矩阵线性方程组共30页
第四章 矩阵·行列式·线性方程组
1, 2, , n 的一切排列求和,那么数 D 称为 n 阶方阵相应的行列式。例如,四阶行列式是 4! 个形为
(1)k a1k1 a2 k2 a3k3 a4 k4 的项的和,而其中 a13 a21a34 a42 相应于 k 3 ,即该项前端的符号应为 (1)3 。
(6)
2.1.5. 拉普拉斯恒等式
(7)
显然(2) , (3)分别是(6) , (7)的特例。
n 设 A (aij )mn , B (bij ) mn ( m n ) ,又设 l Cm ,A 的所有 n 阶子式为 U1 ,U 2 , ,U l ,B 的相应的 n
- 104 -
第四章
矩阵·行列式·线性方程组
§1 矩阵与行列式
第四章
矩阵·行列式·线性方程组
本章内容包括矩阵、行列式与线性代数方程组两部分. 在前一部分,叙述了矩阵和行列式的基本概念,重点介绍各种类型矩阵的性质、基本运算,此外, 还介绍了矩阵的特征值与特征矢量的求法,及有关的内容,如相似变换等;在线性方程组部分,着重介 绍含 n 个未知量的 n 个方程的方程组解法,也简单地讨论了解的结构。最后对整系数线性方程组和线性 不等式组也作了扼要说明。
若行列式中有两行(或列)对应的元素完全相同或成比例,则行列式为零。 若行列式中有一行(或列)元素是其他某些行(或列)对应元素的线性组合,则行列式为零。
7°若行列式中某一行(或列)的所有元素都可表示为两项之和,则该行列式可用两个同阶的行列式
之和来表达。例如
- 105 -
第四章
线性方程组的矩阵解
a1n ⎞ ⎛ 1 ⎟ ⎜ b2 n ⎟ ⎜ 0 → ⎟ ⎜ ⎟ ⎜ bmn ⎠ ⎝ 0
∗ ∗ 0 0 0 ∗ ∗ 1 0 0
b12 b22 bm 2 ∗ ∗ ∗ 0 0
b1n ⎞ ⎟ b2 n ⎟ ⎟ ⎟ bmn ⎠ ∗⎞ ⎟ ∗⎟ ⎟ ⎟ ∗⎟=B 0⎟ ⎟ ⎟ 0⎟ ⎠
1 0 0 0
b12 1 0 0
a1n a2 n amn
b1 ⎞ ⎟ b2 ⎟ ⎟ ⎟ bm ⎠
a11 a12 a1n a1n ⎞ ⎛ a11 a12 ⎜ ⎟ a21 a22 a2 n a21 a22 a2 n ⎟ 称为矩阵A 则 若 A=⎜ ⎜ ⎟ ⎜ ⎟ a n1 a n 2 ann ann ⎠ ⎝ an1 an 2 的行列式,记为 A 。注意行列式与矩阵在形式和本质的区别。
第三章 线性方程组
三、矩阵的规范形与线性方程组的解
对方程组进行初等变换其实质就是对方程组中未知量系 和常数项组成的增广矩阵 A 进行相应的初等变换。 由定理3.1.1知,对增广矩阵进行行初等变换所得矩阵, 对应的方程组与原方程组同 问题: 一个矩阵在行初等变换下可以化为怎样的简单形
第三章 线性方程组
道此时方程组是有解,还是无解。 当 m ≠ n 时, Cramer法则失效,我们也不知方程组有没 是解,更没有解此方程组(1)的有效方 因此有必要研究一般线性方程组(1)的 下面用加减消元法解三元一次线性方程
第三章 线性方程组
例3.1.1 解方程组: ⎧ 2 x1 − x2 + 3 x3 = 1 ⎪ ⎨4 x1 + 2 x2 + 5 x3 = 4 ⎪ 2x + 2 x3 = 6 ⎩ 1
−3 −6 7 0
3
2
0⎞ ⎟ 16 −12 1 ⎟ 0 0 5⎟ ⎠ 5
线性代数第四章线性方程组课件
系分别确定的解集合
S {k11 k22 ktt | k1, k2, 与 T {l11 l22 lt t | l1,l2,
是相等的,即 S T.
