八年级 下册人教版 数学公式定理汇集
人教版八年级下册数学知识汇总
人教版八年级下册数学知识汇总Modified by JACK on the afternoon of December 26, 2020八年级下册定义公式汇总 第十六章 二次根式1、一般地,把形如a((a ≥0)的式子叫做二次根式,“”称为二次根号。
(一个正数有两个平方根;在实数范围内,负数没有平方根。
) 2、二次根式的性质:(a )2=a (a ≥0),==a a 23、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.4、二次根式的乘法法则:a ×b =ab (a ≥0,b ≥0)二次根式的乘法法则逆用:ab =a ×b (a ≥0,b ≥0) 5、二次根式的除法法则:ba =ba(a ≥0,b >0) 二次根式的除法法规逆用:b a =ba (a ≥0,b >0) 6、最简二次根式:必须同时满足下列条件 ①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式; ③分母中不含根式。
7、二次根式加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。
10、同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
a (a >0)a -(a <0(=0);11、有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章勾股定理1、勾股定理 (命题1)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边在⊿ABC 中,∠C=90 o ,则c=22b a ,a=22b -c ,b=22a -c ) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题2、 (直角三角形的判定) (命题2)如果三角形的三边长a 、b 、c ,满足a 2+b 2=c 2那么这个三角形是 要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ;(2)验证c 2与a 2+b 2是否具有相等关系,若a 2+b 2=c 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2> a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2﹤a 2+b 2,则△ABC 为锐角三角形)。
八年级下册数学常考公式。
八年级下册数学常考公式。
八年级下册数学中常考的一些公式有:
1.一次函数的公式:y = kx + b,其中k为斜率,b为截距。
2.二次函数的顶点公式:y = a(x - h)^2 + k,其中(h, k)为顶
点的坐标。
3.平方差公式:(a + b)(a - b) = a^2 - b^2,其中a和b为任
意实数。
4.三角形的面积公式:S = 1/2 ×底×高,其中底为底边的长度,高为垂直于底边的高度。
5.直角三角形的勾股定理:a^2 + b^2 = c^2,其中a和b为直角
边的长度,c为斜边的长度。
6.等腰三角形的高公式:h = √(a^2 - (1/2 × b)^2),其中a
为等腰三角形两等边的长度,b为底边的长度。
7.相似三角形的边长和面积之间的关系公式:对应边的比例相等,面积的比例等于边长的比例的平方。
8.平行四边形的面积公式:S =底×高,其中底为底边的长度,高
为底边所在的直线的长度。
除了以上列举的公式,还有很多其他与代数、几何等相关的公式。
学生在备考过程中,还需要掌握如三角函数的定义和性质、立方和乘
方的运算规则等。
此外,拓展性的话,学生还可以深入了解数列的求和公式、二次
方程的求根公式、立体图形的体积和表面积公式等。
拓展了解这些公
式可以帮助学生更好地应用数学知识解决实际问题。
初二下册期中数学公式定理归纳
初二下册期中数学公式定理归纳【导语】学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。
作者搜集的《初二下册期中数学公式定理归纳》,期望对同学们有帮助。
1.初二下册期中数学公式定理归纳正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一样方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c乘h斜棱柱侧面积S=c'乘h正棱锥侧面积S=1/2c乘h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi乘r2圆柱侧面积S=c乘h=2pi乘h圆锥侧面积S=1/2乘c乘l=pi乘r 乘l弧长公式l=a乘ra是圆心角的弧度数r>0扇形面积公式s=1/2乘l乘r锥体体积公式V=1/3乘S乘H圆锥体体积公式V=1/3乘pi乘r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s乘h圆柱体V=pi乘r2h2.初二下册期中数学公式定理归纳和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41乘2+2乘3+3乘4+4乘5+5乘6+6乘7+…+n(n+1)=n(n+1)(n+2)/33.初二下册期中数学公式定理归纳三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))4.初二下册期中数学公式定理归纳1、推论1等腰三角形顶角的平分线平分底边并且垂直于底边2、等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合3、推论3等边三角形的各角都相等,并且每一个角都等于60°4、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)5、推论1三个角都相等的三角形是等边三角形6、推论2有一个角等于60°的等腰三角形是等边三角形7、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半8、直角三角形斜边上的中线等于斜边上的一半9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称16、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^217、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形18、定理四边形的内角和等于360°19、四边形的外角和等于360°20、多边形内角和定理n边形的内角的和等于(n-2)×180°5.初二下册期中数学公式定理归纳1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也相互平行[1]9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等[2]26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)。
