+b 经过A 、B 两点,∴{a +b =33a +b =1解得{a =−1b =4, ∴直线为y=﹣x+4,令y=0,则x=4,∴P (4,0)(2)解:如图,作AD△y 轴于D ,AE△x 轴于E ,BF△x 轴于F ,BG△y 轴于G ,AE 、BG 交于H ,则AD△BG△x 轴,AE△BF△y 轴,∴CD OC =AD OP ,PF PE =BF AE =PB PA, ∵b=y 1+1,AB=BP ,∴1y 1+1=x 16, PF PE =BF AE =12, ∴B (6+x 12,12y 1) ∵A ,B 两点都是反比例函数图象上的点,∴x 1•y 1=6+x 12•12y 1, 解得y 1=2,代入1y 1+1=x 16,解得x 1=2, ∴A (2,2),B (4,1).(3)解:根据(1),(2)中的结果,猜想:x 1,x 2,x 0之间的关系为x 1+x 2=x 0.14.【答案】(1)解:过点B 作BD△AP 于点D ,交y 轴于E ,∵点P 的坐标为(-2,0),∴OP=2,根据题意得点A 、B 关于原点对称,∴BE=DE=OP=2,∴BD=4,又S △ABP =4,∴12AP ⋅4=4, ∴AP=2,∴点A 的坐标为(-2,-2),代入y 1=mx ,得m=1;代入y 2=k x,得k=4,∴正比例函数的解析式为y 1=x ,反比例函数y 2=k x的解析式为y 2=4x ; (2)解:由(1)可知点B 的坐标为(2,2),由图象可知,当x<-2或0<x<2时y 1<y 2.15.【答案】(1)解:∵点A 在反比例函数y = 4x 上,∴4m=4.解得m =1,∴点A 的坐标为(1,4).又∵点B 也在反比例函数y = 4x 上,∴42=n ,解得n =2,∴点B 的坐标为(2,2).又∵点A ,B 在y =kx +b 的图象上,∴{k +b =42k +b =2 解得 {k =−2b =6∴一次函数的表达式为y =-2x +6 (2)解:由图象可得,当 1<x<2 时,直线在双曲线的上方,∴这时 kx +b> 4x,即kx +b - 4x>0 ,∴ x 的取值范围为1<x<2 . (3)解:∵直线y =-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0).∴S △AOB =S △AON -S △BON = 12 ×3×4- 12×3×2=3. 16.【答案】(1)解:把A (﹣3,2)代入反比例解析式得:k=﹣6,则反比例解析式为 y =−6x(2)解:把B (2,n )代入反比例解析式得:n=﹣3,即B (2,﹣3),把A (﹣3,2)与B (2,﹣3)代入y=ax+b 中得: {−3a +b =22a +b =−3,解得:a=﹣1,b=﹣1,则一次函数解析式为y=﹣x+1 (3)解:∵A (﹣3,2),B (2,﹣3),∴结合图象得:不等式ax+b < k x的解集为﹣3<x <0或x >2。

