相似三角形存在性探究
二次函数的存在性问题(相似三角形的存在性问题)
二次函数的存在性问题(相似三角形)1、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。
(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似若存在,求出P点的坐标;若不存在,说明理由。
,` "A AB BO^x x y yxyF-2,-6A CEPDB5 *1 24 6 G2、设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C.且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.~解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,.∴OA ·OB=OC 2;∴OB=22241OC OA == ∴m=4.3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.·(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得150a b c =-⎧⎪=⎨⎪=⎩故抛物线的函数关系式为25y x x =-+(2)C 在抛物线上,2252,6m m ∴-+⨯=∴= C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上∴6266k b k b '=+⎧⎨'-=+⎩解得3,12k b '=-=∴直线BC 的解析式为312y x =-+设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= (3)存在P ,使得OCD ∽CPE 设P (,)m n ,90ODC E ∠=∠=︒ 故2,6CE m EP n =-=-若要OCD ∽CPE ,则要OD DC CE EP =或OD DC EP CE = 即6226m n =--或6262n m =-- 解得203m n =-或123n m =- 又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)-;4、如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且AO BO ==,AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = .(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-以D N E ,,为顶点的三角形与AOB △是否还有符合条件的E 点(简要说明理由)每一个E 点,直线NE 与直线AB 的交点G 是否总满足】10PB PG <解:(1)1OH =;k =b =(2)设存在实数a ,使抛物线(1)(5)y a x x =+-上有一点E ,满足以D NE ,,为顶点的三角形与等腰直角AOB △相似.∴以D N E ,,为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形.①若DN 为等腰直角三角形的直角边,则ED DN ⊥.由抛物线(1)(5)y a x x =+-得:(10)M -,,(50)N ,.(20)D ∴,,3ED DN ∴==.E ∴的坐标为(23),.把(23)E ,代入抛物线解析式,得13a =-.∴抛物线解析式为1(1)(5)3y x x =-+-.即2145333y x x =-++.②若DN 为等腰直角三角形的斜边,则DE EN ⊥,DE EN =.E ∴的坐标为(3.51.5),.把(3.51.5)E ,代入抛物线解析式,得29a =-. ∴抛物线解析式为2(1)(5)9y x x =-+-,即22810999y x x =-++当13a =-时,在抛物线2145333y x x =-++上存在一点(23)E ,满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E '点,那么只有可能DE N '△是以DN 为斜边的等腰直角三角形,由此得(3.51.5)E ',, 显然E '不在抛物线2145333y x x =-++上,故抛物线2145333y x x =-++上没有符合条件的其他的E 点. {当29a =-时,同理可得抛物线22810999y x x =-++上没有符合条件的其他的E 点. 当E 的坐标为(23),,对应的抛物线解析式为2145333y x x =-++时,EDN △和ABO △都是等腰直角三角形,45GNP PBO ∴∠=∠=又NPG BPO ∠=∠,NPG BPO∴△∽△.PG PNPO PB∴=,2714PB PG PO PN ∴==⨯=,∴总满足10PB PG <.当E 的坐标为(3.51.5),,对应的抛物线解析式为22810999y x x =-++时,同理可证得:2714PB PG PO PN ==⨯=,∴总满足10PB PG <5、如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意可设抛物线的解析式为1)2(2+-=x a y·∵抛物线过原点 ∴01)20(2=+-a ∴41-=a∴抛物线的解析式为1)2(412+--=x y 即x x y +-=241.(2)∵△AOB 与△MOB 同底不等高 又∵S △MOB =3 S △AOB ∴△MOB 的高是△AOB 高的3倍 即点M 的纵坐标是3-∴x x +-=-2413 ∴01242=--x x 解得 61=x ,22-=x∴)36(1-,M )32(2--,M (3)由抛物线的对称性可知:AO =ABABO AOB ∠=∠若△OBN 与△OAB 相似, 必须有BNO BOA BON ∠=∠=∠, 显然 )12('-,A ∴直线ON 的解析式为x y 21-=, 由x x x +-=24121,得01=x ,62=x ∴)36(-,N 过N 作NE ⊥x 轴,垂足为E . 在Rt △BEN 中,BE =2,NE =3,∴133222=+=NB 又OB =4 ∴NB ≠OB ∴∠BON ≠∠BNO ∴△OBN 与△OAB 不相似,同理说明在对称轴左边的抛物线上也不存在符合条件的N 点.故在抛物线上不存在N 点,使得△OBN 与△OAB 相似】6、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M , 使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由;(2)令CMNOCFGH S S m 四边形四边形=,请问m 是否为定值若是,请求出m 的值;若不是,请说明理由;(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似若存在,请求直线KP 与y 轴的交点T 的坐标若不存在,请说明理由。
