初中数学课件人教版七年级下册83 实际问题与二元一次方程组第1课时
人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)
复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组
②
m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2
④
m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14
②
分析:方程①中x的系数是1,用含y的式子表示x,比较简便.
人教版七年级下册8.3 实际问题与二元一次方程组第1课时 实际问题与二元一次方程组(1)课件
①
解:整理,得:
x-3y=-2
②
①+②×3,得11x=11.解得x=1.
把x=1代入②,得1-3y=-2.解得y=1.
x=1 ∴这个方程组的解为:
y=1
3.一支部队第一天行军4h,第二天行军5h,两 天共行军98km,且第一天比第二天少走2km,第一 天和第二天行军的平均速度各是多少?
解:设第一天行军的平均速度为xkm/h,第二天行
种树 3 棵,女生每人种树 2 棵.设男生有 x 人,女生有 y 人,
根据题意,下列方程组正确的是( D )
x+y=52, A.3x+2y=20
B.x2+x+y=3y=52,20
x+y=20, C.2x+3y=52
D.x3+x+y=2y=205,2
2.根据如图提供的信息,可知一个热水瓶的价格是( C )
二、填空题(每小题 7 分,共 28 分) 7.一艘轮船顺水航行的速度是 20 海里/时,逆水航行的速度 是 16 海里/时,则水流的速度是 2 海里/时. 8.一个两位数,它的个位数字是十位数字的 2 倍,且十位数 字与个位数字和的 4 倍等于 36,则这个两位数是 36 . 1 9.a 的相反数是 2b+1,b 的相反数是 3a+1,则 a2+b2= 5 .
练习
某校七年级学生在会议室开会,每排坐12 人,则有11人无座位;每排坐14人,则最后一 排只有1人独坐.这间会议室共有座位多少排? 该校七年级有多少学生?
解:设这间会议室共有座位x排,该校七年级有 y名学生,根据题意,得
12x+11=y 14x-13=y
解得:
x=12 y=155
答:这间会议室共有座位12排,该校七年级有 155名学生.
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。
新人教版七年级数学下册第八章二元一次方程组复习1教学课件
2.用代入法解方程组最简单的方法是根据方程____用含____的
代数式表示___,并代入______. 3.解下列方程组:
y 2 x 3, 3x y 5, (1) (2) 3 x 2 y 8 ; 3x 4 y 2.
4.若
x 1, ax 2 y 5, 是方程组 的解,则a=______, y 1; 3ax by 15;
是它的一个解,则a的值为
3.把面值2元的纸币换成1角或5角的硬币,则换发共有( B )种.
A.4 B.5 C.6 D .7
知识回顾
4.下列是二元一次方程组的是( B ).
x y 3 x y 3 x y 1 4 x 3 y 6 2 A. B. C. D. x 2 y 38 2 y z 5 x 3 xy 2 x 2 2 x y ? 5.方程组 的解为 ,则里的 ? 两个数分别是( B ). y ? x y 3
人教版初中数学七年级下册
第八章
二元一次方程组
第一课时 解法
复习
知识回顾
1.已知方程①2x+y=3;②x+2=1;③ y=5-x; ④x-xy=10;
① 、③ ⑤x+y+z=6中二元一次方程有_____________ .(填序号)
x 3 2.在方程3x-ay=8中,如果 y 1 a=1 ________ .
x y 3 (3) y z 5 x z 10
综合探究
例1.用代入法解方程组 x y 3 3x 4 y 14 解:由①,得
x=3+y ③
把③代入②,得 3 (3+y) -4y=14 解这个方程,得 y = -5 把y = -1代入③,得
8.2消元---解二元一次方程组(第1课时)课件人教版七年级数学下册
D.直接把②代入①,消去x
2.用代入法解下列方程组
y 2x 3, (1) 3x 2 y 8;
2x y 5, (2) 3x 4 y 2;
解:(1)
y=2x-3,① 3x+2 y=8.② 把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
所以原方程组的解是
(3)解这个一元一次方程,求出一个未知数的值;
(4)把求得的未知数的值代入方程③,求出另一个未知数 的值;
(5)用大括号写出两个未知数的值,得到方程组的解。
(6)检验求得的结果:代入原方程组中进行检验,方程是 否满足左边=右边.