反比例函数与一次函数交点问题-习题及详解

反比例函数与一次函数交点问题-习题及详解

反比例函数与一次函数交点问题1.如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.2.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.3.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出k1x+b﹣≥0时自变量x的取值范围.(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.4.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.5.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.6.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;S△PAC=S△AOB?(3)在y轴上是否存在一点P,使若存在请求出点P坐标,若不存在请说明理由.2018年05月16日157****9624的初中数学组卷参考答案与试题解析一.解答题(共6小题)的图象1.如图,一次函数y=kx+b与反比例函数交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题;K3:三角形的面积.【解答】解:(1)分别把A(m,6),B(3,n)代入得6m=6,3n=6,解得m=1,n=2,所以A点坐标为(1,6),B点坐标为(3,2),分别把A(1,6),B(3,2)代入y=kx+b得,解得,所以一次函数解析式为y=﹣2x+8;(2)当0<x<1或x>3时,;(3)如图,当x=0时,y=﹣2x+8=8,则C点坐标为(0,8),当y=0时,﹣2x+8=0,解得x=4,则D点坐标为(4,0),=S△COD﹣S△COA﹣S△BOD所以S△AOB=×4×8﹣×8×1﹣×4×2=8.2.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)∵直线y=k1x+b过A(0,﹣2),B(1,0)两点∴,∴∴一次函数的表达式为y=2x﹣2.(3分)∴设M(m,n),作MD⊥x轴于点D∵S△OBM=2,∴,∴∴n=4(5分)∴将M(m,4)代入y=2x﹣2得4=2m﹣2,∴m=3∵M(3,4)在双曲线上,∴,∴k2=12∴反比例函数的表达式为(2)过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2(8分)∴在Rt△PDM中,,∴PD=2MD=8,∴OP=OD+PD=11∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)3.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出k1x+b﹣≥0时自变量x的取值范围.(4)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=;如图,作DE⊥x轴于E,∵D(2,﹣3),点B是线段AD的中点,∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴;(2)由,解得,,∴C(﹣4,),∴S△COD=S△AOC+S△AOD=×2×+×2×3=;(3)由图可得,当k1x+b﹣≥0时,x<﹣4或0<x<2.(4)作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,).4.如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)把A(m,﹣2)代入y=,得﹣2=,解得m=﹣1,∴A(﹣1,﹣2)代入y=kx,∴﹣2=k×(﹣1),解得,k=2,∴y=2x,又由2x=,得x=1或x=﹣1(舍去),∴B(1,2),(2)∵k=2,∴≥kx为≥2x,根据图象可得:当x≤﹣1和0<x≤1时,反比例函数y=的图象恒在正比例函数y=2x图象的上方,即≥2x.(3)①当点C在第一象限时,△OAC不可能为等边三角形,②如图,当C在第三象限时,要使△OAC为等边三角形,则OA=OC,设C(t,)(t<0),∵A(﹣1,﹣2)∴OA=∴t2+=5,则t4﹣5t2+4=0,∴t2=1,t=﹣1,此时C与A重合,舍去,t2=4,t=﹣2,∴C(﹣2,﹣1),而此时AC=,AC≠AO,∴不存在符合条件的点C.5.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t,t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).6.如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.【考点】G8:反比例函数与一次函数的交点问题.【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).。

反比例函数与一次函数的交点及相关面积问题

反比例函数与一次函数的交点及相关面积问题

与交点有关的常见题型-三、利用交点确定取值范围-例4、如图,一次函数与反比例函数的图像相交于A、B两点,则图中使反-比例函数的值小于一次函数的值的 的取值范围是(·-A.X<-1-B.X>2-C.-1<x<0,或x>2-③-D.x<-1,或0<x<2
练习:如图,一次函数y1=kx十b的图象与反比例函数-相交舌9、B两点且点A的横坐标和点B的纵坐标都是-2,直线AB与x轴-交于点M。-1求一次函 的解析式:-y=-X+2-2求△AOB的面积-S△AOB=6-3根据图象写出使一次函数-的值大于反比例函数的值的-x的取值范围.-........ ......-x<-2或0<X<4
思考:两个反比例函数在第一象限的图像如图所示,点P在-的图像上,PC业轴于-点C,交-的图像于点A,PD⊥y轴于点D,=交-的图像于点B,当点P在 上运动一以下结论:-①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;-③PA与PB始终相等;④当点A是PC的中点时,点B一定是 D的中点。-其中一定正确的有:①②④
与交点有关的常见题型-二、利用交点求图形面积-2求△AOB的面积;-解:过A作AD⊥x轴于D,过B作BE⊥y轴于E-⊙A-2,±2,B1,4-.A =2,BE=1-在y=2x+2中,令x=0,则y=2-.C0,2-..0C=2-分割法:-'.S△AOB=S△AOc+S△BOC-×2×2+×25 8SAA0c+5△B0c
製完竟-虚龙-谢谢反比例函数与一次函数的交点及相关面积问题
与交点有关的常见题型-二、利用交点求图形面积-例2、如图,点Am,m+1,Bm+3,m-1都在反比例函数-图像上。-y=-1求m,k的值,-2求∠ OB的面积-转化法:-S△AOB=S直角梯形ACDB

