第2讲圆、扇形的面积与周长(二)

合集下载

学而思培优之圆和扇形的周长与面积(二)

学而思培优之圆和扇形的周长与面积(二)

3
差不变——化不规则为规则
【例4】(★★★) ( ) 如图,两个正方形摆放在一起,其中大正方形 边长为12,那么阴影部分面积是多少?(圆周率取 3.14) D A E
B
C
F
等积变形——化不可求为可求
【例5】(★★★★) 【例 】( ) 如图,矩形ABCD中,AB= 6厘米,BC= 4厘米,扇形ABE 半径AE =6 厘米,扇形CBF 的半径CB= 4厘米,求阴影部分的面积。(π 取3)
圆和扇形的周长与面积(二)
加油站
圆的周长
弓形: 弓形 弓形一般不要求周长 般不要求周长,主要求面积。 主要求面积。 弓形面积=扇形面积-三角形面积。
C=πd 或 C=2πr
圆的面积
“弯角”:弯角的面积=正方形 弯角 :弯角的面积=正方形-扇形 扇形
S=πr2 扇形的弧长 C=2 r
n 360
“谷子”: “谷子”的面积=弓形面积×2
整体考虑——柳暗花明 【例6】(★★★) (1)如图,求阴影部分的面积。( π取3)
北大附中“资优博雅杯”数学竞赛) (2)如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以 大正方形各边的一半为直径向外做半圆,再分别以阴影正方形的各边 为直径向外作半圆,形成8个“月牙形”。这8个“月牙形”的总面积 为32平方厘米 问大正方形EFGH的面积是多少? 为32平方厘米,问大正方形 A E H C F B G D
从简单情况入手 从特殊到一般 【例7】(★★★★★) 传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有 10平方米。每当太阳西下,钟面就会出现奇妙的阴影(如下图)。那么, 阴影部分的面积是多少平方米? 12 1 11 2 10
9 8 7 6 5 4

苏科版数学九年级上册2.1圆(第2课时)说课稿

苏科版数学九年级上册2.1圆(第2课时)说课稿

苏科版数学九年级上册2.1 圆(第2课时)说课稿一. 教材分析苏科版数学九年级上册第2.1节“圆”是整个初中数学的重要内容,也是九年级上学期的重点和难点。

本节课主要介绍圆的定义、圆的性质、以及圆与直线、圆与圆的位置关系。

通过本节课的学习,使学生掌握圆的基本概念和性质,能够解决一些与圆有关的问题,为后续学习圆的方程、圆的切线、圆的弧长和面积等知识打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,如平面几何中点、线、面的基本性质,对图形的认知和观察能力也有一定的提高。

但同时,圆的知识比较抽象,学生需要较强的空间想象能力和逻辑思维能力。

因此,在教学过程中,要充分考虑学生的认知水平,注重启发引导,让学生在原有的知识基础上更好地理解和掌握圆的知识。

三. 说教学目标1.知识与技能目标:理解圆的定义和性质,掌握圆与直线、圆与圆的位置关系,会使用圆的性质解决一些实际问题。

2.过程与方法目标:通过观察、思考、讨论,培养学生的空间想象能力和逻辑思维能力,提高学生解决几何问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:圆的定义、圆的性质、圆与直线、圆与圆的位置关系。

2.教学难点:圆的性质的推导和证明,圆与直线、圆与圆的位置关系的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究,培养学生的独立思考能力和团队合作精神。

2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示圆的性质和位置关系,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入新课:通过展示生活中的圆形物体,如硬币、圆桌等,引导学生思考圆的特点,引出圆的定义和性质。

2.自主学习:让学生通过阅读教材,了解圆的定义和性质,尝试解答相关问题。

3.合作交流:分组讨论圆与直线、圆与圆的位置关系,分享各自的学习心得和解题方法。

爱提分圆和扇形的周长及面积公式(五年级)

爱提分圆和扇形的周长及面积公式(五年级)