尝试练习 (独立完成4+展示2)
课本P93----练习2
属 于
解
题
规
范
属 于
数学思想?
善
把二元一次方程组中一个方程的一个未知数
于 思
用含另一个未知数的式子表示出来,再代 考
入另一个方程最为关键,这样实现消元, 的
同
把二元一次方程组转化为一元一次方程, 学
进而求得这个二元一次方程组的解.体现了
消元和转化的数学思想.
【流程】独立思考—自由展示
(3+3+2)
探究点二 用代入消元法解二元一次方程组
变形 x-y=3, x =y+3.
解得x
一
次
代入
x=2
y=-1 解得y
方 程
3x-8y=14
消x 一元一次方程 3(y+3)-8y=14.
组
用y+3代替x,
消未知数x.
代入法解二元一次方程的一般步骤:
(1)选取其中一个方程进行变形,用含有一个未知数的 代数式表示另一个未知 数的形式,记作方程③;
人教版七年级数学下册《8.2 消元——解二元一次方程组 第一课时》课件ppt
解:(1)
y=2x-3,① 3x+2 y=8.②
把①代入②,
得3x+2(2x-3)=8,解得x=2.
把x=2代入①,得y=1.
x=2,
所以原方程组的解是
y=1.
2 x-y=5,①
(2)
3
x+4
y=2.②
由①,得y=2x-5.
③把③代入②,得3x+4(2x-5)=2,
A.消y
B.消x
C.消x 和消y 一样
D.无法确定
知识点 2 代入消元法的应用
4x 8 y 12, ①
例3
用代入消元法解方程组:
3x
2
y
5.
②
导引:观察方程组可以发现,两个方程中x 与y 的系数的绝对值都不相等,
但①中y 的系数的绝对值是②中y 的系数的绝对值的4倍,因此可把
2y 看作一个整体代入.
A.-1 B.1 C.5 2 015 D.-5 2 015
1 4 若单项式2x 2y a+b与 3 x a-by 4是同类项,则a,b
的值分别是( A )
A.a=3,b=1 B.a=-3,b=1 C.a=3,b=-1 D.a=-3,b=-1
5
已知关于x,y 的方程组
x=3-m,
y=1+2m,
a= 5, 2
b= 1 ,
综上可知,a= 5 ,b= 1 ,c
2 5.
22
利用代入消元法解二元一次方程组的关键是找准代 入式,在方程组中选择一个系数最简单(尤其是未知数前 的系数为±1)的方程,进行变形后代入另一个方程,从 而消元求出方程组的解.
同学们, 下节课见!
x y 13 ,
例2
人教版七年级数学下册精品课件 第八章 8.3 第1课时 利用二元一次方程组解决实际问题
40 y
370
解得
x 25,
y15.
答:甲种票25张,乙种票15张.
2020/6/11
3.课本中介绍我国古代数学名著《孙子算经》上有这 样的一道题:今有鸡兔同笼,上有三十五头,下有 九十四足,问鸡兔各多少只?
解:设鸡有x只,兔有y只. 则2x xy4y3594
解得
x 23,
y12.
答:鸡有23只,兔有12只.
2020/6/11
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘 请饲养员协助管理现有的42头大牛和20头小牛,已 知甲种饲养员每人可负责8头大牛和4头小牛,乙种 饲养员每人可负责5头大牛和2头小牛,请问李大叔 应聘请甲乙两种饲养员各多少人?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员 y人,则:
根据题意,可列方程组:
x 60
y 80
10
x
y
15.
60 40
解方程组,得
x 300
y400
所以,小明家到学校的距离为700m.
2020/6/11
方法二(间接设元法) 解:设小华下坡路所花时间为xmin,
上坡路所花时间为ymin.
平路 坡路 距离 距离
上学 60(10 x) 80x
放学 60(15 y) 40 y
2020/6/11
02 横着画,把宽分成两段,则长不变
D
200m
C 解:过点E作EF⊥AD,交
BC于点F.
x
甲种作物 200x 100m
设DE=xm,AE=ym.
E y
F
乙种作物 200y
根据题意列方程组为
x+y=100
A
Hale Waihona Puke B200x:400y=3:4
实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)
共55元 1束花+2个礼盒=55元 2束花+3个礼盒=90元
共90元
回顾旧知 列方程组解应用题的步骤:
1. 审题 2. 找等量关系 3. 设未知数 4. 列二元一次方程组 5. 解二元一次方程组 6 .检验 7. 答
合作探究
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又 购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估 计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7~8 kg. 你能通过计算检验他的估计吗?