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案

中考数学总复习《反比例函数与一次函数交点问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,一次函数y x b =+的图像与反比例函数ky x=的图像交于(2,3)A ,(,2)B n -两点.(1)求一次函数与反比例函数的表达式.(2)过点B 作BC y ⊥轴,垂足为C ,连接AC ,求点B 的坐标,并直接写出ABC 的面积.2.如图,反比例函数8y x=-与一次函数2y x =-+的图像交于A B 、两点.求:(1)A B 、两点的坐标; (2)直接写出82x x-<-+的解集.3.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点()2A a -,,并且与x 轴相交于点B .(1)求反比例函数的表达式; (2)求AOB 的面积;(3)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.4.如图,已知直线4y x =-+与反比例函数ky x=的图象相交于点(2)A a -,,并且与x 轴相交于点B .(1)求a 的值;求反比例函数的表达式; (2)求AOB 的面积; (3)求不等式40kx x-+-<的解集(直接写出答案).5.在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.6.如图,一次函数26y x =-+的图象与x 轴、y 轴分别交于A 、B 两点且与反比例函数my x=(m 是不为0的常数)的图象在第二象限交于点C ,CD x ⊥轴,垂足为D ,若3BO DO =.(1)求m 的值;(2)求两个函数图象的另一个交点E 的坐标; (3)请观察图象,直接写出不等式26mx x-+≥的解集.7.如图,已知反比例函数11k y x=的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.8.如图,直线22y x =+与x 轴交于点C ,与y 轴交于点B ,在直线上取点()2,A a ,过点A 作反比例函数()0ky x x=>的图象.(1)求a 的值及反比例函数的表达式; (2)根据图象,直接写出满足22kx x>+在第一象限内x 的取值范围. (3)点Q 在x 轴负半轴上,满足BOA OAQ ∠=∠,求点Q 的坐标.9.如图,在平面直角坐标系中,点(3,5)A 与点C 关于原点O 对称,分别过点A 、C 作y 轴的平行线,与反比例函数(015)k y k x=<<的图象交于点B 、D ,连接AD 、BC ,AD 与x 轴交于点(2,0)E -.求(1)直线AD 的解析式及k 值; (2)直接写出阴影部分面积之和.10.如图,直线y kx b =+(,k b 为常数)与双曲线my x=(m 为常数)相交于()2,A a ,()1,2B -两点.(1)求直线y kx b=+的解析式;(2)在双曲线myx=上任取两点()11,M x y和()22,N x y,若12x x<,试确定1y和2y的大小关系,并写出判断过程11.如图,一次函数y kx b=+的图象与反比例函数myx=的图象相交于(1,)A n-和(2,1)B-两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求ABD△的面积;(3)观察图象直接写出不等式mkx b x>+的解集.12.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为()4,2,反比例函数ky x=的图象经过AB 的中点D ,且与BC 交于点E ,设直线DE 的解析式为y mx n =+,连接OD OE ,.(1)求反比例函数ky x=的表达式和点E 的坐标; (2)直接写出不等式kmx n x>+的解集; (3)点M 为y 轴正半轴上一点,若MBO △的面积等于ODE 的面积,求点M 的坐标;13.如图1,反比例函数ky x=与一次函数y x b =+的图象交于A B ,两点,已知()2,3B .(1)求反比例函数和一次函数的表达式;(2)一次函数y x b =+的图象与x 轴交于点C ,点D (未在图中画出)是反比例函数图象上的一个动点,若3OCDS=,求点D 的坐标:(3)若点M 是坐标轴上一点,点N 是平面内一点,是否存在点M N ,,使得四边形ABMN 是矩形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.14.综合与实践如图,一次函数133y x =+的图象与x 轴交于点A ,与y 轴交于点B ,把线段AB 绕点B 逆时针旋转90︒得到BC ,过点C 作CD y ⊥轴于点D ,反比例函数2ky x=的图象经过点C ,与直线AB 交于两点E 和F .(1)求反比例函数的解析式;(2)如图2,若点E 的横坐标是1,点F 的纵坐标是3-.△直接写出线段BE 和AF 的数量关系和当21y y >时,x 的取值范围; △连接CE 和CF ,求ECF △的面积;(3)当点M 在x 轴上运动,点N 在反比例函数2ky x=的图象上运动,以点A ,D ,M 和N 为顶点的四边形是平行四边形,直接写出点M 的坐标.15.如图1,在平面直角坐标系中,OABC 的一个顶点与坐标原点重合,OA 边落在x 轴上,且4OA =,22OC =和45COA ∠=︒.反比例函数()0,0ky k x x=>>的图象经过点C ,与AB 交于点D ,连接AC CD ,.(1)试求反比例函数的解析式;(2)求证:CD 平分ACB ∠;(3)如图2,连接OD ,在反比例函数图象上是否存在一点P ,使得12POC COD S S =?如果存在,请直接写出点P 的坐标.如果不存在,请说明理由.1.(1)1y x =+ 6y x =(2)1522.(1)A 点坐标为()2,4-,B 点坐标为()4,2-(2)<2x -或04x <<3.(1)12y x =-(2)12(3)2x <-或06x <<4.(1)6a =;12y x=-(2)12 (3)20x <<-或6x >5.(1)110k = 22k =6.(1)20-(2)()5,4-(3)2x ≤-或 05x <≤7.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.8.(1)6a =,反比例函数解析式为()120y x x=>; (2)02x <<(3)()2.5,0Q -9.(1)2y x =+,3(2)1210.(1)1y x =-+;(2)当M N 、在双曲线的同一支上时,12y y <;当M N 、在双曲线的不同的一支上时12y y >.11.(1)2y x =- 1y x =-+ (2)ABD △的面积为3(3)10x -<<或2x >12.(1)4y x= ()41, (2)02x <<和4x >(3)302M ⎛⎫ ⎪⎝⎭,13.(1)反比例函数和一次函数的表达式分别为:61y y x x==+, (2)()1,6D --或()1,6D(3)存在,其坐标分别为()()125,00,5M M ,14.(1)6y x= (2)△01x <<或<2x -;△15(3)(4,0)-或(4,0)或(2,0).15.(1)4y x= (2)存在,点P 的坐标为()5151-+,或()5151+-,。