人教版初中数学公式定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
人教版初中数学公式、定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
人教版初中数学公式、定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
八年级(下册人教版)数学公式定理汇集
八年级(下册人教版)数学公式定理汇集二次根式的性质:1.当a>0时,a的二次根式存在且唯一;当a=0时,a的二次根式为0;当a<0时,a的二次根式不存在。
2.对于任意实数a,有(a²)的二次根式等于|a|。
3.二次根式的乘除法:两个二次根式相乘(除)时,将它们的被开方数相乘(除),得到的积(商)仍为二次根式,且化为最简形式。
4.二次根式的运算遵循有理数的加法、乘法的交换律、结合律,乘法对加法的分配律以及多项式的乘法公式。
勾股定理:1.勾股定理指出,如果一个直角三角形的两条直角边分别为a、b,斜边长为c,则有a²+b²=c²,同时也可以得到c²=a²+b²,b²=c²-a²,a²=c²-b²。
2.勾股定理的逆定理是,如果一个三角形三条边长分别为a、b、c,满足a²+b²=c²,则这个三角形是直角三角形。
平行四边形:1.平行四边形的性质包括:邻角互补,对角相等,两组对边分别平行且相等,对角线互相平分,面积为底乘高。
2.判断一个四边形是否为平行四边形的方法包括:两组对边分别平行,两组对边分别相等,一组平行且相等,两组对角分别相等,对角线互相平分。
3.矩形是一种特殊的平行四边形,它的性质包括:对边平行且相等,四个角都是直角,对角线互相平分且相等。
4.判断一个四边形是否为矩形的方法包括:平行四边形加一个直角,三个角都是直角,对角线相等的平行四边形。
5.菱形也是一种特殊的平行四边形,它的性质包括:四条边都相等,对角线互相垂直平分且每条对角线平分每组对角。
6.判断一个四边形是否为菱形的方法包括:平行四边形加一组邻边相等,四个边都相等,对角线互相垂直的平行四边形。
7.正方形是一种特殊的矩形和菱形,它的性质包括:四条边都相等,四个角都是直角,对角线互相平分且相等。
全】人教版初中数学八年级下册知识点总结
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
人教版初中数学公式大全
人教版初中数学公式大全
初中数学公式一:勾股定理
1勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^2
2勾股定理的逆定理如果三角形的三边长a、b、c有关系
a^2+b^2=c^2 ,那么这个三角形是直角三角形
小编推荐阅读:2017初中数学公式归纳最全公式总结
初中数学公式二:四边形基本性质
3定理四边形的内角和等于360° 49四边形的外角和等于360°
4多边形内角和定理n边形的内角的和等于(n-2)×180°
5推论任意多边的外角和等于360°
初中数学公式三:平行四边形
6平行四边形性质定理1 平行四边形的对角相等
7平行四边形性质定理2 平行四边形的对边相等
8推论夹在两条平行线间的平行线段相等
9平行四边形性质定理3 平行四边形的对角线互相平分
10平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
11平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
12平行四边形判定定理3 对角线互相平分的四边形是平行四边形
13平行四边形判定定理4 一组对边平行相等的四边形是平行四边形。
初二数学公式定理大集合-(详细)
实 数考点一、实数的概念及分类1、实数的分类 正整数 整数 零有理数 负整数 正实数 实数 分数 实数 零 负实数 无理数(无限不循环小数) 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个正数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
代 数 式考点一、整式的有关概念1、代数式用运算符号把数或表示数的字母连接而成的运算式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
人教版八年级下册数学知识点总结
人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
八年级下册数学知识点归纳:第十七章勾股定理
人教版八年级下册数学知识点归纳第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a, b, c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°1AB可表示如下:∠C=90°⇒BC=2(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°1AB=BD=AD 可表示如下: D为AB的中点⇒CD=25、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2=CD•AD⇒AB2=ADAC•CD⊥AB AB2=BC•BD6、常用关系式由三角形面积公式可得:AB•CD=AC•BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系2c22a=+,那么这个三角形是直角三角形。