一:周长与面积公式知识精讲在同一平面内,到定点的距离等于定长的点的集合叫做圆.点O就称为该圆的圆心;圆心与圆周上任意一点的连线(例如线段OA)叫做半径;通过圆心,并且两端都在圆上的线段叫做直径.直径长恰好是半径长的两倍.圆心确定了圆所在的位置,半径长度确定了圆的大小.一个圆只要确定了“圆心”和“半径”,就能完全确定下来.圆周长与直径的比值是一个固定不变的数,我们称之为圆周率,用希腊字母表示.圆周率是一个无限不循环小数,无法写成分数的形式.在实际问题的计算中,常常取近似值.一.圆的周长与面积公式1.直径长度通常用字母d表示,半径长度通常用r表示,圆周长通常用C 表示,圆面积通常用字母S表示.2.圆周长公式:蜜蜂飞行:无论小圆有多少个,大小是否相等,只要所有小圆的直径之和等于大圆的直径,那么它们的周长之和也等于大圆的周长.3.圆面积公式:二.扇形的周长与面积公式扇形是指圆上被两条半径和半径之间的弧所包围的部分.其中,圆的半径也称为扇形的半径,而两条半径所成的夹角称为扇形的圆心角.扇形是圆的一部分.要想知道扇形的弧长与面积,只要知道它是所在圆的几分之几就可以了.它是圆的几分之几,它的弧长就是圆周长的几分之几,它的面积也同样就是圆面积的几分之几.1.扇形弧长公式:2.扇形面积公式:3.温馨提示:扇形的弧长不是它的周长,扇形的周长还必须加上两条半径.三点剖析题模精讲题模一圆的周长与面积公式已知一个圆的直径为2厘米,那么这个圆的周长为_________厘米,面积为_________平方厘米.;周长为厘米,面积为平方厘米.已知一个圆的周长为厘米,那么这个圆的直径为_________厘米.16直径为厘米.有一个圆形花坛,直径为20米,一只小蜜蜂沿着花坛外周飞了一圈,请问它飞了多少米如果小蜜蜂沿着图中的虚线,飞一个“8”字,路线构成过花坛圆心的两个小圆,那么这次它飞了多少米(取)(1)米(2)米小圆半径是5米,飞行路线为两个小圆周长,所以是米.无论小圆有多少个,大小是否相等,只要所有小圆的直径之和等于大圆,那么它们的周长之和也等于大圆.如图,已知长方形的面积是12,则图中阴影部分的面积是多少(取)长方形可以分成两个面积相等的正方形,面积都是6.方中圆,方和圆的面积比为,可求出小圆的面积是,那么阴影部分的面积是.如图,在一块面积为平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米(取)平方厘米,大圆半径是3厘米.小圆半径是1厘米,所以边角料面积为平方厘米.已知大圆的直径为10厘米,有四个大小不等的圆,圆心都在大圆的一条直径上,并且它们的直径之和与大圆相等.那么4个小圆的周长之和是________厘米.(取)假设中间4个小圆的直径分别为a、b、c、d,则有,4个小圆的周长之和为厘米.如图,直角三角形的面积是40平方厘米,圆的面积是________平方厘米(π取3).240直角三角形的直角边即为圆的半径,所以,,圆的面积是平方厘米.题模二扇形的周长与面积公式如图3,圆P的直径OA是圆O的半径,,,则阴影部分的面积是__________.(π取3)75阴影部分的面积等于大圆面积的一半减去小圆的面积,即.一个扇形的半径为6平方厘米,圆心角为60°,这个扇形的周长是__________厘米.(取)这个扇形是它所在圆的,所以这个扇形的弧长是cm,扇形的周长是厘米.一个扇形的面积为平方厘米,圆心角为45°,这个扇形的周长是_______厘米.(取)这个扇形是它所在圆的,所以这个圆的半径的平方是,所以这个圆的半径是4厘米,所以扇形的半径是4厘米,扇形的周长是厘米.πm鞋匠刀形的周长是由3条半圆形弧线组成,所以周长为m.如图,等边三角形ABC的边长是1,依次以A、C、B为圆心,以BA、CD、BE为半径画扇形,那么三个扇形的面积和是多少(结果保留π)各扇形圆心角均为,半径分别为1、2、3,因此三个扇形的面积和是.一个半径为3分米的扇形,面积为平方分米,那么它的圆心角是__________,它的弧长又是__________分米.80°,根据题意得,,所以,所以圆心角是度.弧长为.如图,边长为3cm与5cm的两个正方形并排放在一起,在大正方形中画一个以它的顶点B为圆心,边长为半径的圆弧,则阴影部分的面积是________(结果保留π).