二次函数中相似三角形存在性
相似三角形的存在性(作业)例:在平面直角坐标系中,二次函数图象的顶点坐标为C(4,),且与x轴的两个交点间的距离为6.(1)求二次函数的解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以Q,A,B为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.第一问:研究背景图形【思路分析】①由顶点坐标C(4,可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A(___,___),B(___,___).②设交点式__________________,再代入坐标__________可求解出解析式__________________.【过程示范】∵顶点坐标为C(4,又∵抛物线与x设抛物线的解析式为将C (4,代入可得,9a =,∴所求解析式为2y x x =. 第二问:整合信息、分析特征、设计方案 【思路分析】相似三角形存在性问题也是在存在性问题的框架下进行的:①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形.②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ =_____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况.③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证.【过程示范】存在点Q 使得△QAB 与△ABC 相似.由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于则AD =3,CD在Rt △ACD 中,tan ∠DAC, ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=6=BE =3, ∴E (10,0),Q 1(10,. 当x =10时,y= ∴点Q 1在抛物线上.②由抛物线的对称性可知,还存在AQ2=AB,此时△Q2AB∽△ACB,点Q2的坐标为(-2,.综上:Q1(10,,Q2(-2,.1.如图,已知抛物线y=x2-1与x轴交于A,B两点,与y轴交于点C,过点A作AP∥CB交抛物线于点P.(1)求A,B,C三点的坐标.(2)在x轴上方的抛物线上是否存在一点M,过点M作MG⊥x轴于点G,使以A,M,G为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+b与x轴交于点A,B,且点A的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B的坐标.(2)过点B作BD∥CA交抛物线于点D,在x轴上点A的左侧是否存在点P,使以P,A,C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)P是抛物线上一动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【参考答案】例题示范: 第一问:① x =4,(1,0),(7,0)② y =a (x -1)(x -7),C (4,,2y x x =+ 第二问:①点A ,B ,C ,点Q ,在x 轴上方的抛物线上,△ABC ,CA =CB ,过点C 作CD ⊥AB 于点D ,30,120,AB ,钝角。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
相似三角形的性质
相似三角形的性质相似三角形是指具有相等的对应角度的三角形。
在几何学中,相似三角形是一种重要的概念,它们具有许多有趣的性质和应用。
本文将探讨相似三角形的性质,帮助读者更好地理解和应用这一概念。
一、比例关系在相似三角形中,对应边之间存在着一种特殊的比例关系。
具体而言,设两个三角形ABC和DEF相似,对应边分别为AB、AC和DE、DF,则有如下比例关系成立:AB / DE = AC / DF = BC / EF这意味着相似三角形的相应边长之间的比值是相等的,这一性质在解决实际问题时非常有用。
通过这种比例关系,我们可以根据已知条件计算未知边长,或者推导出其他有用的结论。
二、面积关系相似三角形的面积也存在一定的关系。
假设有两个相似三角形ABC 和DEF,对应边为AB、AC和DE、DF,则它们之间的面积比为:S(ABC) / S(DEF) = (AB / DE)^2 = (AC / DF)^2 = (BC / EF)^2这一性质说明,相似三角形的面积比等于它们对应边长比的平方。
通过这一关系,我们可以通过已知条件计算出未知三角形的面积,或推导出其他相关的结论。
三、角度关系相似三角形的角度之间存在一一对应的关系。
具体而言,设有两个相似三角形ABC和DEF,对应角为∠A、∠B、∠C和∠D、∠E、∠F,则有如下对应关系:∠A ≌∠D∠B ≌∠E∠C ≌∠F这说明,相似三角形的对应角度是相等的。
通过这一性质,我们可以利用已知角度计算未知角度,或者推导出其他相关的角度关系。
四、全等三角形的特殊情况当两个三角形既相似又相等时,它们就是全等三角形。
全等三角形是相似三角形的一个特殊情况,它们的对应边和对应角全都相等。
在解决实际问题时,有时我们会遇到相等和相似三角形的结合使用。
通过将相似三角形与全等三角形的性质结合起来,我们可以更加灵活地解决问题。
五、实际应用相似三角形的性质在实际应用中有着广泛的用途。
例如,在测量不便的情况下,我们可以利用相似三角形的比例关系求解未知长度;在地图制作中,我们可以利用相似三角形的面积关系来计算地图上的距离和面积;在建筑设计中,我们可以利用相似三角形的角度关系来确定建筑物之间的夹角等等。
相似三角形存在性问题