b8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
人教版八年级全一册数学定理及公式
八年级全册背记内容第十一章:三角形1、两边之和大于第三边;两边之差小于第三边。
三角形的三条中线相交于一点;三角形三条中线的交点叫做三角形的重心。
2、三角形的三个内角和为1803、直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形。
4、三角形的外角等于于它不相邻的两个内角的和。
5、在平面内,由一些曲线首尾顺次相接的封闭图形叫多边形。
6、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
7、n边形内角和等于()-n1802⨯8、多边形的外角和等于360背诵时间:年月日签字第十二章:全等三角形1、能够完全重合的两个图形叫全等形;能够完全重合的两个三角形叫做全等三角形。
2、把两个全等三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边;重合的角叫做对应角。
3、全等三角形的对应边相等,全等三角形的对应角相等。
4、三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”);两边和它们的夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”);两角和它们的夹角分别相等的两个三角形全等(可以简写成“角边角”或“ASA”);两角分别相等且其中一组对边相等的两个三角形全等(可以简写成“角角边”或“AAS”);斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。
5、角平分线上的点到角两边的距离相等;角的内部到角两边的距离相等的点在角的平分线上。
背诵时间:年月日签字第十三章:对称轴【理解】1、如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做它们的对称轴。
2、把一个图形沿一条直线折叠,如果它能够与另一个图形重合,那就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠好后重合的点就是对应点,叫做对称点。
3、经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线。
4、对称轴图形的性质:①如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
初中数学八年级下册知识点及公式总结大全(人教版)
八年级数学(下)知识点3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
7.分式的四则运算:(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减. (2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(4)分式的除法法则:①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.②除以一个分式,等于乘以这个分式的倒数:8.分式方程:分母中含有未知数的方程叫做分式方程. 9.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).第十七章反比例函数一.知识框架二.知识概念2.图像:反比例函数的图像属于双曲线。
注意:反比例函数的图象又是中心对称图形。
有两条对称轴:直线y=x和y=-x,对称中心是:原点。
3.性质:当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k <0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
第十八章勾股定理一.知识框架二.知识概念2 2 21.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a +b =c 。
2 2 2勾股定理逆定理:如果三角形三边长a,b,c满足a+ b =c。
,那么这个三角形是直角三角形。
2.定理:经过证明被确认正确的命题叫做定理。
3.我们把题设、结论正好相反的两个命题叫做互逆命题。
人教版初中数学公式定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(下册人教版)数学公式定理汇集十六章:二次根式二次根式的性质:(1)(a)2=a(a≥0);(2)==aa2(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么cba222=+,还可得c=,b,a=;2.勾股定理逆定理:如果三角形三边长a,b,c满足cba222=+,那么这个三角形是直角三角形。
若(定理中a,b,c及222a b c+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)第十八章平行四边形一.平行四边形1.平行四边形的性质角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等;对角线:平行四边形的对角线互相平分;面积:①S=底⨯高=ah;2.平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;一组平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形;二、特殊的平行四边形(一)矩形1.矩形的性质a(a>0)a-(a<0 (a=0);①边:对边平行且相等;②角:四个角都是指直角;③对角线:对角线互相平分且相等;2.矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形ABCD 是矩形. (二)菱形1.菱形的性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;2.菱形的判定方法:⎪⎭⎪⎬⎫+行四边形)对角线互相垂直的平()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD 是菱形. (三)正方形1.正方形的性质:①边:四条边都相等;②角:四角都是直角;③对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。