, kt是任意常数} , lt是任意常数}
定理5 设 A 是一个 m n矩阵,若齐次线性方程组
一个解.
定理8 设 1,2 是方程组 AX 的两个解,则 1 2 是 AX 导出组 AX 0 的一个解.
由这两个结果, 我们能够得到非齐次线性方程 组解的结构定理.
定理9 设矩阵 A 是一个 mn矩阵.若非齐次线性
方程组 AX 有解, 令 0是 AX 的某一个解
(通常称为特解).
k1, k2, , ks 是任意常数, 则
k11 k22 kss
也是方程组的解. 即齐次线性方程组解的线性组合
还是方程组的解.
记齐次线性方程组 AX 0的解集合为 S , 即
S { (c1,c2, ,cn)T | A 0}.
那么,上面的定理 3 就可以表述为:
对于任意的 1, 2 S , k1, k2是两个任意常数,有
1)当 R(A) R(A) n 时,0是 AX 唯一的解; 2)当 R(A) R(A) n 时,AX 的导出组 AX 0 存在无穷多解, 则 AX 的解集合为 S {0 k11 k22 kss | k1, k2, , ks是任意常数}, 其中 1,2, ,s是 AX 0 的一个基础解系.
是线性无关的.
1, 2, , n
定理2(齐次线性方程组有非零解的判别定理) 齐
次线性方程组 AX 0 有非零解的充分必要条件是
它的系数矩阵 A 的秩 R(A) n .
推论1 如果齐次线性方程组 AX 0 中的方程个数
矩阵的初等变换与线性方程组
第三章 矩阵的初等变换与线性方程组本章的重点是研究矩阵更深层的性质——秩,它是矩阵理论的核心概念,是由德国数学家佛洛本纽斯在1879年首先提出的。
为了研究矩阵秩的概念,首先要介绍一个重要的工具———矩阵的初等变换概念,它不仅解决了求矩阵秩的问题,还是帮助求解线性方程组、求逆阵、判定向量组相关性等的有力工具,然后我们将应用秩理论解决方程组的求解问题,最后还要将初等变换概念在理论层次上加以提炼,即介绍初等方阵的概念。
§1 矩阵的初等变换矩阵的初等变换是矩阵之间的一种十分重要的变换,是从实际问题的解决中抽象得到的。
一、引例求解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=+-+=+--979634226442224321432143214321x x x x x x x x x x x x x x x x(1)(1) )(1B )(2B)(3B ⎪⎪⎩⎪⎪⎨⎧=-==+-=+-+00304244324321x x x x x x x x )(4B 问题10共采取了几种变换将(1)变为)(4B 的?(三种:(ⅰ) 交换方程的次序;(ⅱ) 用数)0(≠k 乘某方程; (ⅲ) 将某方程的k 倍加到另一方程上。
且这三种变换都可以看成是只对方程组的系数和常数项进行的)20在这三种变换下,(1)与)(4B 是否同解?即这三种变换是否都可逆? (都可逆,即同解变换) 30采取这三种变换的目的是为了将(1)变为什么形状以便得到解? (阶梯形。
