高中数学 第二章 圆锥曲线 抛物线第二课时教案 北师大版选修1-1
高中数学 第二章 圆锥曲线 椭圆第二课时教案 北师大版选修1-1
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
第2章《圆锥曲线与方程》章综合(北师大版选修1-1)
第二章 圆锥曲线与方程
在直角三角形 PF1F2 中, |PF1|· |PF2|=|F1F2|· y=32, 16 3 41 所以 y= 5 ,代入双曲线的方程,得 x= 5 , 即点 P
3 在第一象限的坐标是
41 16 ,再根据双曲线的对 , 5 5
称性得点 P 的坐标还可以是
2
3 同时 b = . 4
2
4 2 故所求双曲线方程为 4x -3y =1
2
第二章 圆锥曲线与方程
四、直线与圆锥曲线的位置关系 直线与圆锥曲线的位置关系,涉及函数、方程、平面几何 等诸多方面的知识,形成了求轨迹、最值、对称范围、线段的
长度等多种问题,是解析几何部分综合性较强问题,也是以往
高考的重点和热点问题.高考中,大多是以解答题的形式出现 且难度较大,往往成为体现试题区分度的题目.
第二章 圆锥曲线与方程
二、圆锥曲线定义的应用 对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的 意识,“回归定义”是一种重要的解题策略.如: (1) 在求轨迹
方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲
线的定义,写出所求的轨迹方程; (2) 涉及椭圆、双曲线上的点 与两个焦点构成的三角形问题时,常用定义结合解三角形的知 识来解决; (3) 在求有关抛物线的最值问题时,常利用定义把到 焦点的距离转化为到准线的距离,结合几何图形,利用几何意
第二章 圆锥曲线与方程
(2)设直线与椭圆交于 A(x1,y1),B(x2,y2), 由(1)知,5x2+2mx+m2-1=0, 2m 1 2 由韦达定理,得 x1+x2=- ,x1x2= (m -1). 5 5 所以 d= x1-x22+y1-y22= 2x1-x22 = 2[x1+x22-4x1x2] =
2020高中数学 第二章 圆锥曲线 抛物线第二课时教案 北师大版选修1-1
抛物线的简单性质教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化 教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入: 抛物线的几何性质: 标准方程 图形顶点 对称轴 焦点 准线 离心率()022>=p pxyx y O F l ()0,0 x 轴 ⎪⎭⎫ ⎝⎛0,2p 2p x -= 1=e ()022>-=p pxy x yO F l()0,0x 轴 ⎪⎭⎫ ⎝⎛-0,2p 2p x = 1=e ()022>=p pyx()0,0 y 轴 ⎪⎭⎫ ⎝⎛2,0p 2p y -= 1=e ()022>-=p pyx()0,0 y 轴 ⎪⎭⎫ ⎝⎛-2,0p 2p y = 1=e注意强调p 的几何意义:是焦点到准线的距离 抛物线不是双曲线的一支,抛物线不存在渐近线二、讲解新课:1.抛物线的焦半径及其应用:定义:抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径 焦半径公式:抛物线)0(22>=p px y ,0022x p p x PF +=+= 抛物线)0(22>-=p px y ,0022x p p x PF -=-= 抛物线)0(22>=p py x ,0022y p p y PF +=+= 抛物线)0(22>-=p py x ,0022y p p y PF -=-= 2.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 下面分别就公共点的个数进行讨论:对于)0(22>=p px y当直线为0y y =,即0=k ,直线平行于对称轴时,与抛物线只有唯一的交点当0≠k ,设b kx y l +=:将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到关于x 的二次方程02=++c bx ax (*)若0>∆,相交;0=∆,相切;0<∆,相离综上,得:联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点)当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点)0<∆,无公共点 (相离)(2)相交弦长: 弦长公式:21k ad +∆=,其中a 和∆分别是02=++c bx ax (*)中二次项系数和判别式,k 为直线b kx y l +=:的斜率当代入消元消掉的是y 时,得到02=++c by ay ,此时弦长公式相应的变为:d =(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。
高中数学圆锥曲线教案
高中数学圆锥曲线教案
一、教学目标
1.了解圆锥曲线的定义和基本性质。
2.能够掌握圆锥曲线的标准方程及其图像特点。