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案

中考数学《反比例函数与一次函数的交点问题》专项练习题及答案一、单选题1.如图,直线y=ax(a≠0)与反比例函数y=k x(k≠0)的图象交于A,B两点.若点B的坐标是(3,5),则点A的坐标是()A.(﹣3,﹣5)B.(﹣5,﹣3)C.(3.﹣5)D.(5,﹣3)2.如图,反比例函数y1= k1x和一次函数y2=k2x+b的图象交于A,B N点.A,B两点的横坐标分别为2,-3.通过观察图象,若y1>y2,则x的取值范围是()A.0<x<2B.-3<x<0或x>2C.0<x<2或x<-3D.-3<x<03.某数学小组在研究了函数y1=x与y2=4x性质的基础上,进一步探究函数y=y1+y2的性质,经过讨论得到以下几个结论:①函数y=y1+y2的图象与直线y=3没有交点;②函数y=y1+y2的图象与直线y=a只有一个交点,则a=±4;③点(a,b)在函数y=y1+y2的图象上,则点(-a,-b)也在函数y=y1+y2的图象上.以上结论正确的是()A.①②B.①②③C.②③D.①③4.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2C.−1<x<2D.−1<x<0或0<x<25.如图,正比例函数y=x与反比例函数y= 2x的图象相交于A,B两点,分别过A,B两点作y轴的垂线,垂足分别为C,D,连接AD,BC,则四边形ACBD的面积为()A.2B.4C.6D.86.我们知道,方程x2+2x﹣1=0的解可看作函数y=x+2的图象与函数y=1x的图象交点的横坐标,那么方程kx2+x﹣4=0(k≠0)的两个解其实就是直线y=kx+1与双曲线y=4x的图象交点的横坐标,若这两个交点所对应的坐标为(x1,4x1)、(x2,4x2),且均在直线y=x的同侧,则实数k的取值范围是()A.12<k<32B.﹣12<k<32C.﹣116<k<0或0<k<32D.12<k<32或﹣116<k<07.如图,直线y=x+a−2与双曲线y=4x交于A,B两点,则当线段AB的长度取最小值时,a的值为A.0B.1C.2D.58.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A,B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2 C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>29.如图,函数y=−x与函数y=−4x的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,则四边形ADBC的面积为()A.2B.4C.6D.810.正比例函数y1=k1x(k1>0)与反比例函数y2= k2x(k2>0)部分图象如图所示,则不等式k1x>k2x的解集在数轴上表示正确的是()A.B.C.D.11.如图,在平面直角坐标系中,△OAB的边OA在x轴正半轴上,其中△OAB=90°,AO=AB,点C为斜边OB的中点,反比例函数y=kx(k>0,x>0)的图象过点C且交线段AB于点D,连接CD,OD,若S△OCD=32,则k的值为()A.3B.52C.2D.112.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=1x的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2二、填空题13.如图,过原点且平行于y=3x−1直线与反比例函数y=k x(k≠0,x>0)的图像相交x于点C,过直线OC上的点A(1,3),作AB⊥x轴于点B,交反比例函数图象于点D,且AD=2BD,那么点C的坐标为.14.已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是15.若反比例函数 y =b−3x和一次函数 y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = 。