其寓意:方程④表明方程组有一个多余的方程; 将③代入②得32x x =,表明3x (或2x )可任意取值,称之为自由未知量,其余的未知量称为非自由未知量,当某层的阶宽多于一个未知量时,就必有自由未知量,一般我们取每层阶梯的第一个未知量为非自由未知量,由于一旦确定下自由未知量,任给自由未知量一组数值,就可得到方程组的一个解,所以我们特别重视自由未知量)40 由于(1)与其增广矩阵)(b A B =构成一一对应,那这三种变换在矩阵中对应的效果是什么?⎝⎛=B ⎪⎪⎪⎪⎭⎫ ⎝⎛------97963211322111241211 ⎪⎪⎪⎪⎭⎫⎝⎛-------34330635500222041211⎪⎪⎪⎪⎭⎫⎝⎛----310620000111041211 5000310000111041211B =⎪⎪⎪⎪⎭⎫ ⎝⎛---. 对于矩阵的行只作了三种变换,也就是说,为解线性方程组对方程组作变换,就相当于对其增广矩阵的行作同类变换,下面给出这三种对矩阵的行作的变换在矩阵中的正式定义:②-③ ③-2① ④-3① ①②③④①↔ ② ③ ÷③↔④ ④-2③ ③↔④ ④-2③ ①②③④②-③ ③-2①④-3① ②÷ 2③+5② ④-3②二、初等变换1、定义1 以下三种变换称为矩阵的初等行变换:(ⅰ) 对调两行(对调i 、j 两行记作:j i r r ↔);(ⅱ) 以数k ≠0乘某行中的所有元素(第i 行乘k 记作:k r i ⨯);(ⅲ) 将某行所有元素的倍加到另一行对应元素上去(将第j 行的k 倍加到第i 行记作:j i r k r +)。
矩阵初等变换与线性方程组
特别地,当B=b为列向量时,有
R A R A ,bR A 1
2 .R A B R A R B
3 .R A B m in R A ,R B
4 .若 A m n B n l 0若 R A R B n
C
k m
C
k n
个
(二)最高阶非零子式,矩阵的秩
如果矩,而所有 r 1 阶子式(如果存在的
话)的值全等于0,则称 D r 为矩阵A的一
个最高阶非零子式,其阶数 r 称为矩阵A
的秩,记作 R A .
例1、求矩阵A 和B的秩
其中
1
A
2
4
2 3 7
3
5
等行变换把它变成行阶梯形矩阵和行最 简形矩阵)
(三)矩阵A的等价标准形矩阵
特点:矩阵A的等价标准形矩阵的左上
角是一个单位矩阵,其余元素全为零,
对于mn矩阵A,总可经过初等变
换(行变换和列变换)把它化为等价标准
形
C
Er 0
0
0
mn
其中 r 是行阶梯形矩阵中非零行的
行数。
0 2 1
例1、设
阵E,即 A E
(三)推论: 可逆矩阵A可表示为有 限个初 等矩阵的乘积。
六、初等变换的应用
(一)求可逆矩阵A的逆矩阵 A 1
r
1 .若 A E E ,X , 则 A 可 逆 , 且 X A 1 行 变 换
2.若 E A 列 变 C 换 E X ,则 A 可 逆 ,且 XA 1
矩阵初等变换与线性方程组
§3-1矩阵的初等变换
一、矩阵的初等变换的定义
(一)初等行(列)变换
第2章 线性方程组与矩阵初等变换-郑成勇主编教材配套课件
11
−2
r3
−3r2
0
−10
11
−2
11 3
0
11
r2 r3
−3r1 −11r1
0
−30
33
0
0
0 0 6
最后一个矩阵所对应的线性方程组为
0
x1 + 3x2 x1 −10x2
− 3x3 = 1 +11x3 = −2
.
0x1 + 0x2 + 0x3 = 6
方程组最后一个方程显然矛盾,故方程组无解.
矩阵总可以经过若干次初等变换化为它标准形 F
=
Er O
O
O
mn
,
04 其中 r 为行阶梯形矩阵中非零行的行数.