3.能够解决与圆锥曲线相关的问题。
二、教学重点和难点
重点:掌握圆锥曲线的标准方程及其图像特点。
难点:理解圆锥曲线的定义及性质。
三、教学内容
1.圆锥曲线的定义和基本性质。
2.圆锥曲线的标准方程及其图像特点。
3.圆锥曲线的相关问题解决方法。
四、教学过程
1.导入新知识:通过引入一个问题或实际应用场景引起学生的兴趣。
2.讲解圆锥曲线的定义和基本性质,包括椭圆、双曲线和抛物线。
3.介绍圆锥曲线的标准方程及其图像特点。
4.通过实例分析,让学生熟悉解决与圆锥曲线相关的问题的方法。
5.组织学生进行练习和讨论,巩固所学知识。
6.总结本节课内容,提出问题进行思考,激发学生的学习兴趣。
五、课堂作业
1.完成练习题。
2.思考如何将圆锥曲线应用到实际生活中。
六、教学反思
本节课主要对圆锥曲线的定义和基本性质进行了讲解,并通过实例让学生掌握了圆锥曲线的标准方程及其图像特点。
同时也引导学生思考如何将所学知识应用到实际生活中。
在教学过程中需要注意引导学生正确理解圆锥曲线的概念,帮助他们建立深刻的认识。
(选修1-1教案)2.1圆锥曲线
第二章圆锥曲线与方程本章内容在日常生活中,我们接触过许许多多的曲线,有的可能有印象,有的可能没有印象了.例如,油罐汽车上装油罐的截面,其周界就是椭圆;喷泉喷出的水形成的曲线就是抛物线;拉开休闲服的拉链,动点的轨迹就是双曲线.对椭圆、抛物线、双曲线以及我们过去学过的圆,还可以从平面截圆锥的操作过程来认识.用平面去截圆锥,由于截面与圆锥轴的夹角不同,所得截面的周界分别是圆、椭圆、抛物线、双曲线,所以人们通常把圆、椭圆、抛物线、双曲线统称为圆锥曲线.实践证明,圆锥曲线对人类社会的进步和发展是有用的.例如,神州宇宙飞船的运行轨道就是椭圆,发电站的冷却塔的轴截面两侧边沿是双曲线.既然圆锥曲线有用,人类就要研究它们.本章我们将用坐标方法探究椭圆、抛物线和双曲线.高考目标考情考法在这些年的高考中,在全国卷、各省(市、自治区)卷中,每张卷上都能见到围绕圆锥曲线命题的试题,小题、大题都有,小题的难度处在中等水平,大题一般都是把直线与圆锥曲线结合在一起,对往往是压轴题,一题多问,难度都比较大.一个目标:渗透解析几何的基本思想.一条主线:展示背景,形成曲线概念;建立方程,研究曲线性质.2.1 圆锥曲线在广袤无垠的宇宙中有着无数大小不一、形态各异的天体,如太阳、月亮、星星……随着人类逐渐步入璀璨夺目的宇宙,我们已有幸欣赏到有条不紊、翩翩起舞的星球的“舞步”.目前的研究表明,天体数量越多,轨迹的种类也就越多,其中5个天体可能组成的轨迹至少有18种,而其它一些复杂的“太空舞步”竟有799种之多.其中有些天体运行的“舞步”就是我们这一节所要研究的椭圆、双曲线和抛物线.教学目标:知识目标:通过本节的学习,了解圆锥曲线的实际背景,经历从具体情境中抽象出圆锥曲线的过程.能力目标:通过本节的学习,理解三种圆锥曲线的定义,能根据圆锥曲线的定义判断轨迹的形状.情感目标:通过本节的学习,从整体上认识三种圆锥曲线及其内在联系,并感受数学与现实生活的密切联系,激发学习数学的兴趣和信心.教学重点:三种圆锥曲线的定义. 教学难点:三种圆锥曲线的定义理解. 授课类型:新授课.教具准备:多媒体课件. 课时安排:1课时. 教学过程: 一、问题情境圆锥曲线与科研、生产和生活有着密切的关系,早在16与17世纪之交,开普勒就发现行星绕太阳运动的轨道是一个椭圆;探照灯反射镜就是由抛物线绕其对称轴旋转形成的抛物面;发电厂冷却塔的外形线是双曲线;……. 那么,什么是椭圆?什么是双曲线?什么是抛物线?这就是我们这一节所要研究的问题.(引入新课,板书课题)二、建构数学1.圆锥面的概念圆锥面可看成是一条直线绕着与它相交的一条定直线(两条直线不互相垂直)旋转一周所形成的曲面.2.圆锥面的截线的形状多媒体演示;学生用准备好的材料(细绳、图钉、铅笔等)画椭圆,并在此基础上得出椭圆的定义.3.圆锥曲线的定义 (1)椭圆的定义(参见课本P24).关于椭圆定义的理解.定义中有两个关键词:平面内,常数大于12F F . ①若去掉“平面内”,其余条件不变,则动点的轨迹是空间图形,而不是平面图形. ②常数后加上大于12F F 是为了避免出现两种特殊情况,即轨迹为一条线段或无轨迹.设常数为2a ,122F F c =,则椭圆上的点P 满足集合12{|2, 2>P P PF PF a a =+=12}F F ,其中>0a ,>0c ,且a 、c 均为常数.当2>2a c 时,集合P 为椭圆;当22a c =时,集合P 为线段1F F ; 当2<2a c 时,集合P 为空集. (2)双曲线的定义(参见课本P24).关于双曲线定义的理解.定义中有两个关键词:平面内,常数小于12F F .①若去掉“平面内”,其余条件不变,则动点的轨迹是空间图形,而不是平面图形. ②注意“距离之差的绝对值”和“122<a F F ”.这两点与椭圆的定义有本质的区别,若12122<PF PF a F F -=,则点P 的轨迹仅为靠近双曲线焦点2F 这一侧的一支;若21122<PF PF a F F -=,则点P 的轨迹仅为靠近双曲线焦点1F 这一侧的一支.而双曲线是由两个分支组成的,故定义中应为“距离之差的绝对值”. (3)抛物线的定义(参见课本P24).关于抛物线定义的理解.