因动点产生的相似三角形问题例1 2015年市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入kyx=,得k=8.(2)将点B(n, 2),代入8yx=,得n=4.所以点B的坐标为(4, 2).设直线BC为y=x+b,代入点B(4, 2),得b=-2.所以点C的坐标为(0,-2).由A(2, 4) 、B(4, 2) 、C (0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.图2所以S△ABC=12BA BC⋅=122422⨯⨯=8.(3)由A(2, 4) 、D(0, 2) 、C (0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所以△ACE与△ACD相似,分两种情况:①如图3,当CE ADCA AC=时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CE ACCA AD=时,21021022=.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例2 2014年市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“1424”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BP BABQ BC=,那么510848tt=-.解得t=1.②如果BP BCBQ BA=,那么588410tt=-.解得3241t=.图3 图4 (2)作PD⊥BC,垂足为D.在Rt △BPD 中,BP =5t ,cos B =45,所以BD =BP cos B =4t ,PD =3t . 当AQ ⊥CP 时,△ACQ ∽△CDP .所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E .由于H 是PQ 的中点,HF //PD ,所以F 是QD 的中点.又因为BD =CQ =4t ,所以BF =CF .因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.例3 2012年市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“1229”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A与x轴垂直的直线上.满分解答(1)B的坐标为(b, 0),点C的坐标为(0,4b).(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.因此PD=PE.设点P的坐标为(x, x).如图3,联结OP.所以S四边形PCOB=S△PCO+S△PBO=1152428bx b x bx⨯⋅+⨯⋅==2b.解得165x=.所以点P的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444by x b x x x b=-++=--,得A(1, 0),OA=1.①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.当BA QAQA OA=,即2QA BA OA=⋅时,△BQA∽△QOA.所以2()14bb=-.解得843b=±Q为(1,23).②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。
相似三角形存在性问题
例1、(2010·衢州)如图所示,方格纸中每个小正方形的边长为1, △ABC和△DEF的顶点都在方格纸的格点上。 ⑴判断△ABC和△DEF是否相似,并说明理由; ⑵P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个 格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似 (要求写出2个符合条件的三角形,并在图中连结相应的线段,不 必说明理由)。
y E D x A O C B
四、课堂小结
y
A O
B
x
C D
三、坐标系中相似三角形的存在性
练习1:(2010·天门)如图,在平面直角坐标系中,点A、B、C在x 轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经 过B、E、C三点的抛物线交于F、G两点,与其对称轴交于点M,点P 为线段FG上的一个动点(与点F、G不重合),PQ∥y轴与抛物线交 于点Q。 ⑴求经过B、E、C三点的抛物线的解析式。 N y Q ⑵是否存在点P,使得以点P、Q、M为 G E 顶点的三角形与△AOD相似?若存在, M 求出满足条件的点P的坐标;若不存在, P F D 请说明理由。A来自FCD
O
E
B
三、坐标系中相似三角形的存在性
例3、(2010·定西)如图所示,抛物线与x轴交于A(-1,0), B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D。 ⑴求该抛物线的解析式与顶点D的坐标; ⑵以B、C、D为顶点的三角形是直角三角形吗?为什么? ⑶探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与 △BCD相似?若存在,请指出符合条件的点P的位置,并直接写出 点P的坐标;若不存在,请说明理由。
D E
专题06 二次函数中三角形存在性问题(原卷版)--2023 年中考数学压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m 的值;若不存在,请说明理由.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;=S△ABC时,(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC 求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.11。
相似三角形存在性问题
例1如图1,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在线段BC、CD上有动点F、E,点F以每秒2cm的速度,在线段BC上从点B向点C匀速运动;同时点E以每秒1cm的速度,在线段CD上从点C向点D匀速运动.当点F到达点C时,点E同时停止运动.设点F运动的时间为t(秒).
(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒 个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?
例4抛物线L: 经过点A(0,1),与它的对称轴直线x=1交于点B
(1)直接写出抛物线L的解析式;
练习:
1.如图1,在直角坐标系xOy中,设点A(0,t),点Q(t,b).平移二次函数 的图象,得到的抛物线F满足两个条件:①顶点为Q;②与x轴相交于B、C两点(∣OB∣<∣OC∣),连结A,B.
(1)是否存在这样的抛物线Fห้องสมุดไป่ตู้使得 ?请你作出判断,并说明理由;
(2)如果AQ∥BC,且tan∠ABO= ,求抛物线F对应的二次函数的解析式.
5.如图1,已知点A(-2,4)和点B(1,0)都在抛物线 上.