OPTION
Linear Algebra
2.3 矩阵初等行变换解线性方程组
第2章 线性方程组与矩阵初等变换 14
定义2.1 矩阵的秩 将一个矩阵 A化成行阶梯阵后, 其非零行的行数称为矩阵的
a21
a22
阵
am1 am2
a1n
a2n
amn
x1
未 知
x
=
x2
变
量
xn
b1
常 数 列
b
=
b2
bm
Ax = b
a11 a12
增广矩阵
B =[A
b]
=
a21
a22
am1 am2
a1n b1
a2n
b2
amn bm
A = [a1, a2 , , an ] 其中 ai ( i = 1, 2, , n ) 为矩阵 A 的第i 列,则按分块矩阵乘法运算,
线性方程组解PPT课件
VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
线性代数-线性方程组与矩阵PPT课件
k 1
k 1
k 1
s
aik bk1
c1
j
s
aikbk 2
c2
j
s
aikbkp
c
pj
p
s
aikbktctj .
k1
k1
k1
t1 k 1
ps
同理可以验证矩阵 Ams (BspC pn ) 中 (i, j) 元素也是 aikbktctj ,所以矩阵乘法的结合律成立. t1 k 1
aij bij
.
mn
2. 矩阵的数乘
第1章 线性方程组与矩阵 12
定义4 用一个数 k 乘矩阵 A (aij )mn 的所有元素得到的矩阵 kaij mn 称为矩阵的数乘,记为 kA 或者 Ak ,
即
kA Ak kaij mn .
矩阵的数乘运算满足如下的运算规律: 设 k,l 是任意两个数, A, B 是任意两个 m n 矩阵,
21 21 0 2
21 21 01
2 0 21 0 1
4 4
3 0
2
2
.
三、矩阵的乘法
例3
求矩阵
A
1 2
1 2
与
B
2 6
1 3
的乘积
AB
及
BA
.
解
AB
1 2
1 2
2
6
1 3
8 16
4 8
;
BA
2 6
1 1
3
2
1 2
0 0
0 0
.
第1章 线性方程组与矩阵 16
3
A Omn Omn A A .
1. 矩阵的加法
第1章 线性方程组与矩阵 11
线性代数(第六版)课件:线性方程组
(第六版)
1
线性方程组
2
本章讨论关于线性方程组的两个问题: 一、探讨 n 个未知数 m 个方程的线性方程组的解法 (即下面介绍的高斯消元法)。 二、从理论上探讨线性方程组解的情况:何时有解, 何时无解。若有解,则有多少组解;若有无穷多解, 如何表示。
运用 n 维向量的理论可全面地解决第二个方面的 问题。
3
第一节 线性方程组的消元解法
例 用高斯消元法解线性方程组
2 x1 x2 x3 x4 2
1
4x1x1x62
2x3 x2 2
x3
x4
4 2 x4
4
2 3
(1)
3x1 6 x2 9 x3 7 x4 9 4
解
x1 x2 2 x3 x4 4
1
(1)
12 3 2
2 2
x1 x1
a11 x1 a12 x2 a1n xn 0 ,
a21
x1
a22 x2
a2n xn
0,
am1 x1 am2 x2 amn xn 0 .
显然零向量必为它的解,称为零解。
定理 若 r( A) n ,则齐次线性方程组只有零解;
若 r(A) n ,则齐次线性方程组有非零解. 推论 若 m n ,则齐次线性方程组必有非零解。
0
b
1 0
1
,
ba2 x1 a 1 ,
x2
a
2b a1
3
,
b1 x3 a 1 ,
x4 0 ;
当 a 1 , b 1 时, r( A) 2 r( A) 3 ,方程组无解;
当 a 1 , b 1 时, r( A) r( A) 2 4 ,方程组有无穷多组解,
线性代数课件第三章
定理 任何矩阵都可经过单纯的初等行变换化为行
最简形矩阵. 任何矩阵都可经过初等变换化为标准形矩 阵.
下面我们还是通过例子来说明该定理.
单击这里开始
从上面的例子可见, 任何矩阵经单纯的初等行变换 必能化为行阶梯形矩阵和行最简形矩阵, 但不一定能化 成标准形矩阵, 如果再使用初等列变换, 则一定能化成 标准形矩阵. 将矩阵化为行阶梯形矩阵的方法不是唯一 的, 所得结果也不唯一. 但一个矩阵的标准形是唯一的, 这反映了矩阵的另一个属性, 即矩阵的秩的概念.