2.正方形的判定方法: ⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD 是正方形.(4)对角线互相垂直平分且相等的四边形是正方形; (5)对角线互相垂直且相等的平行四边形是正方形;(6)对角线相等的菱形是正方形;(7)对角线相互垂直的矩形是正方形;(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 如图:∵DE 是△ABC 的中位线∴DE ∥BC ,DE=21BC(五)几种特殊四边形的面积问题①设矩形ABCD 的两邻边长分别为a ,b ,则S 矩形=ab .②设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为b ,c ,则S 菱形=bc 21③设正方形ABCD 的一边长为a ,则a S 2=正方形;若正方形的对角线的长为b ,则bS 221=正方形 A DBCAD B COCDB AOCD ABE DCBA第十九章 一次函数一.正比例函数1、定义:一般地,形如y=kx(k 为常数,且k ≠0)的函数叫做正比例函数.其中k 叫做比例系数。
特征:(1)k 为常数,且k ≠0 (2)自变量的次数是1(3)自变量的取值范围为全体实数。
2、图象:(1)正比例函数y= kx (k 是常数,k ≠0)) 的图象是经过原点的一条直线,我们称它为直线y= kx 。
必过点:(0,0)、(1,k )(2)性质:当k>0时,直线y= kx 经过第三,一象限,从左向右上升,即随着x 的增大y 也增大;当k<0时,直线y= kx 经过二,四象限,从左向右下降,即随着 x 的增大y 反而减小。
二.一次函数1、定义:一般地,形如y=kx+b(k,b 为常数,且k ≠0)的函数叫做一次函数.当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.特征: (1) k 不为零 (2)x 指数为1(3) 自变量的取值范围为全体实数(4)b 取任意实数2、图象:(1)一次函数y=kx+b 的图象是经过(0,b )和(-kb ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(2)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.(3)必过点:(0,b )和(-kb,0) (4)一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.(三).用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.(四).当直线y=k1x+b1与y=k2x+b2平行时,k1=k2且b1b2;(五).一次函数与方程、不等式1.一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.2.求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与x轴交点的横坐标3.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0.4. 解不等式ax +b >0(a ,b 是常数,a ≠0) . 从“形”的角度看,求直线y= ax+b 在 x 轴上方的部分(射线)所对应的的横坐标的取值范围. 第二十章 数据的分析1.平均数:(1)算术平均数:一组数据中,有n 个数据n x x x ,,,Λ21,则它们的算术平均数为nx x x x n+++=Λ21.若在一组数字中,x 1的权为w 1,x 2的权为w 2,…,x n 的权为w n ,那么ww w w x w x w x nnnx ++++++=ΛΛ212211叫做x 1,x 2,…x n的加权平均数。
其中,w 1、w 2、…、w n 分别是x 1,x 2,…x n的权.权的表示方法:比、百分比、频数(人数、个数、次数等)。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.众数:一组数据中出现次数最多的数据就是这组数据的众数。
4.平均数、中位数、众数的区别与联系相同点:平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
不同点: 1)、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
2)、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。
3)、作用不同平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。
平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。
因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。
但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。
在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。
5.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
极差反映的是数据的变化范围。
6.方差:设有n 个数据n x x x ,,,Λ21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,,Λ2)(x x n -我们用它们的平均数,即用 来衡量这组数据的波动大小,并把它叫做这组数据的方差。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
标准差:方差的算术平方根,即第四组组员:谢建元、宋金生、陈天虎、陈红兆、杨秀勇、陈鹏、郭德凯。