(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
(2)如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线 ,抛物线 与y轴交于点C,过点C作y轴的垂线交抛物线 于另一点D.F为抛物线 的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标
2020年中考数学压轴题专题3 相似三角形的存在性问题学案(原版+解析)
专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF ,②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。
【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2019·贵州中考真题)如图,抛物线212y x bx c =++与直线132y x =+分别相交于A ,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使MB MC-的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ PA⊥交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC∆相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【举一反三】(2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线335y x=+相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,∥PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ∥PM,垂足为点Q,如图2,是否存在点P,使得∥CNQ与∥PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.类型二 【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2019年广东模拟)如图,在矩形OABC 中,AO =10,AB =8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线2y ax bx c =++经过O ,D ,C 三点. (1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动,设运动时间为t 秒,当t 为何值时,以P ,Q ,C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.【举一反三】(2019·湖南模拟)如图,已知直线y =-x +3与x 轴、y 轴分别交于A ,B 两点,抛物线y =-x 2+bx +c 经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,∥APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.类型三 【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2019·江苏中考真题)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似. ①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【举一反三】(2018武汉中考)抛物线L :y =﹣x 2+bx +c 经过点A (0,1),与它的对称轴直线x =1交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y =kx ﹣k +4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.【新题训练】1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C 1:y =﹣1m(x +2)(x ﹣m )(m >0)与x 轴交于点B 、C (点B 在点C 的左侧),与y 轴交于点E .(1)求点B 、点C 的坐标;(2)当△BCE 的面积为6时,若点G 的坐标为(0,b ),在抛物线C 1的对称轴上是否存在点H ,使得△BGH 的周长最小,若存在,则求点H 的坐标(用含b 的式子表示);若不存在,则请说明理由;(3)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.2.(2020·浙江初三期末)边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE DC ⊥,DE DC =.以直线AB 为对称轴的抛物线过C ,E 两点.(1)求抛物线的解析式;(2)点P 从点C 出发,沿射线CB 每秒1个单位长度的速度运动,运动时间为t 秒.过点P 作PF CD ⊥于点F ,当t 为何值时,以点P ,F ,D 为顶点的三角形与COD ∆相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M ,N ,使得以点M ,N ,D ,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y =ax 2﹣2ax +c 的图象经过点C (0,﹣2),顶点D 的坐标为(1,﹣83),与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当△AOC ∽△AEB 时,求点E 的坐标和AEAB的值. (3)点C 关于x 轴的对称点为H 5FC +BF 取最小值时,在抛物线的对称轴上是否存在点Q ,使△QHF 是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由. 4.(2019·贵州初三)如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.5.(2020·河南初三)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A 、D 两点,与y 轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4),已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式;(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度;(3)在(2)的条件下,是否存在这样的点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.6.