运费表 单位:(元/台)
终点
温州
武汉
起点
北京
400
800
上海
300
500
【分析 】(1 )等量 关系为:400 ×北京运 往温州的 台数+800× 北京运 往武汉的 台数+300
×上海运往温州的台数+500×上海运往武汉的台数=8000,温州需要 6 台,把相关数值
代入求解即可;
(2)本着节约运送资金和分配到温州的仪器不能超过 5 台分析即可得到调配方案.
解:设2米的钢材有x段,1米的钢材有y段,根据题意,得
x+y=10 2x +y =18
解方程组,得
x=8 y =2
答:小明估计不正确. 2米钢材有8段,1米钢材2段.
估算作用
在生产和生活中估算具有一定的实用价值的,同学们应该逐渐 具备这种估算能力,但估算通常会产生一定的误差,通过精准 计算可以对估算的结果进行检验.
(2)由表格中的数据可得出,∵上海运送到温州的费用最低,
设北京运送到温州 x 台,则北京运武汉(10﹣x,总费用为 y,
人教版数学七年级下册+8.3实际问题与二元一次方程组(第1课时)ppt课件
引入新课
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
人级教版义务教ห้องสมุดไป่ตู้课程标准试验教科书
七年下册
湾里二中 周节英
情境引入
悟空顺风探妖踪,千里只行四分钟.
归时四分行六百,风速多少才称雄?
情境引入
解:设悟空在静风中行走的速度为x里/分,风速为y里/分,则
4( x y) 1000 4( x y) 600
或
4 x 4 y 1000 4 x 4 y 600
数学问题的解 (二元一次方程组解)
感悟反思
1、通过这节课的学习,你知道用方程组解决实
际问题有哪些步骤?
①设未知数。
②找等量关系。 ③列方程组。 ④检验并作答。 2、列二元一次方程组解决实际问题的关键是什 么? (找等量关系)
布置课后作业:
课本第101~102页习题8.3第2、4 、5题.
谢 谢!
①从调查中你获得了什么信息?
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg.
②你能估计出平均每只母牛和每只小牛一天 各需饲料多少千克吗?
探究新知
探究1
养牛场原有30 只母牛 和15只小牛,1天约需 用饲料675kg;一周后 又购进12只母牛和5只 小牛,这时1天约需用 饲料940kg. ③饲养员李大叔估计平均每只母牛1天约需饲 料18~20kg,每只小牛1天约需饲料7~8kg.你能 否通过计算检验你和他的估计?
七年级数学下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组(第1课时)教案 新人教版
8.3 实际问题与二元一次方程组第1课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组的建模过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养应用数学意识,提高学习数学的趣味性、现实性、科学性.【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境知识回顾:列二元一次方程组解决实际问题的一般步骤是什么?进一步提问:如何解二元一次方程组的应用问题?解决实际问题的基本思路:二、新知探究探究点1:和差倍分问题例题讲解例1 (教材P99【探究1】)请同学们讨论以下各题:(1)你有什么办法检验李大叔估计的值是否准确?(2)问题中有几个未知数?(3)能写出题目中的等量关系吗?(4)能用等式表示出来吗?引导学生独立思考,培养学生自主学习的能力.让学生自己动手解答问题,检验知识的掌握情况.【方法指导】解答“和、差、倍、分”问题要善于抓关键词,如“谁比谁大、小、多、少,谁是谁的几倍或几分之几.在谁的基础上增加或减少”等,分析题意,准确找出等量关系.探究点2:行程问题例2 1.(教材P101习题8.3 T2变形)一艘轮船顺流航行时,每小时行32 km;逆流航行时,每小时行28 km,则轮船在静水中的速度是每小时行_______km.(轮船在静水中的速度大于水流速度)2.甲乙两人在400 m的环形跑道上练习赛跑,如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.则甲、乙两人的平均速度分别是每秒_______m.要点归纳:环形问题的等量关系1.同时同地反向跑:(v甲+v乙)×t相遇=环长.2.同时同地同向跑:(v甲-v乙)×t追上=环长.解决顺逆流(风)行程问题常用的两个等量关系1.往返路程相等,即顺流(风)速度×顺流(风)时间=逆流(风)速度×逆流(风)时间.2.轮船(飞机)本身速度不变,即顺流(风)速度-水(风)速度=逆流(风)速度+水(风)速度.