第三章 矩阵的初等变换与线性方程组
第一节 矩阵的初等变换 第二节 矩阵的秩 第三节 线性方程组的解 知识要点 释疑解难 习题课
第三章 矩阵的初等变换与线性方程组
本章先引进矩阵的初等变换, 建立矩阵的秩的概念; 然后利用矩阵的秩讨论齐次线性方程组有非零解的充要 条件和非齐次线性方程组有解的充要条件, 并介绍用初 等变换解线性方程组的方法.
(i) 对调两行(对调 i, j 两行, 记作 ri rj ); (ii) 以数 k 0 乘某一行中的所有元素
(第 i 行乘 k , 记作 ri k ); (iii) 把某一行所有元素的 k 倍加到另一行对应的元素 上去(第 j 行的 k 倍加到第 i 行上,记作 ri + krj).
把定义中的“行”换成“列”,即得矩阵的初等列变 定义换. 的矩阵的初等行变换与初等列变换, 统称初等变换.
①
①-② ②-③
x2 x3 3, x4 3,
② ③
(B5)
0 0. ④
至此消元结束, 且得到 (1) 的同解方程组 (B5), (B5) 是方程组 (1) 的所有同解方程组中最简单的一个, 其中
工程数学第二章矩阵课件
68 34
上页
下页
返回
结束
例 6 若 A 为 n 阶方阵, k 为实数,则 kA kn A .
证 由于 A 为 n 阶方阵, k 为实数,根据数与矩阵乘法的定义知, kA 是将 A 的 每个元素都乘以 k ,在求 kA 时,根据行列式性质的单行可提性,每一行提出一个 k , 所以 kA kn A .
例1
已知
a
3
b
a
3
b
c
7
d
2c d 3
,求
a,b,c, d
.
解 根据题意,得
a b 7,
2c d 3,
cd
3,
a b 3
故 a 5,b 2,c 2, d 1 .
上页
下页
返回
结束
例2 设
A
1 3
2 4
,
B
0 1
2 1
,
试求:(1) A 与 B 是否相等?(2) A , B .
;
0
0
A
0
0 0
0 0
0 2 1 0 4 2
0
3
2
5
1
3
10 2 5
4
1
.
0 A 称为 A 的负矩阵,记为 A,其中 A与 A 的每个对应元素都互为相反数.
上页
下页
返回
结束
矩阵加法具有如下性质:
假设 A, B,C, 0 均为 m n 矩阵,则 (1) A B B A(交换律); (2) (A B) C A (B C) (结合律); (3) A 0 0 A A; (4) A (A) 0 .
5
3
7 5
4 2
第三章 矩阵的初等变换与线性方程组
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
4 4 9
①②
①②
x1 x2 2x3 x4 4
423xxx111
x2 6x2 6x2
x3 2x3 9x3
x4 2x4 7 x4
一个同解的方程 这种变换过程称为同解变换. 同解变换有 交换两个方程的位置 把某个方程乘以一个
非零数 某个方程的非零倍加到另一个方程上.
例如
2x1 x2 x3 x4 2
43xxx111
x2 6x2 6x2
2x3 2x3 9x3
x4 2x4 7 x4
的线性方程组都是同解的 其中行最简形矩阵所对应的线性
方程组是最简单的 而且是最容易求解的.
首页
上页
返回
下页
结束
§3.2 初等矩阵
矩阵的初等变换是矩阵的一种最基本的运算 这有着广泛的应用.
首页
上页
返回
下页
结束
初等矩阵
例如
由单位矩阵E经过一次初等变 换得到的矩阵称为初等矩阵.
E(i j)表示对调单位矩阵E的第 i j两行(列)得到的初等矩阵.