(2020·浙江初三期末)如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点()0,2P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式 (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标7.(2020·上海初三)如图,在平面直角坐标系xOy 中,抛物线y =13x 2+mx +n 经过点B (6,1),C (5,0),且与y 轴交于点A . (1)求抛物线的表达式及点A 的坐标;(2)点P 是y 轴右侧抛物线上的一点,过点P 作PQ ⊥OA ,交线段OA 的延长线于点Q ,如果∠PAB =45°.求证:△PQA ∽△ACB ;(3)若点F 是线段AB (不包含端点)上的一点,且点F 关于AC 的对称点F ′恰好在上述抛物线上,求FF ′的长.8.(2019·江苏初三期末)如图,抛物线y =ax 2+5ax +c (a <0)与x 轴负半轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是抛物线的顶点,过D 作DH ⊥x 轴于点H ,延长DH 交AC 于点E ,且S △ABD :S △ACB =9:16,(1)求A 、B 两点的坐标;(2)若△DBH 与△BEH 相似,试求抛物线的解析式.9.(2019·湖南中考模拟)如图,顶点坐标为(2,﹣1)的抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,3),与x 轴交于A 、B 两点. (1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连接AC 、AD ,求△ACD 的面积;(3)点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F .问是否存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似?若存在,求点E 的坐标;若不存在,请说明理由.10.(2019·西安市铁一中学中考模拟)如图,抛物线2(0)y ax bx c a =++≠的顶点坐标为(2,1)-,并且与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO V 相似.若存在,求出点E 的坐标;若不存在,请说明理由.11.(2019·广东中考模拟)如图,在平面直角坐标系xoy 中,直线122y x =+与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c 的对称轴是32x =-且经过A 、C 两点,与x 轴的另一交点为点B .(1)①直接写出点B 的坐标;②求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.12.(2019·江苏泗洪姜堰实验学校中考模拟)如图,抛物线2481293y x x =--与x 轴交于A 、C 两点,与y 轴交于B 点. (1)求△AOB 的外接圆的面积;(2)若动点P 从点A 出发,以每秒2个单位沿射线AC 方向运动;同时,点Q 从点B 出发,以每秒1个单位沿射线BA 方向运动,当点P 到达点C 处时,两点同时停止运动.问当t 为何值时,以A 、P 、Q 为顶点的三角形与△OAB 相似?(3)若M 为线段AB 上一个动点,过点M 作MN 平行于y 轴交抛物线于点N . ①是否存在这样的点M ,使得四边形OMNB 恰为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.②当点M 运动到何处时,四边形CBNA 的面积最大?求出此时点M 的坐标及四边形CBAN 面积的最大值.13.(2019·陕西中考真题)在平面直角坐标系中,已知抛物线L :()2y ax c a x c =+-+经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L '. (1)求抛物线L 的表达式;(2)点P 在抛物线L '上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似,求符合条件的点P 的坐标.14.(2019·湖南中考真题)如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.15.(2018·四川中考真题)如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0). (1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.16.(2019·湖南中考真题)如图1,△AOB 的三个顶点A 、O 、B 分别落在抛物线F 1:21733y x x =+的图象上,点A 的横坐标为﹣4,点B 的纵坐标为﹣2.(点A 在点B 的左侧) (1)求点A 、B 的坐标;(2)将△AOB 绕点O 逆时针旋转90°得到△A 'OB ',抛物线F 2:24y ax bx =++经过A '、B '两点,已知点M 为抛物线F 2的对称轴上一定点,且点A '恰好在以OM 为直径的圆上,连接OM 、A 'M ,求△OA 'M 的面积;(3)如图2,延长OB '交抛物线F 2于点C ,连接A 'C ,在坐标轴上是否存在点D ,使得以A 、O 、D 为顶点的三角形与△OA 'C 相似.若存在,请求出点D 的坐标;若不存在,请说明理由.专题三相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
学生-相似三角形的存在性问题解题策略