【方法技巧】行程问题中的两个重要相等关系(1)相遇问题:两人各自走的路程之和等于两地间的距离.(2)追及问题:两人同地不同时,同向而行,直至后者追上前者,两人所走路程相等;两人同时不同地,同向而行,直至后者追上前者,两人所走路程差等于两地的距离.例3 (教材P99探究2)问题1:本题研究的是长方形面积的分割问题,你能画出示意图帮助自己理解吗?问题2:长度涉及的数量关系?问题3:产量比与种植面积的比有什么关系?问题4:你能根据数量关系列出方程组,并解决这个问题吗?问题5:你还能设计其他种植方案吗?三、检测反馈1.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是( )A. B.C. D.2.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是 ( )A. B.C. D.3.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为( )A. B.C. D.4.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是( )A.175 cm2B.300 cm2C.375 cm2D.336 cm25.某校去年有学生1000名,今年比去年增加5.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x名,走读学生y名,则可列出方程组为_______.6.一个两位数,个位上的数字比十位上的数字大4,交换位置后,所得的新两位数比原两位数的4倍少9,则原两位数是_______.7.为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);某农户承包了一片山坡地种树种草,所得到国家的补偿如表(二),问:该农户种树、种草各多少亩?表(一)种树、种草每亩每年补粮补钱情况表表(二)该农户收到乡政府下发的种树种草亩数及年补偿通知单8.甲、乙两人从相距36 km的两地相向而行,如果甲比乙先动身2 h,那么他们在乙动身2.5 h后相遇;如果乙比甲先动身2 h,那么他们在甲动身3 h后相遇,问甲、乙两人每小时各走多少km?四、本课小结这节课学了什么知识?列二元一次方程组解决实际问题的一般步骤(1)审题.(2)设两个未知数,找两个等量关系.(3)根据等量关系列方程,联立方程组.(4)解方程组.(5)检验并作答.五、布置作业课本第101页第1,2,3题六、板书设计七、教学反思在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题.(比如92页例2、95页例4).这一节安排了两个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些.这节课更为关注建立二元一次方程组数学模型的“探索”过程.它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据.所以设计本节课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
人教版七年级数学下册习题课件:8.2_第1课时__用代入消元法解二元一次方程组
举一反三 3.已知方程组
的解为
解:将
代入方程组
得关于a,b的方程组为
解得
所以2a-3b=6.
求2a-3b的值.
分层练习 A组 1.已知二元一次方程2x-7y=5,用含x的代数式表示y, 正确的是( B )
A.y=
B.y=
C.x=
D.x=
2.四名学生解二元一次方程组
时,提
出四种不同的解法,其中解法不正确的是( C )
A.由①得x=
,代入②
B.由①得y=
,代入②
C.由②得y=- ,代入①
D.由②得x=3+2y,代入①
3.用代入法解方程组 的是( B ) A.直接把①代入②,消去y B.直接把①代入②,消去x C.直接把②代入①,消去y D.直接把②代入①,消去x
时,下列说法正确
4.方程组 A. C.
的解是( B ) B. D.
所以方程组的解为
请用同样的方法解方程组
ቤተ መጻሕፍቲ ባይዱ:由①,得2x-y=2.③ 把③代入②,得 +2y=9. 解得y=4. 把y=4代入③,得x=3. 则方程组的解为
10.已知关于x,y的方程组
和
的解相同,求a,b的值.
解:由题意,可联立
由①,得x=
.③
把③代入②,得3×
+2y=11.解得y=1.
将y=1代入③,得x=3.
举一反三 2.解方程组
解: 把②代入①,得6y-7-y=13.解得y=4. 把y=4代入②,得x=17. 则方程组的解为
典型例题
【例3】已知y=kx+b,当x=2时,y=-4;当x=-1时,y=5. 求k,b的值.
解:由题意,得 由②得,b=5+k.③ 将③代入①,得2k+5+k=-4. 解得k=-3. ∴b=2.