①抛物线定义的实质可归结为“一动三定”,一动,即一个动点,设为P ;三定,即一个定点F ,即抛物线的焦点;一条定直线l ,即抛物线的准线;一个定值,即点P 到定点F 的距离与它到定直线l 的距离相等(定值).②定点F 不能在直线l 上,否则,动点P 的轨迹就不是抛物线,而是过点F 且垂直于直线l 的一条直线.椭圆、双曲线和抛物线统称为圆锥曲线. 三、数学应用例1 已知动圆P 过定点(3,0)A -,并且在定圆C :22(3)64x y -+=的内部与定圆C 相切,则动圆的圆心P 的轨迹是什么图形?引导学生分析解题思路:欲确定动圆圆心P 的轨迹,可先确定点P 所满足的几何特征,然后判断其轨迹. 解:(略) 答案:椭圆. 练习:课本P24 练习 第3题.例2 若动点M 到点(3,0)F 的距离等于它到直线3x =-的距离,则动点M 的轨迹是什么图形?解:(略) 答案:抛物线. 练习:课本P24 练习 第2题.备选例题例3 已知1(4,3)F -,2(2,3)F 为定点,动点P 满足122PF PF a -=,当2a =或3a =时,求动点P 的轨迹.引导学生分析,条件中有“12PF PF -”,联想双曲线的定义,分别确定当2a =或3a =时12PF PF -与12F F 的大小关系,进而确定动点P 的轨迹.解:(略) 答案:当2a =时,动点P 的轨迹是双曲线的一支(靠近焦点2F );当3a =时,动点P 的轨迹是射线2F P . 四、本节小结:(略) 五、板书设计:(略)六、布置作业:课本P25 习题2.1 第1、2题. 七、教后反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的简单性质教学目的:1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;2.掌握焦半径公式、直线与抛物线位置关系等相关概念及公式;3.在对抛物线几何性质的讨论中,注意数与形的结合与转化教学重点:抛物线的几何性质及其运用教学难点:抛物线几何性质的运用授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:抛物线的几何性质:()022>=p pyx()0,0y 轴⎪⎭⎫ ⎝⎛2,0p 2p y -=1=e()022>-=p pyx()0,0y 轴⎪⎭⎫ ⎝⎛-2,0p2py =1=e注意强调p 的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线二、讲解新课:1.抛物线的焦半径及其应用:定义:抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径焦半径公式:抛物线)0(22>=p px y ,0022x pp x PF +=+= 抛物线)0(22>-=p px y ,0022x pp x PF -=-= 抛物线)0(22>=p py x ,0022y pp y PF +=+= 抛物线)0(22>-=p py x ,0022y pp y PF -=-= 2.直线与抛物线: (1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点)下面分别就公共点的个数进行讨论:对于)0(22>=p px y当直线为0y y =,即0=k ,直线平行于对称轴时,与抛物线只有唯一的交点当0≠k ,设b kx y l +=:将b kx y l +=:代入0:22=++++F Ey Dx Cy Ax C ,消去y ,得到 关于x 的二次方程2=++c bx ax (*)若0>∆,相交;0=∆,相切;0<∆,相离综上,得: 联立⎩⎨⎧=+=pxy b kx y 22,得关于x 的方程02=++c bx ax 当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点)0<∆,无公共点 (相离)(2)相交弦长: 弦长公式:21k ad +∆=,其中a 和∆分别是02=++c bx ax (*)中二次项系数和判别式,k 为直线b kx y l +=:的斜率当代入消元消掉的是y 时,得到02=++c by ay ,此时弦长公式相应的变为:d =(3)焦点弦:定义:过焦点的直线割抛物线所成的相交弦。
焦点弦公式:设两交点),(),(2211y x B y x A ,可以通过两次焦半径公式得到: 当抛物线焦点在x 轴上时,焦点弦只和两焦点的横坐标有关: 抛物线)0(22>=p px y , )(21x x p AB ++=抛物线)0(22>-=p px y , (21x x p AB +-=当抛物线焦点在y 轴上时,焦点弦只和两焦点的纵坐标有关: 抛物线)0(22>=p py x , (21y y p AB ++=抛物线)0(22>-=p py x ,(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦直接应用抛物线定义,得到通径:p d 2=(5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y θsin 24422221p p k p y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒ (6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421x x =3.