相似三角形的存在性问题解题策略专题攻略相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6.应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析例❶ 如图1-1,抛物线213482y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由.图1-1例❷如图2-1,在平面直角坐标系中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=BO=2,∠AOB=120°.(1)求这条抛物线的解析式;(2)连结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.图2-1例❸如图3-1,抛物线y=ax2+bx-3与x轴交于A(1, 0)、B(3, 0)两点,与y轴交于点D,顶点为C.(1)求此抛物线的解析式;(2)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N 为顶点的三角形与△BCD相似?若存在,求出点M的坐标;若不存在,请说明理由.图3-1例❹如图4-1,在平面直角坐标系中,A(8,0),B(0,6),点C在x轴上,BC平分∠OBA.点P在直线AB上,直线CP与y轴交于点F,如果△ACP与△BPF相似,求直线CP的解析式.图4-1例❺如图5-1,二次函数y=x2+3x的图象经过点A(1,a),线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0, 2),直线AC交抛物线于点B,连结OA、OB、OD、BD.求坐标平面内使△EOD∽△AOB的点E的坐标;图5-1例❻如图6-1,在△ABC中,AB=AC=BC=8.⊙A的半径为2,动点P从点B出发沿BC方向以每秒1个单位的速度向点C运动.延长BA交⊙A于点D,连结AP交⊙A于点E,连结DE并延长交BC于点F.设点P运动的时间为t秒,当△ABP与△FBD 相似时,求t的值.图6-1因动点产生的相似三角形问题课前导学相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验.如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边表示出来,按照对应边成比例,分AB DEAC DF=和AB DFAC DE=两种情况列方程.应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题.求线段的长,要用到两点间的距离公式,而这个公式容易记错.理解记忆比较好.如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了.水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减.图1例 1 2014年湖南省衡阳市中考第28题二次函数y=a x2+b x+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?图1 图22014年湖南省益阳市中考第21题如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P 沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y(1)求AD的长;(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.例3 2015年湖南省湘西市中考第26题如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c 经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B结PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1。
相似三角形存在性问题(含解析)
相像存在性问题1.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c 与 x 轴交于 A、 D 两点,与 y 轴交于点B,四边形OBCD是矩形,点 A 的坐标为( 1,0),点 B 的坐标为( 0,4),已知点 E( m, 0)是线段 DO上的动点,过点 E 作 PE⊥ x 轴交抛物线于点 P,交 BC于点 G,交 BD于点 H.( 1)求该抛物线的分析式;( 2)当点 P 在直线 BC上方时,请用含 m的代数式表示 PG的长度;( 3)在( 2)的条件下,能否存在这样的点 P,使得以 P、B、G为极点的三角形与△ DEH相像?若存在,求出此时 m的值;若不存在,请说明原因.2.如图,在平面直角坐标系xoy中,抛物线25C xy ax x c过点A(,)和(,),(,)是轴正0 48 0 P t0690°得线段 PB.过点 B作x轴的垂线、过点半轴上的一个动点, M是线段 AP 的中点,将线段MP绕点 P 顺时针旋转A 作y轴的垂线,两直线订交于点D.( 1)求此抛物线的对称轴;( 2)当t为什么值时,点 D落在抛物线上?( 3)能否存在t,使得以 A、B、D 为极点的三角形与△PEB相像?若存在,求此时t 的值;若不存在,请说明原因.333.如图,过点 A ( 0, 3)的直线 l 1 与 x 轴交于点 B , tan ∠ ABO=4.过点 A 的另向来线 l 2: y =-4 tx + b (t >0)与 x 轴交于点 Q ,点 P 是射线 AB 上的一个动点, 过 P 作 PH ⊥ x 轴于点 H ,设 PB = 5t .( 1)求直线 l 1 的函数分析式;( 2)当点 P 在线段 AB 上运动时,设△ PHQ 的面积为 S ( S ≠ 0),求 S 与 t 之间的函数关系式(要求写出自变量t 的取值范围);(3)当点 P 在射线 AB上运动时,能否存在这样的 t 值,使以 P, H,Q为极点的三角形与△ AOQ相像?若存在,直接写出全部知足条件的 t 值所对应的 P 点坐标;若不存在,请说明原因.4.如图,点 A 是x 轴正半轴上的动点,点 B 的坐标为(0, 4),将线段AB 的中点绕点 A 按顺时针方向旋转90°得点 C,过点 C 作 x 轴的垂线,垂足为F,过点 B 作 y 点,连结AC、 BC、 CD,设点 A 的横坐标为t .轴的垂线与直线CF 订交于点E,点D是点A 对于直线CF的对称( 1)线段AB与AC的数目关系是,地点关系是.(2)当 t=2 时,求 CF 的长;(3)当 t 为什么值时,点 C 落在线段 BD上?求出此时点 C的坐标;(4)设△ BCE的面积为 S,求 S与 t 之间的函数关系式.5.如图,抛物线y=-1x2+3x- 2 交 x 轴于 A, B 两点(点 A 在点 B 的左边),交 y 轴于点 C,分别过点B, C 作 y 42轴, x轴的平行线,两平行线交于点D,将△BDC绕点C 逆时针旋转,使点D旋转到y 轴上获得△FEC,连结BF.(1)求点 B, C所在直线的函数分析式;( 2)求△ BCF的面积;(3)在线段 BC上能否存在点 P,使得以点 P,A, B 为极点的三角形与△ BOC相像?若存在,求出点 P 的坐标;若不存在,请说明原因.。
相似三角形的存在性(讲义及答案)