新人教版七年级数学下册第八章二元一次方程组8.3再探实际问题与二元一次方程组ppt课件
30x 15y 675 42x 20 y 940
x 20 解这个方程组得 y 5
解:设平均每只母牛和每只小牛1天各约需饲料
x千克和y千克,列方程组
30x 15y 675 42x 20 y 940 x 20 解这个方程组得 y 5
这就是说平均每只母牛约需饲料 20 克, 每只小牛1天需饲料 5 千克,饲养员李大叔 对母牛的食量估计 较准确 ,对小牛的食量估 计 偏高 。
活动三
已知某电脑公司有A型、B型、C型 三种型号的电脑,其价格分别为A型每台 6000元,B型每台4000元,C型每台 2500元。我市东坡中学计划将100500元 钱全部用于从该电脑公司购进其中两种 不同型号的电脑共36台,请你设计出几 种不同的购买方案供该校选择,并说明 理由。
解:设2米的x段,1米的y段,根据题意,得
x y 10 2 x y 18
解得
x 8 y 2
答:两米长的8段,一米长的2段。
活动二
探究: 养牛场原有30只母牛和15只小牛, 一天约需要饲料675kg;一周后又购进12 只母牛和5只小牛,这时一天约需用饲料 940kg.饲养员李大叔估计平均每只母牛一 天约需饲料18~20kg,每只小牛一天约需饲 料7~8kg.你能否通过计算检验他的估计?
15x 24y
x y 90 C、 30x 24 y
y 90 x D、 2(15 x) 24y
4. 一船顺水航行45千米需要3小时,逆水航 行65千米需要5小时,若设船在静水中的 速度为x千米/小时,水流的速度为y㎞/h, 则x、y的值为 ( )B A、 X=3,y=2 B、x=14,y=1 C、 x=15,y=1 E、x=14,y=2
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
8.3实际问题与二元一次方程组(课时1)课件(新人教版七年级数学下)
尝试应用
2.学校购买35张电影票共用250元,其中甲种票每
张8元,乙种票每张6元,设甲种票x张,乙种票y张,
则列方程组 形的长为
,方程组的解是 . cm,宽为
3.一个矩形周长为20cm,且长比宽大2cm,则矩
cm.
尝试应用
4.一个长方形,它的长减少4cm,宽增加2cm,所
得的是一正方形,它的面积与长方形的面积相等,
当堂达标
1.一张试卷有25道选择题,做对一题得
4分,做错一题或不做扣1分.小英做了
全部试题得70分,则她做对了________
道题.
当堂达标
2.现有190张铁皮做盒子,每张铁皮可做8个 盒身或22个盒底,一个盒身与两个盒底配成一 个完整的盒子,用多少张铁皮做盒身,多少张 铁皮做盒底可以使盒身与盒底正好配套?
求原长方形的长与宽.归来自总结(1)列一元一次方程解决实际问题的一般 过程是什么? (2)你认为列二元一次方程组解决实际问 题和列一元一次方程解决实际问题有哪些 相同点和不同点?
归纳总结
① 能列二元一次方程组解决的实际问题,一般都 可以通过列一元一次方程加以解决.但是,随着实 际问题中未知量的增多和数量关系的复杂,列方程 组将更加简单直接,因为问题有几个相等关系就可 以列出几个方程. ② 两者相同点是都需要先分析题意,把实际问题 转化为数学问题(设未知数,列方程或方程组), 再检验解的合理性,进而得到实际问题的解,这一 过程就是建模的过程.
探究新知
探究2 据统计资料,甲、乙两种作物的单位面积 产量的比是1:2.现要把一块长200 m、宽100 m的 长方形土地,分为两块小长方形土地,分别种植这 两种作物.怎样划分这块土地,使甲、乙两种作物 的总产量的比是3:4?
人教版七年级数学下册教学课件《实际问题与二元一次方程组》(第1课时)
2.一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘蛛共 10只,共有68条x腿+y,=1若0 设蛐蛐有x只,蜘蛛有y只,则列 出方程组为____6_x_+_8_y_=_6_8___.
人教版 数学 七年级 下册
8.3 实际问题与二元一次方程组 (第1课时)
导入新知
8.3 实际问题与二元一次方程组
悟空顺风探妖踪,千里只行四分钟. 归时四分行六百,风速多少才称雄?