2023年中考九年级数学高频考点 专题训练--反比例函数与一次函数交点问题

2023年中考九年级数学高频考点 专题训练--反比例函数与一次函数交点问题

2023年中考九年级数学高频考点 专题训练--反比例函数与一次函数交点问题一、综合题1.如图,一次函数y=kx+b 与反比例函数y=mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的解析式; (2)求一次函数的解析式;(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.2.如图,一次函数y =mx +1的图象与反比例函数y =kx的图象交于点A ,B ,交y 轴于点C ,点B的横坐标为1,且AC =2CB ,连接OA ,OB .(1)求△AOB 的面积; (2)求反比例函数的表达式;(3)根据图象直接写出满足不等式k x<mx +1时,x 的取值范围.3.已知:直线 l 1:y =kx +b 过点 A ( −1 , 0 ),且与双曲线 l 2 : y =2x相交于点 B( −1<x 1<x 2<1 ,2).(1)求m 值及直线 l 1 的解析式;(2)画出 l 1,l 2 的图象,结合图象直接写出不等式 kx +b >2x的解集.4.如图,已知一次函数 y 1=k 1x +b(k 1≠0) 与反比例函数 y 2=k2x(k 2≠0) 的图象交于A(4,1) , B(n,−2) 两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.5.如图:直线y=x与反比例函数y= k x(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y= kx的图象上时,求点A'的坐标.6.如图,一次函数y1=x+1的图象与反比例函数y2=k x(k为常数,且k≠0)的图象都经过点A (m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.7.如图,反比例函数y=πx的图象与一次函数y=kx+b的图象交于M(1,3),N两点,点N的横坐标为﹣3.(1)根据图象信息可得关于x 的方程πx =kx+b 的解为 ;(2)求一次函数的解析式.8.直线y=3x 与反比例函数y=k x的图象交于A (1,m )和点B 。

中考数学高频考点突破-反比例函数与一次函数交点问题

中考数学高频考点突破-反比例函数与一次函数交点问题

2023年中考数学高频考点突破-反比例函数与一次函数交点问题1.如图,反比例函数y=k x(k≠0)与直线l:y=23x−1相交于A,B两点,过点A作AC⊥x 轴,垂足为点C,且AC=1 .(1)求反比例函数的表达式及点B的坐标;(2)观察图象,求出不等式23x−kx>1的解集.2.在平面直角坐标系xOy中,函数y=k x(x>0)的图象G经过点A(4,1),直线l∶y=14x+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.3.如图,反比例函数y= k x(x>0)的图象与一次函数y=3x的图象相交于点A,其横坐标为2.(1)求k的值;(2)点B为此反比例函数图象上一点,其纵坐标为3.过点B作CB∥OA,交x轴于点C,直接写出线段OC的长.4.如图,已知反比例函数y=k x与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.5.如图,在平面直角坐标系中,已知点A(5,3),点B(-3,3),过点A的直线y=12x+m(m为常数)与直线x=1交于点P,与x轴交于点C,直线BP与x轴交于点D。

(1)求点P的坐标;(2)求直线BP的解析式,并直接写出△PCD与△PAB的面积比;(3)若反比例函数y=k x(k为常数且k≠0)的图象与线段BD有公共点时,请直接写出k的最大值或最小值。