抛物线的法线:过抛物线上一点可以作一条切线,过切点所作垂直于切线的直线叫做抛物线在这点的法线,抛物线的法线有一条重要性质:经过抛物线上一点作一直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这点与焦点连线的夹角如图.抛物线的这一性质在技术上有着广泛的应用.例如,在光学上,如果把光源放在抛物镜的焦点F 处,射出的光线经过抛物镜的反射,变成了平行光线,汽车前灯、探照灯、手电筒就是利用这个光学性质设计的.反过来,也可以把射来的平行光线集中于焦点处,太阳灶就是利用这个原理设计的4.抛物线)0(22>=p px y 的参数方程:⎩⎨⎧== 222pt y pt x (t 为参数)三、讲解范例:例 正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线)0(22>=p px y 上,求这个正三角形的边长.分析:观察图,正三角形及抛物线都是轴对称图形,如果能证明x 轴是它们公共的对称轴,则容易求出三角形边长.解:如图,设正三角形OAB 的顶点A 、B 在抛物线上,且坐标分别为),(11y x 、),(22y x ,则 1212px y =,2222px y =又|OA|=|OB|,所以 22222121y x y x +=+ 即 22212122px x px x +=+0)(2)(212221=-+-x x p x x0)](2)[(2121=-++x x p x x∵ 02,0,021>>>p x x ,∴ 21x x =.由此可得||||21y y =,即线段AB 关于x 轴对称. 因为x 轴垂直于AB ,且∠AOx=30°,所以3330tan 011==x y 所以p y px y 3212111=⋅=, p y AB 342||1== 四、课堂练习:1.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求这个正三角形的边长(答案:边长为p 34)2.正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()022>=p px y 上,求正三角形外接圆的方程分析:依题意可知圆心在x 轴上,且过原点,故可设圆的方程为:022=++Dx y x ,又∵ 圆过点()32,6p A , ∴ 所求圆的方程为0822=-+px y x3.已知ABC ∆的三个顶点是圆0922=-+x y x 与抛物线()022>=p px y 的交点,且ABC ∆的垂心恰好是抛物线的焦点,求抛物线的方程(答案:x y 42=)4.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上,(1)分别求A 、B 两点的横坐标之积,纵坐标之积;(2)直线AB 是否经过一个定点,若经过,求出该定点坐标,若不经过,说明理由;(3)求O 点在线段AB 上的射影M 的轨迹方程答案:(1)2214p y y -=; 2214p x x = ;(2)直线AB 过定点()0,2p(3)点M 的轨迹方程为()()0222≠=+-x py p x5.已知直角OAB ∆的直角顶点O 为原点,A 、B 在抛物线()022>=p px y 上,原点在直线AB 上的射影为()1,2D ,求抛物线的方程(答案:x y 252=) 6.已知抛物线()022>=p px y 与直线1+-=x y 相交于A 、B 两点,以弦长AB为直径的圆恰好过原点,求此抛物线的方程(答案:x y =2)7.已知直线b x y +=与抛物线px y 22=()0>p 相交于A 、B 两点,若OB OA ⊥,(O 为坐标原点)且52=∆AOB S ,求抛物线的方程(答案:x y 22=)8.顶点在坐标原点,焦点在x 轴上的抛物线被直线12+=x y 截得的弦长为15,求抛物线的方程(答案:x y 122=或x y 42-=)五、小结 :焦半径公式、直线与抛物线位置关系等相关概念及公式六、课后作业:七、板书设计(略)八、测 试 题:1.顶点在原点,焦点在y 轴上,且过点P (4,2)的抛物线方程是( ) (A) x 2=8y (B) x 2=4y (C) x 2=2y (D) y x 212=2.抛物线y 2=8x 上一点P 到顶点的距离等于它们到准线的距离,这点坐标是(A) (2,4) (B) (2,±4) (C) (1,22) (D) (1,±22)3.抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y 轴垂直的弦长等于8,则抛物线方程为4.抛物线y 2=-6x ,以此抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是5.以双曲线191622=-y x 的右准线为准线,以坐标原点O 为顶点的抛物线截双曲线的左准线得弦AB ,求△OAB 的面积.测试题答案: 1.A 2.D 3.x 2=±8y 4.9)23(22=++y x 525。