学习目标
8.3 实际问题与二元一次方程组
3.经历用方程组解决实际图形问题的过程,体 会方程组是刻画现实世界的有效数学模型.
解
方法2 横着画,把宽分成两段,则长不变
法
D
200m
C 解:过点E作EF⊥BC,交BC
二
x 甲种作物 200x 于点F. 设DE=xm,AE=ym.
E
100m
F
根据题意列方程组为
y 乙种作物 200y
x+y=100,
A
B
200x:400y=3:4.
解得
x=60, y=40.
答:将这块土地分为长200m,宽60m和长200m,宽40m的
探究新知
8.3 实际问题与二元一次方程组
解:设每头大牛和小牛平均1天各需用饲料为xkg和ykg,
根据等量关系,列方程组:
30x + 15y = 675,
42x + 20y
= 940.
解方程组,得: x= 20 ,
y=
5
.
答:每头大牛和每头小牛1天各需用饲料为20kg和5kg,饲 养员李大叔估计每天大牛需用饲料18到20千克,每头小牛 一天需用7到8千克与计算有一定的出入.
拆
【最新】人教版七年级数学下册第八章《8.3实际问题与二元一次方程组(1)》公开课课件.ppt
解: (1)设1个大餐厅和1个小餐厅分别可供x名,y 名学生就餐,
依题意得 x+2y=1680 解得: 2x+y=2280
(2)若7个餐厅同时开放,则有
x=960 y=360
5×960+2×360=5520
5520>5300
答: (1) 1个大餐厅和1个小餐厅分别可供960 名,360名学生就餐. (2)若7个餐厅同时开放,可以 供应全校的5300名学生就餐.
8.3实际问题与二元一 次方程组(1)
悟空顺风探妖踪, 千里只行四分钟. 归时四分行六百, 风速多少才称雄?
顺风速度=悟空行走速度+风速 逆风速度=悟空行走速度-风速
解:设悟空行走速度是每分钟x里, 风速是每分钟y里,
依题意得 4(x+y)=100 40(x-y)=600
解得:
x=200 y=50
想一想 :某蔬菜公司收购到某种蔬菜140吨,准备加工
上市销售.该公司的加工能力是:每天可以精加工6吨或 粗加工16吨.现计划用15天完成加工任务,该公司应安 排几天精加工,几天粗加工?
解:设该公司应安排x天精加工,y天粗加工,
依题意得 x+y=15 6x+16y=140
x=10
解 得:
y=5
答:该公司应安排x10天精加工,5天粗加工.
❖
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2020/12/162020/12/162020/12/162020/12/16
谢谢观看
1、怎样检验他的估计呢? 2、题目中包含怎样的等量关系?
解:设平均每只大牛和每只小牛1天各约需饲料xkg和ykg.
全国优质课一等奖初中数学七年级下册《实际问题与二元一次方程组》公开课精美课件
先化简 再消元
解:方程组可化简为
2x y 45,2x,③
把③代入②,得21x10(452x)470,
解得x20.
把x20代入③,得y5. 所以这个方程组的解是
x 20, y 5.
新课讲解
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;
新课导入
创设情境
今有牛五、羊二,直金十两.牛二、羊五,直金 八两.牛、羊各直金几何?
牛五、羊二
牛二、羊五
新课导入
创设情境
题目大意:5头牛、2只羊共价值10两“金”;2头牛、5 只羊共价值8两“金”.问每头牛、每只羊各价值多少 “金”?
你能算出每头牛、每只羊各价 值多少“金”吗?
新课讲解
合作探究
x kg 如何根据等量关系列方程组? 每头大牛1天需用的饲料和
每头小牛1天需用的饲料. y kg
30x 15y 675
30头大牛1天用的饲料15头小牛1天用的饲料675 kg
42头大牛1天用的饲料20头小牛1天用的饲料940 kg
42x 20y 940
新课讲解
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.
30头大牛1天用的饲料15头小牛1天用的饲料675 kg 42头大牛1天用的饲料20头小牛1天用的饲料940 kg
新课讲解
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.
饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每 头小牛1天约需饲料7~8kg.你能通过计算检验他的估计吗?
新课讲解
人教版数学七年级下8.3 第1课时 利用二元一次方程组解决实际问题教案
典例精析
例1.某市举办中学生足球比赛,规定胜一场得3分,平一场得1分.市第二中学足球队比赛11场,没有输过一场,共得27分,试问该队胜几场,平几场?