6.在平面直角坐标系xOy中,直线l:y=x−1与双曲线y=k x相交于点A(2,m) .(1)求点A坐标及反比例函数的表达式;(2)若直线l与x轴交于点B,点P在反比例函数的图象上,当△OPB的面积为1时,求点P的坐标.7.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= k x(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH= 43,点B的坐标为(m,﹣2).求:(1)反比例函数和一次函数的解析式;(2)写出当反比例函数的值大于一次函数的值时x的取值范围.8.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=mx(m为常数,且m≠0)的图象交于点A(﹣2,1),B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当y1>y2时,自变量x的取值范围.9.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y= mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣ mx >0的解集.10.如图,已知一次函数y =ax + b (a ,b 为常数,a≠0)的图象与x 轴,y 轴分别交于点A ,B ,且与反比例函数 y =kx(k 为常数,k≠0)的图象在第二象限内交于点C ,作CD ⊥x 轴于点D ,若OA=OD = 34OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax + b≤ k x的解集.11.如图,在平面直角坐标系中,O 为原点,一次函数y 1=x+m 与反比例函数y 2= k x的图象相交于A(2,1),B (n ,﹣2)两点,与x 轴交于点C .(1)求反比例函数解析式和点B 坐标;(2)当x 的取值范围是 时,有y 1>y 2.12.在平面直角坐标系xOy 中,直线l : y =x +b 与x 轴交于点A (-2,0),与y 轴交于点B .双曲线 y =kx与直线l 交于P ,Q 两点,其中点P 的纵坐标大于点Q 的纵坐标.(1)求点B 的坐标;(2)当点P 的横坐标为2时,求k 的值;(3)连接PO ,记△POB 的面积为S ,若 13≤S ≤1 ,直接写出k 的取值范围.13.已知一次函数y=k 1x+b 与反比例函数y= k2x的图象交于第一象限内的P ( 12 ,8),Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式;(2)直接写出不等式k 1x+b≥ k2x的解集;(3)M 为线段PQ 上一点,且MN ⊥x 轴于N ,求△MON 的面积最大值及对应的M 点坐标.14.如图,反比例函数 y =4x(x >0) 的图像与一次函数 y =kx −3 的图像在第一象限内相交于点 A(4,n) .(1)求 n 的值及一次函数的解析式;(2)直线 x =2 与反比例函数和一次函数的图象分别交于点 B , C ,求 △ABC 的面积.15.已知,如图,反比例函数y= k x的图象与一次函数y=x+b 的图象交于点A (1,4),点B (m ,-1),(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出不等式x+b>kx的解.16.在平面直角坐标系xOy中,反比例函数y=k x(x>0)的图象与直线y=x−1交于点A(3,m)(1)求k的值;(2)已知点P(n,0)(n>0),过点P作垂直于x轴的直线,交直线y=x−1于点B,交函数y=k x(x>0)于点C.①当n=4时,判断线段PC与BC的数量关系,并说明理由;②若PC⩽BC,结合图象,直接写出n的取值范围.答案解析部分1.【答案】(1)解:∵ AC=1 ,∴点A的纵坐标为1,则23x−1=1,解得x=3,故点 A(3,1) .将点A的坐标代入y=k x得,1=k3,解得 k=3,故反比例函数的表达式为y=3 x .联立{y=3xy=23x−1,解得: x1=3 , y1=1;x2=−32,y2=-2,∴点B的坐标为(−32,-2).(2)解:观察函数图象知,不等式23x−kx>1的解集为−32<x<0或x>3【知识点】反比例函数与一次函数的交点问题【解析】【分析】对于(1),首先根据AC的值得到点A的纵坐标,然后代入直线解析式中求出x 的值,进而可得点A的坐标,接下来将点A坐标代入反比例函数解析式中可得其解析式,最后联立直线与反比例函数解析式即可求出点B的坐标;对于(2),找出直线在反比例函数图象上方部分对应的x的范围即可.2.【答案】(1)解:∵点A(4,1)在y=k x(x>0)的图象上.∴k4=1,∴k=4.(2)解:① 3个.(1,0),(2,0),(3,0).②a.当直线过(4,0)时:14×4+b=0,解得b=−1b.当直线过(5,0)时:14×5+b=0,解得b=−54c .当直线过(1,2)时: 14×1+b =2 ,解得 b =74d .当直线过(1,3)时: 14×1+b =3 ,解得 b =114∴综上所述: −54≤b <−1 或 74<b ≤114【知识点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征 【解析】【分析】(1)将A 点坐标代入y =kx即可求出k 的值,(2)①当 b = − 1 时直线的解析式为y =14x −1,根据直线与坐标轴交点的坐标特点得出其与坐标轴轴交点的坐标为(4.0)(0,-1),与双曲线的交点为(2+2√5,√52-1),从而得出区域 W 内的整点为(1,0),(2,0),(3,0);② a .当直线过(4,0)时: 14× 4 + b = 0 ,解得 b = − 1 b.当直线过(5,0)时: 14×5+b =0 ,解得 b =−54;c .当直线过(1,2)时:14 × 1 + b = 2 ,解得 b = 74;d .当直线过(1,3)时:14 ×1 + b = 3 ,解得 b = 114;又双曲线不会与坐标轴相交综上所述即可得出b 的取值范围为: − 54≤ b < − 1 或 74 < b ≤114。