相似三角形的存在性➢ 知识点睛1. 存在性问题的处理思路①分析不变特征分析背景图形中的定点,定线,定角等不变特征. ②分类、的图形.,画出符合题意 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2. 相似三角形的存在性不变特征及特征下操作要点举例:一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形, 再借助不变特征和对应边成比例列方程求解. 常见特征如一组角对应相等,这一组相等角顶点为确定对应 点,结合对应关系分类后,作出符合题意图形,一般利用对 应边成比例列方程求解 .结合图形形成因素(判定,定义等)考虑分类 画图MM➢ 精讲精练1.如图,将长为 8 cm ,宽为 5 cm 的矩形纸片 ABCD 折叠,使点 B 落在 CD 边的点 E 处,压平后得到折痕 MN ,点 A 的对称点为点 F ,CE =4 cm .若点 G 是矩形边上任意一点,则当 △ABG 与△CEN 相似时,线段 AG 的长为.FFADA D EEBNCBNC2.如图,抛物线 y = - 1 x 2 + 10x - 8 经过 A ,B ,C 三点,3 3BC ⊥OB ,AB =BC ,过点 C 作 CD ⊥x 轴于点 D .点 M 是直线 AB 上方的抛物线上一动点,作 MN ⊥x 轴于点 N ,若 △AMN 与△ACD 相似,则点 M 的坐标为.3.如图,已知抛物线 y = 3x 2 + bx + c 与坐标轴交于 A ,B ,C 三4点,点 A 的坐标为(-1,0),过点 C 的直线 y = 34tx - 3 与 x 轴交于点 Q ,点 P 是线段 BC 上的一个动点,过 P 作 PH ⊥OB于点 H .若 PB =5t ,且 0<t <1.(1) 点 C 的坐标是,b = ,c = .(2) 求线段 QH 的长(用含 t 的代数式表示).(3) 依点 P 的变化,是否存在 t 的值,使以 P ,H ,Q 为顶点的三角形与△COQ 相似?若存在,求出所有符合条件的 t 值;若不存在,说明理由.yCA OB xEyCA OB xEyCA OB xEyCA OB xE4.如图,抛物线y =-1x2 +3x + 2 与x 轴交于A,B 两点,与2 2y 轴交于点C,点D(1,m)在抛物线上,直线y=-x-1 与抛物线交于A,E 两点,点P 在x 轴上,且位于点B 的左侧,若以P,B,D 为顶点的三角形与△ABE 相似,则点P 的坐标为.5. 如图,已知抛物线过点 A (0,6),B (2,0),C (7, 5).2(1) 求抛物线的解析式.(2) 若 D 是抛物线的顶点,E 是抛物线的对称轴与直线 AC的交点,F 与 E 关于 D 对称.求证:∠CFE =∠AFE .(3) 在 y 轴上是否存在这样的点 P ,使△AFP 与△FDC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在, 请说明理由.6.如图,抛物线y=ax2+bx 经过两点A(-1,1),B(2,2).过点B作BC∥x 轴,交抛物线于点C,交y 轴于点D.连接OA,OB,OC,AC,点N 在坐标平面内,且△AOC 与△OBN 相似(边OA与边OB对应),则点N 的坐标为.yE C BFO AxD yE C BD 1 FO AxD7.如图 1,在平面直角坐标系中,抛物线 y =3 x 2 + 3 3 x - 7 38 4 8与 x 轴交于点 A ,B (点 A 在点 B 右侧),点 D 为抛物线的顶点.点 C 在 y 轴的正半轴上,CD 交 x 轴于点 F ,△CAD 绕点 C 顺时针旋转得到△CFE ,点 A 恰好旋转到点 F ,连接 BE .(1) 求点 A ,B ,D 的坐标.(2) 求证:四边形 BFCE 是平行四边形.(3) 如图 2,过顶点 D 作 DD 1⊥x 轴于点 D 1,点 P 是抛物线上一动点,过点 P 作 PM ⊥x 轴,点 M 为垂足,使得△P AM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点 P 的横坐标; ②直.接.回.答.这样的点 P 共有几个?图1图2⎨【参考答案】1. 15 , 20 , 25 或 25 4 3 4 32. M 1( 5 , - 7 ),M 2( 11 , 1 )2 4 2 43.(1)(0,-3); - 9;-3;4⎧4 - 8t (0 < t ≤1 ) (2) QH = ⎪ 2; 1⎪8t - 4(⎪⎩ 2< t < 1)(3)符合条件的 t 值有 732 4. P 1( 13 ,0),P 2( - 22,0)或 25 或 32-1.7 55.(1)抛物线的解析式为 y = 1x 2 - 4x + 6 ;2(2)证明略;(3)符合条件的点 P 的坐标为(0,-2)或(0,-41 ). 26. (3,4),(4,3),(-2,-1)或(-1,-2)7. (1)A (1,0);B (-7,0);D (-3, -2 3 );(2)证明略;(3)①点 P 的横坐标分别为-11,-5 - 37;②共 3 个. 3 32。
初中数学九年级下册苏科版6.4探索三角形相似的条件优秀教学案例
4.根据评价结果,教师及时调整教学策略,以满足学生的个性化需求,提高教学效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的已有知识,通过以下步骤激发他们对相似三角形的学习兴趣:
1.复习旧知:简要回顾上一节课所学的三角形知识,如三角形的分类、性质等,为新课的学习做好铺垫。
1.定义讲解:明确相似三角形的定义,即对应角相等、对应边成比例的两个三角形为相似三角形。
2.判定条件:详细讲解相似三角形的判定条件,包括对应角相等、对应边成比例和AAA相似定理。
3.实例演示:通过具体实例,演示如何运用相似三角形的判定条件解决实际问题,如求线段长度、证明线段平行等。
4.互动提问:在讲解过程中,适时向学生提问,了解他们对相似三角形判定条件的理解和掌握情况。
二、教学目标
(一)知识与技能
1.理解并掌握相似三角形的定义及判定条件,包括对应角相等、对应边成比例和AAA相似定理。
2.学会运用相似三角形的性质解决实际问题,如求线段长度、证明线段平行等。
3.培养学生运用几何画板、尺规作图等工具绘制相似三角形的能力,提高他们的动手操作能力。
4.提高学生分析问题、解决问题的能力,使他们能够将相似三角形的性质运用到其他数学领域,如平面几何、立体几何等。
此外,利用多媒体教学手段,如几何画板、PPT等,展示丰富的图片和动画,让学生在视觉上感受相似三角形的魅力。情景创设旨在让学生在实践中学习,提高他们对数学知识的认同感和应用意识。
(二)问题导向
以问题为导向的教学方法,有助于激发学生的求知欲和思考能力。在本章节的教学中,我将设计一系列具有启发性和挑战性的问题,引导学生自主探究相似三角形的性质。
第4讲相似三角形存在性问题处理策略
第四讲相似三角形存在性问题知识必备一、相似的判定1、两边成比例且夹角相等的两个三角形相似,简称为”SAS”2、两角分别相等的个三角形相似,简称为“AA二、相似与∽1、一般地,若△ABC 与△DEF相似,,则不具备对应关系,需分类求解2、若△ABC ∽△DE,,则具备对应关系三、定边与定角1、定边与定长:确定的边、其长度确定,必可求;2、定角定比:确定的角、其三角函数值确定,必可求。