教学资源课前准备
PPT、多媒体
教学环节
教学过程设计
二次备课
一、复习引入
1.二元一次方程组的定义是什么?
2.二元一次方程组的解法有哪些?
3.列方程解决实际问题,一般有哪些步骤?
视频引入
二、讲授新课
探究点1:列方程组解决简单实际问题
问题1:养牛场原有30只大牛和15只小牛,1天约用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg.饲养员李大叔估计每只大牛1天约需饲料18到20 kg,每只小牛1天约需饲料7到8 kg.你认为李大叔估计的准确吗?
第8单元
课 题名 称
8.3 实际问题与二元一次方程组
8.3.1 利用二元一次方程组解决实际问题
总课时数
2
第( 1 )课 时
教材及学情分析
1.教材分析
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,验,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识.
归纳总结:用二元一次方程组解决实际问题的步骤:
(1)审题:弄清题意和题目中的_________;
七年级数学下册(人教版)8.3.1实际问题与二元一次方程组(第一课时)教学设计
1.引导学生通过小组合作、讨论交流的方式,探索二元一次方程组的解法,提高学生的团队协作能力和解决问题的能力。
2.教学过程中,教师以实际问题为载体,引导学生经历“建立模型、求解方程组、检验结果”的过程,让学生感受数学建模的步骤和意义。
3.通过对比不同解题方法,培养学生优化解题策略的意识,提高解题效率。
-针对本节课所学内容,设计具有代表性的习题,让学生独立完成。
-在学生解题过程中,教师巡回指导,解答学生的疑问。
2.教学目标:
-巩固学生对二元一次方程组的认识和解题技巧。
-培养学生独立解决问题的能力。
(五)总结归纳
1.教学活动设计:
-邀请几名学生分享他们在课堂学习中的收获和感悟。
-教师对本节课的重点知识和解题方法进行梳理和总结。
为此,在教学过程中,教师应关注学生的这些难点,通过设置贴近生活的实际问题,引导学生逐步建立方程组模型,并在解题过程中给予适当的提示和指导。此外,教师要注重激发学生的学习兴趣,鼓励他们积极参与课堂讨论,发挥学生的主体作用,帮助他们克服困难,提高解题能力。同时,针对学生的个体差异,教师应制定有针对性的教学策略,使每个学生都能在本章节的学习中取得进步。
-学生撰写学习心得,以促进自我反思和同伴交流。
作业布置时,教师应明确作业要求,提醒学生注意以下几点:
1.认真审题,确保理解题目要求。
2.规范书写,保持解题过程的整洁。
3.注重思考,提高解决问题的能力。
4.及时反馈,对于作业中的疑问,鼓励学生主动寻求帮助。
-教师适时介入,指导学生发现并解决消元过程中的符号问题和计算错误,帮助学生掌握消元法的基本步骤。
3.实践阶段:
-设计不同类型的实际问题,如购物问题、行程问题等,让学生独立尝试建立方程组并求解,加强学生的实际应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识讲解
知识点 和差倍分问题
养牛场原有 30只大牛和 15只小牛, 1天约需用 饲料675kg ;一周后又购进 12头大牛和 5头小牛,这 时1天约需用饲料 940kg .饲养员李大叔估计平均每 只大牛 1天约需饲料 18~20kg,每只小牛 1天约需饲 料7 ~8kg.你能否通过计算检验他的估计?
5.某家商店的帐目记录显示,某天卖出 39支 牙刷和 21盒牙膏,收入 396元;另一天,以同样 的价格卖出同样的 52支牙刷和 28盒牙膏,收入 518元.这个记录是否有误?如果有误,请说明理 由.
解:有误,理由:设一支牙刷的价格为 x元,一盒 牙膏的价格为 y元.由题意,得
? 39x ? 21 y ? 396,
要检验饲养员李大叔的估计正确与否,就要 求出 每头大牛每天所需饲料 和 每头小牛 . . 每天所需饲料 .