专题1:反比例函数与一次函数交点问题

专题1:反比例函数与一次函数交点问题

4.(2012•益阳)反比例函数y=k/x的图象与 一次函数y=2x+1的图象的一个交点是(1,k), 则反比例函数的解析式是 .
5.已知反比例函数y=k/x 和一次函数y=kx+b的 图象都经过点(2,1) (1)分别求出这两个函数的解析式; (2)试判断点A(-2, -1)在哪个函数 的图象上; (3) 求两个函数图象的另一个交点坐标。
点拨(1分钟)
解:(1)把A点坐标(2,4)分别代入y=k1x和y= k2/x
解得:k1=2.k2=8
y 2x (2)B点的坐标是两个函数组成的方程组 y 8 x 的另一个解.解得x=±2
8 ∴所求的函数表达式为:y=2x,和y=— x
x 2, y 4. B(2,4)
自学检测2:(10分钟) 1.(2013•茂名)如图,反比例函数y=6/x的 图象与一次函数y=kx+b的图象相交于两点A (m,3)和B(-3,n). (1)求一次函数的表达式; (2)观察图象,直接写出使反比例函数值大于 一次函数值的自变量x的取值范围. (3) 求△OAB的面积。
2.(2013•衢州)如图,函数y1=-x+4的图象与 函数y2= k2/x(x>0)的图象交于A(a,1)、 B(1,b)两点. (1)求函数y2的表达式; (2)观察图象,比较当x>0时,y1与y2的大小. (3) 求△OAB的面积。
3.(2012•赤峰)存在两个变量x与y,y是x 的函数,该函数同时满足两个条件:①图象经 过(1,1)点;②当x>0时,y随x的增大而 减小,这个函数的解析式是 (写出 一个即可).
4.(2006•盐城)已知反比例函数y=k/x的图 象分布在第二、四象限,则一次函数y=kx+b 中,y随x的增大而 .

反比例函数与一次函数的交点问题

反比例函数与一次函数的交点问题

反比例函数与一次函数的交点问题
反比例函数与一次函数交点问题:
1、定义:反比例函数是指把某个变量和其倒数的函数,一次函数指的
是y=ax+b这种型式的函数;
2、形式:反比例函数的形式为 y= k/x,其中k为常数; 一次函数的形式一般为 y= ax+b,其中a和b为常数;
3、求解:求反比例函数与一次函数的交点时,要把它们同时为相等,
用法则两边同乘以x,得到:k=ax+b,即k=b(1-a/x),此时,可以求出
x的值为b/(1-a/k),由此可求出交点的坐标;
4、特殊情况:当a=0时,反比例函数与一次函数的交点就是原点,
x=0,另外如果k=0时,则反比例函数与一次函数的交点坐标就是(b/a, 0);
5、案例:求y=1/x 与 y=2x+5的交点,把它们同时等于相等,同乘以x,所以1=2x+5,得出x=-3,把x=-3带入反比例函数可得到y=1/-3,即交点坐标为(-3,-1)。