第3章 矩阵的初等变换与线性方程组
天
津
师 范
§3.1 矩阵的初等变换
大
学 计 算
§3.2 初等矩阵
机
与 信
§3.3 矩阵的秩
息
工 程 学
§3.4 线性方程组的解
院
郑 陶 然
§3.1 矩阵的初等变换
矩阵的初等变换是矩阵的一种十分重要的运 算 它在解线性方程组、求逆阵及矩阵理论的探讨 中都可起重要的作用.
线性代数课件_第3章_矩阵的初等变换与线性方程组
-13-
定理 (等价标准形定理 等价标准形定理) 等价标准形定理 用初等变换必能将矩阵化为如下等价标准形 等价标准形( 用初等变换必能将矩阵化为如下等价标准形(也称 相抵标准形): 相抵标准形):Er Fra bibliotek O O
等价标准形是唯一的。 等价标准形是唯一的。
-14-
例2
(接例1) 接例 )
1 2 1 1 1 2 1 1 4 6 2 2 3 6 9 7
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
-10-
只用初等行变换必能将矩阵化为阶梯形, 定理 只用初等行变换必能将矩阵化为阶梯形, 从而再化为最简阶梯形。阶梯形不唯一,最简阶梯形 从而再化为最简阶梯形。阶梯形不唯一, 唯一。 唯一。
-8-
在 m × n 的矩阵集合 R 中的一个等价关系? 中的一个等价关系
m×n
A r 中, 如果
B ,
具有行相抵的关系,问行相抵是不是 行相抵的关系 则称 A 与 B 具有行相抵的关系 问行相抵是不是 R m × n
Gauss消元法的思想又可表述为 在与方程组增 消元法的思想又可表述为, 消元法的思想又可表述为 广矩阵行相抵的矩阵中,找一个最简单的 找一个最简单的,然后求解 广矩阵行相抵的矩阵中,找一个最简单的,然后求解 这个最简单的矩阵所对应的方程组. 这个最简单的矩阵所对应的方程组 以后我们把这个最简单的矩阵叫做(行 最简阶 以后我们把这个最简单的矩阵叫做 行)最简阶 梯形矩阵. 梯形矩阵
a11 = a 21 a 31
a12
a 22 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
第二讲:矩阵初等变换与线性方程组
3.同解方程组
如果两个线性方程组有相同的解集合,则称它们 是同解的.
4. 方程组的同解变换 例 解线性方程组
2x2 x3 1 x1 x2 x3 0
2x1 x2 x3 2
对此线性方程组,可做如下三种消元变换: (1) 互换两个方程的位置; (2) 把某一个方程的两边同乘以一个非零常数c; (3) 将某一个方程加上另一个方程的k倍.
进而 有
m,n Z , m P, n
m 0 m P.
n
n
而任意一个有理数可表成两个整数的商,
Q P.
练习 判断数集 P1, P2 是否为数域?为什么? P1 {2n 1 | n Z },
P2 {n 2 | n Z } Z( 2).