如果设每头大牛和每头小牛 1天各约用饲料 x kg 和 ykg ,根据你的观察,找出相等关系: 30只大牛和 1你 次5只能方小程列牛组出,相并1应解天答的约吗二需元?用一饲料:
30x+15y=675
42只大牛和 20只小牛, 1天约需用饲料:
42x+20y=940
二元一次方程组如右: 30x+15y=675 ① 42x+20y=940 ②
解:①× 4-②× 3,得
4(30x+15y)-3(42x+20y)=675×4-940×3
代入①,得: y=5.
x=20
所以,方程组的解是: x=20 y=5
8.3 实际问题与二元一次方程组
第1课时
学习目标
1.会运用二元一次方程组解决一些实际生活中 的应用问题,体会数学建模思想 . 2.能根据题目中的已知量与未知量的联系正确 设出未知数,列出方程组并求解 .
新课导入
前面我们结合实际问题,讨论了 用方程组表示问题中的等量关系以及如 何解方程组 .本节课我们继续探究如何 用二元一次方程组解决实际问题 .
x=20 y=5 这就是说,每头大牛 1天约需饲料 20 kg , 每头小牛 1天约需饲料 5 kg. 因此,饲养员李大 叔对大牛的食量估计 正确 ,对小牛的食量估 计 错误 .
即学即练
某校七年级学生在会议室开会,每排坐 12 人,则有 11人无座位;每排坐 14人,则最后一 排只有 1人独坐 .这间会议室共有座位多少排? 该校七年级有多少学生?
用x张铁皮做盒身, y张铁皮做盒底,则可列方程组
为( A )
x+y=190 A
2×8x=22y
x+y=190 B
2×22y=8x
2y+x=190 C
8x=22y
2y+x=190 D
2×8x=22y
2.解下列方程组:
3x-y =5
①
(1)
5y-1=3x+5
②
解:①+②,得4y=11. 解得: y ? 11
x=1 ∴这个方程组的解为:
y=1
3.一支部队第一天行军 4h,第二天行军 5h,两 天共行军 98km ,且第一天比第二天少走 2km ,第一 天和第二天行军的平均速度各是多少?
解:设第一天行军的平均速度为 xkm/h ,第二天行
军的平均速度为 ykm/h.
由题意,得
?4x ?
? ?
4
x
?
5 y ? 98,① 2 ? 5 y,②
解:设大车一次可以运货 x吨,小车一次可以运货 y
吨.由题意,得 ? 2 x ? 3 y ? 15.5,①
? ?
5
x
?
6y
?
35.②
②-①× 2,得 x =4.
把x=4代入①,得 4×2+3y=15.5.解得y=2.5.
∴3x+5y=3×4+5×2.5=24.5.
答:3辆大车与 5辆小车一次可以运货 24.5吨.
①+②,得 8x =96 ,
解得 x =12 ,
把x=12代入①,得 48+5y=98.
解得 y=10.
∴这个方程组的解为
?x
? ?
y
? ?
12, 10.
答:第一天行军的平均速度为 12km/h ,第
二天行军的平均速度为 10km/h.
4.有大小两种货车, 2辆大车与 3辆小车一次可 以运货15.5吨,5辆大车与 6辆小车一次可以运货 35 吨.求3辆大车与 5辆小车一次可以运货多少吨?
? ?
52
x
?
28 y
?
518,
即:
?13 x ? 7 y ? 132, ??13 x ? 7 y ? 129.5.
方程组无解 . ∴这个记录有误 .
课堂小结
实际问题与二元一次方程组( 1) 01 各部分数量之和 =全部数量 02 较大量=较小量+多余量 03 总量=倍数×倍量
4
把
11 y?
带入①
得:3
4
∴这个方程组的解为:
x
? x
11 4 ?
?5 31 12
y ? 11
4
解得:x ? 31 .
12
2 x 3 y 17 +?
①
(2)
3 4 12 x? y??1
②
62 3
8x+9y=17
①
解:整理,得 :
x-3y=-2
②
①+②× 3,得 11x =11.解得 x =1.
把x=1代入②,得 1-3y=-2.解得y=1.
解:设这间会议室共有座位 x排,该校七年级有 y名学生,根据题意,得
12x+11=y 14x-13=y
解得:
x=12 y=155
答:这间会议室共有座位 12排,该校七年级有 155 名学生 .
随堂练习
1.现用190张铁皮做盒子,每张铁皮 8个盒身或
22个盒底,而一个盒身与两个盒底配成一个盒子 .设