反比例函数与一次函数的交点问题

反比例函数与一次函数的交点问题

反比例函数与一次函数的交点问题1、(2003•甘肃)已知一次函数y=kx+k 的图象与反比例函数的图象在第一象限交于B (4,n ),求k ,n 的值.2、(2002•盐城)若反比例函数的图象经过点(1,3) (1)求该反比例函数的解析式;(2)求一次函数y=2x+1与该反比例函数的图象的交点坐标. 3、(2002•咸宁)已知一次函数y=﹣x+4与反比例函数,当k 满足什么条件时,这两个函数在同一直角坐标系中的图象有两个公共点4、(2002•贵阳)已知正比例函数y=kx 与反比例函数y=的图象都过A (m ,1)点. 求:(1)正比例函数的解析式;(2)正比例函数与反比例函数的另一个交点的坐标. 5、(2001•吉林)如图,已知反比例函数xk2y =和一次函数y=2x ﹣1,其中一次函数的图象经过(a ,b ),(a+1,b+k )两点. (1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P 把符合条件的P 点坐标都求出来;若不存在,请说明理由. 6、(2001•北京)已知一次函数y=3x ﹣2k 的图象与反比例函数xk 3y -=的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. 7、(2000•西城区)已知:反比例函数xk=y 和一次函数y=mx+n 图象的一个交点为A (﹣3,4),且一次函数的图象与x 轴的交点到原点的距离为5,分别确定反比例函数与一次函AO数的解析式.8、(2000•兰州)一次函数y=kx+b 与反比例函数x y 2=的图象的两个交点的横坐标是21和﹣1,求一次函数的解析式. 9、(2000•福建)已知反比例函数xmy =且在x=310、(1999•辽宁)已知一次函数y=mx+n 2)11、(1999•海淀区)已知一次函数y=2x 交,其中有一个交点的纵坐标为﹣412、如图,已知直线x y 21=与双曲线y =两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线xk=y (k >0)上一点C 的面积.13、如图,已知一次函数y=﹣x+2B 两点,且A 点的横坐标与B (1)求反比例函数的解析式; (2)求△AOB 的面积.14、已知反比例函数xky =AB⊥x 轴于B ,Rt△AOB 面积为3. (1)求k 和m 的值;(2)若直线y=ax+b 经过点A①求直线y=ax+b 解析式;②设直线y=ax+b 与x 轴交于M ,求△AOC 的面积. 16、已知一次函数y=kx+b 的图象与反比例函数y 象相交于A ,B 两点,其中A 点的横坐标与B 是2,如图:(1)求这个一次函数的解析式; (2)求△AOB 的面积;(3)在y 轴是否存在一点P 使△OAP 请在坐标轴相应位置上用P 1,P 2,P 3请说明理由.17、如图,已知一次函数y 1=kx+b 象交于A 、B 两点,且点A 的横坐标和点B 求:(1)一次函数的解析式; (2)△AOB 的面积;(3)并利用图象指出,当x 为何值时有y 1>y 2y 1<y 2.18、如图已知一次函数y 1=﹣x+a 与x 轴、y 点和反比例函数xk=2y 交于A 、B 两点,且点A 点B 的坐标是(3,m ).求:(1)a ,k ,m 的值,C 、D (2)利用图象直接写出,当x 在什么取值范围时,y 1>y 219B 两点,过A 作AC⊥x 轴于点C .已知5OA =,且点B坐标为﹣3.(1)求点A 的坐标及该反比例函数的解析式; (2)求直线AB 的解析式. 20、如图,A 、B 两点在函数xky =(1)求k 的值及直线AB 的解析式;(2点.请直接写出图中直线AB 格点的个数.21、如图,直线y=x+n 与x 轴交于点A ,与y 曲线x4y =在第一象限内交于点C (m ,4). (1)求m 和n 的值;(2)若将直线AB 绕点A 顺时针旋转15l 的解析式.22、已知一次函数y=x+2与反比例函数xky =的距离是10,求a 、b 23、如图,已知一次函数x y 21=A ,B 两点,且点A 的横坐标为4. (1)求k 的值;(2(3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数与一次函数
的交点问题
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
反比例函数与一次函交点问题
1.如图,直线y=x ﹣6分别交x 轴,y 轴于A ,B ,M 是反比例函数y=(x >0)的图象上位于直线上方的一点,MC∥x 轴交AB 于C ,MD⊥MC 交AB 于D ,AC?BD=4
,则k 的值为( )A .﹣3 B .﹣4 C .﹣5 D .﹣6
2.如图,直线y=-x+m 交双曲线y=
于A 、B 两点,交x 轴于点C ,交y 轴于点D ,过点A 作AH⊥x 轴于点H ,连结BH ,若OH :HC=1:5,S △ABH =1,则k 的值为( )A .1 B . C . D .
3.如图,在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点C ,与反比例函数y=在第一象限内的图象交于点B (1,3),连接BO ,下面三个结论:①S △AOB =1.5,;②点(x 1,y 1)和点(x 2,y 2)在反比
例函数的图象上,若x 1>x 2,则y 1<y 2;③不等式x+2<的解集是0<x
<1.其中正确的有( )
A .0个
B .1个
C .2个
D .3个
4.如图,过C (2,1)作AC∥x 轴,BC∥y 轴,点A ,B 都在直线y=﹣x+6上,若双曲线y=(x >0)与△ABC 总有公共点,则k 的取值范围是 .
5.直线y=kx (k >0)与双曲线y=交于A (x 1,y 1)和B (x 2,y 2)两
点,则3x 1y 2﹣9x 2y 1的值为 .
6.如图,直线y=﹣x﹣与x,y轴分别交于点A,B,与反比例函数y=的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为.
7.如图,过点O的直线AB与反比例函数y=的图象交于A,B两点,A (2,1),直线BC∥y轴,与反比例函数y=(x<0)的图象交于点C,连接AC,则△ABC的面积为.
8.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.
9.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.
10.如图,直线y=x与双曲线y=(k>0,x>0)相交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值是.
11.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D 两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.
(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.
12.如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?13.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;
(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
14.如图,在平面直角坐标系xOy中,函数y=(k>0,x>0)的图象与直线y=2x﹣2交于点Q(2,m).(1)求m,k的值;
(2)已知点P(a,0)(a>0)是x轴上一动点,过点P作平行于y轴的直线,交直线y=2x﹣2于点M,交函数y=的图象于点N.
①当a=4时,求MN的长;②若PM>PN,结合图象,直接写出a的取值范围.
15.已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.
(2)分别画出两种函数的所有图象.(不需列表)
(3)求y=kx+b与y=的交点个数.
16.如图,在平面直角坐标系中,正比例函数y=kx的图象与反比例函数y=的图象经过点A(2,2).(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于B,与反比例函数图象在第一象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积;
(3)反比例函数图象上是否存在点D,使DC⊥BC?若存在,请求出点D 的坐标;若不存在,请说明理由.
17.如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.
(1)求抛物线的解析式;
(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;
(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.。

相关文档
最新文档