方法提炼一、导边处理(“AA”法)相似三角形存在性问题、基本上都可以按部就班,如下解决:第一步:先找到一组关键的等角,有时明显,有时隐蔽;第二步:以这两个相等角的两邻边分两种情形对应成比例列方程此法为通法。
如图4-2-1、在△ABC 和△DEF 中,若已确定∠A=∠D,则要使△ABC 与△DEF 相似,需要分两种情形讨论:AB/AC=DE/DF或AB/AC=DF/DE,再依次列方程求解二、导角处理(“AA法)第一步先找到一组关键的等角第二步:另两个内角分两类对应相等。
不称此通法为”AA法举例:如图4-2-1,在△ABC 和△DEF 中,若已确定∠A=∠D,要使△ABC 与△DEF 相似,需要分两种情形讨论:∠B=∠E 或∠B=∠F,再导角分析处理。
三温馨提示1.解法一(“SAS法),通用性更强,普适性更广,往往是首选。
2.解法二(“AA法),导角分析,常转化为角的存在性问题。
举例(一)显性的相等角例1、在四边形ABCD中,AD//BC,∠B=90°,AB=8,AD=3,BC=4,点P为AB边上的一动点,若△PAD与△PBC相似,则满足条件的点P共有()个A.1B. 2C. 3D.4(二)隐形的相等角例2、已知二次函数的图像经过A(-2,0),B(-3,3)及原点,顶点为C。
(1)求此二次函数的解析式;(2)连接BC,交x轴于点F,y轴上是否存在点P,使得△POC与△BOF相似?若存在,求出点P的坐标;若不存在,请说明理由。
探讨直角三角形中的相似性
探讨直角三角形中的相似性直角三角形是一种特殊的三角形,其中一个角度为90度。
在直角三角形中,我们可以探讨相似性,即两个直角三角形的相似性质。
本文将探讨直角三角形中的相似性,并展示相关的定理和应用。
一、相似三角形的定义相似三角形是指对应角度相等、对应边长成比例的三角形。
在直角三角形中,如果两个直角三角形的对应角度相等,则可以推断两个直角三角形是相似的。
二、勾股定理的推论勾股定理是直角三角形中经典的定理,它表明直角三角形的两个边长和斜边之间存在特殊的关系。
根据勾股定理,我们可以推导出直角三角形中的相似性质。
勾股定理的表达式为:a² + b² = c²,其中a和b表示直角三角形的两个直角边,c表示斜边。
推论1:等腰直角三角形的相似性等腰直角三角形是指直角三角形的两个直角边相等的情况。
根据勾股定理的推论,我们可以得出等腰直角三角形的相似性质。
例如,假设有直角三角形ABC,其中∠ACB = 90°,AC = BC,根据勾股定理可得:AC² + BC² = AB²。
由于AC = BC,所以可以简化为:2AC² = AB²,进一步推导可以得出:2 = AB/AC。
从上述推导可以看出,等腰直角三角形的斜边与直角边的比值为根号2。
这意味着,一旦我们知道了等腰直角三角形的一个边长,就可以计算出其他边长,因为它们之间存在特定的比例关系。
推论2:相似直角三角形的比例关系根据勾股定理的推论,我们可以进一步探讨相似直角三角形的比例关系。
假设有两个直角三角形ABC和DEF,满足∠A = ∠D、∠B = ∠E 和∠C = ∠F。
根据相似三角形的定义,我们可以得出:AB/DE =AC/DF = BC/EF。
这说明,两个相似直角三角形中,对应边长之间的比例关系是相等的。
如果我们知道了一个直角三角形的两个边长,可以利用比例关系来计算另一个直角三角形的对应边长。
第4节探索三角形相似的条件(教案)
在今天的教学中,我引导学生们探索了三角形相似的条件,我们一起学习了AA、SAS、SSS这三种判定方法,并探讨了相似三角形的性质和应用。课后,我对整个教学过程进行了反思,有以下几点感悟。
首先,我觉得在导入新课环节,通过提问的方式激发学生的兴趣和好奇心是有效的。学生们在回答问题的过程中,能够自然而然地联系到日常生活,Hale Waihona Puke 有助于他们更好地理解抽象的几何概念。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形相似的基本概念、判定方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对三角形相似的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调AA、SAS、SSS这三种相似判定方法和相似三角形的性质。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相似相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的性质和判定方法的基本原理。
-举例:一块三角形土地,已知底边长和对应高,求该三角形土地的面积。
(3)几何证明中的逻辑推理。
-难点解析:学生在几何证明过程中,往往缺乏严密的逻辑推理能力,容易漏掉关键步骤或逻辑错误。
-举例:证明相似三角形中,对应角平分线相等。
在教学过程中,针对重点和难点内容,教师应进行有针对性的讲解和练习,确保学生能够透彻理解和掌握本节课的核心知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形存在性探究-CAL-FENGHAI.-(YICAI)-Company One1
相似三角形存在性探究
如图,点D 在△ABC 的边上.
(1)要判断△ADB 与△ABC 相似,
添加一个条件是
(2)要判断△ADB 与△ABC 相似,AB =4、AD =2. 则AC =
(3)通过(1)(2)的解答,你能说出相似三角形哪些知识
例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。
在AC 边上是否存在点F ,使得△AEF 和△ABC 相似若存在,求出AF 的长。
变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s ,
点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得△AEF 和△ABC 相似若存在,试求出t 的值,若不存在,请说明理由。
C A
D B C
E F
B E
F
例2如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1)请问
在x轴上是否存在点Q,使以P,B,Q为顶点的三角形与△ABC相似若存在,求出点Q的坐标,若不存在,请说明理由。
变式如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1) (1)求过A、B、C三点的抛物线解析式
(2)请问在x轴下方的抛物线上是否存在点M,过M作
MN⊥x轴于点N,使以
A,M,N为顶点的三角形与△BCP相似若存在,求出点M的坐标,若不存在,请说明理由。
做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似若存在试求出t 的值,若不存在,请说明理由。
42
3812+-=x x y。