变换ri 2rj不可写成2rj ri; 2ri 3rj无此变换;
1 0 练习:对矩阵 1 1
2 1
1 0 2 r2 +r1
解:
1
1
1
r3 -2r1
2 1 1
2
1
作初等行变换。
1
1 0 2
00
1 1
3-3
r3 -r2
5 +3x4
0
(2)
2x3 4x4 7
x22 x32 13
x1 x2 x3 0
2x - y 3 ex y 3z 5
4
(3)(4)为非线性方程组。
1. 线性方程组与矩阵(P105)
线性方程组的一般形式为
第一章线性方程组与矩阵.doc
线性代数文本教案第一章线性方程组与矩阵(6学时)1.本章引言解线性方程组是线性代数课程最主要的内容之一, 而矩阵则是线性代数的一个非常重要的基本概念和常用工具. 在科学研究、工程技术和经济管理各领域中, 许多问题都与求解线性方程组和矩阵及其运算有关.本章, 我们将首先从较为直观的解析几何角度来了解二元和三元线性方程组的解的几何意义. 然后, 在消元法解线性方程组的基础上, 引入矩阵、矩阵的初等变换以及矩阵秩的概念, 从而把用消元法解线性方程组, 转化为只需对方程组的增广矩阵施以初等行变换来解决. 接着再进一步讨论如何根据行阶梯形矩阵或行最简形矩阵的结构以及矩阵的秩的不同情况, 判别线性方程组有没有解, 有唯一解还是有无穷多解的基本方法. 最后, 通过举例介绍矩阵和线性方程组在相关方面的一些实际应用.2.教学内容:二元和三元线性方程组的解的几何意义;矩阵和增广矩阵,矩阵的初等变换,矩阵的秩等概念;高斯消元法解线性方程组;应用矩阵的秩判断线性方程组的解的结构;矩阵和线性方程组的一些实际应用.3.教学目的与要求:1.了解二元和三元线性方程组的解的概念和解的几何意义.2.理解矩阵、增广矩阵、阶梯形矩阵以及矩阵的秩等概念;掌握矩阵的初等变换,会用矩阵的初等变换求矩阵的秩.3. 熟练掌握用初等变换求解线性方程组的高斯消元法;4. 理解齐次线性方程组有非零解的充要条件,理解非齐次线性方程组有解的充要条件. 能熟练应用矩阵的秩判断线性方程组的解的结构及求线性方程组通解的方法.5.了解矩阵和线性方程组的一些实际应用.4.重点、难点:1.重点:矩阵的概念,矩阵的初等变换,矩阵的秩;线性方程组有解的充要条件.2.难点:应用矩阵的秩判断线性方程组的解的结构及求线性方程组通解.5.基本方法及技能:矩阵的初等变换法;用矩阵的初等变换求矩阵的秩,求线性方程组通解.6.教学建议及教法提示1.关于二元和三元线性方程组的解的概念和解的几何意义,教材处理的通俗易懂,形象直观,建议以学生自学为主,教师作适当点拨提示.2.建议按教材编排顺序通过线性方程组的消元法引进矩阵,矩阵的初等变换,矩阵的秩等概念.教学中注意线性方程组与增广矩阵,线性方程组的初等变换与矩阵的初等变换,阶梯形方程组与阶梯形矩阵的对照和对应关系.3.矩阵的初等变换是矩阵的一种十分重要的运算,它在解线性方程组、求矩阵的逆及矩阵理论的探讨中都可起重要的作用,因此要求学生熟练掌握矩阵的初等变换。
数值分析用矩阵分解法解线性代数方程组PPT课件
其 中A Rnn非 奇 异,U、V Rn ,且1 V T A1U 0,
A UV T非 奇 异, V T A1U。
选 择 向 量U、V使 原 方 程 组Ax d化 为 ( A UVT )x d
其 中A为 三 对 角 矩 阵,利 用 谢 尔 曼 莫 里 森 公 式 , 此方程组的解为
第10页/共31页
function x=lupqdsv(A,b) n=length(b); [LU,p,q]=lupqd(A); y(1)=b(p(1)); for i=2:n
y(i)=b(p(i))-LU(i,1:i-1)*y(1:i-1)'; end z(n)=y(n)/LU(n,n);x(q(n))=z(n); for i=(n-1):-1:1
例:
a11
a1q
a22
a
p1
0
an,n p1
1
1
l
p1
0
ln,n p1
0
an
q1,n
ann
0 u11
u1q
u22
1 0
第18页/共n
当A为三对角阵,且 b1 c1 , bi ci ai ,(i 1, 2,
bn cn 时,A有LU分解展开式
b1 c1 a2 b2 c2
(k n 1, n 2,,1)
u11 u12 u1n x1 y1
u22
u2n
x2
y2
unn
xn
y
n
第2页/共31页
二、用列主元的三角分解PA LU求解Ax b
LY Pb
Ax
b
PAx
Pb
LUx
Pb
Ux
Y
例:用列主元三角分解求解Ax=b