连结AC、FB.易知,故,.如图,有三个同心半圆,它们的直径分别为2,6,10,用线段分割成9块,如果每块字母代表这一块的面积并且相同的字母代表相同的面积,那么(A+B):C =_______55:48设A的半径为,B的半径为,C的半径为A的面积:B的面积:3B=,.C的面积:5C=,..题模三捆圆的周长和面积已知下图中的每个小圆的半径均为1,这个图形的面积是__________.(取)如图,对图形进行分割后可知这个图形的面积相当于8个边长为2的正方形和一个半径为1的圆的面积的和.面积为.如图,有8个半径为1的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.那么花瓣图形的周长和面积分别是多少周长,面积如图,做辅助线后可以看出周长为4个的圆弧加上4个半圆弧,所以周长为;而面积为正方形减去4个半圆加上4个圆,即.如图,每个圆的面积都为,求该图形的外周长.圆半径为2.图形外周长可以分为三段长为4的线段和三段120°角的圆弧,则外周长为.如图,有七根直径为5厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米如图,作辅助线后可以发现外周长是由6段长度为5的线段和6个60°角的圆弧组成,所以皮筋长度为.随堂练习已知一个圆的直径是12厘米,那么这个圆的面积为__________平方厘米(取)直径为12厘米,那么半径为6厘米,面积是平方厘米.已知一个圆的面积为314平方厘米,那么这个圆的直径为_______厘米(取)20这个圆的半径为平方是,所以这个圆的半径是10厘米,直径是20厘米.半径分别为1、2、3、4厘米的四个圆的周长之和是多少厘米(取)厘米圆的周长公式为,周长之和为厘米.如图,在一块面积为平方厘米的纸板中,裁出了2个同样大小的圆纸板.问:余下的纸板的总面积是多少平方厘米(取)平方厘米大圆的面积是平方厘米,可求出大圆的半径是2厘米,那么小圆的半径是1厘米,面积是平方厘米.阴影部分的面积是平方厘米.已知三个小圆的圆心在大圆同一直径上,周长分别为3、1、2厘米,则大圆周长为多少厘米(π取近似值)6大圆的直径等于三个小圆的直径之和,周长也恰为3个小圆周长之和.如图,边长为3cm与5cm的两个正方形并排放在一起,在大正方形中画一个以它的顶点B为圆心,边长为半径的圆弧,则阴影部分的面积是__________(结果保留π).阴影部分面积为梯形ABFE与扇形ABC的面积之和减去三角形FEC的面积,易得为.已知一个扇形的半径是10厘米,圆心角是,那么:(1)这个扇形所在圆的周长是_________厘米,扇形的圆心角占圆周角的_________,它的弧长占圆周长的_________,这个扇形的弧长是_________厘米,周长是_________厘米.(2)这个扇形面积占它所在圆的面积的_________,是_________平方厘米.(1);;;;(2);(1)这个扇形所在圆的周长是厘米,扇形的圆心角占圆周角的,它的弧长占圆周长的,这个扇形的弧长是厘米,周长是.(2)这个扇形面积占它所在圆的面积的,面积是平方厘米.5为,为,所以是的5倍.根据图中所给的数值,求这个图形的面积.(π取近似值)平方厘米.4个直角扇形的面积之和是4,因此整个圆角矩形的面积就是.如图,有七根直径为4厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米(π取近似值)把圆角六边形的周长分为12个部分,由6条直线段和6段圆弧组成.6条直线段中,每段的长度都是5厘米,它们的长度和是厘米6段圆弧中,每段所对应的圆心角都是60°,每段的弧长都是圆周长的,6段圆弧恰好能拼成一个完整的圆周.它们的弧长之和就是圆周长,即厘米.圆角六边形的周长就是这两部分长度之和,即厘米.课后作业已知圆的直径为20米,那这个圆的周长为多少米(π取近似值)圆周长的计算公式为:C=π×D.把两根横截面半径都是10厘米的钢管用铁丝紧紧捆在一起,如果捆绑处不计,至少要用铁丝____________厘米.厘米.一辆压路机的前轮是圆柱形,轮宽米,直径是米.前轮转动一周,压路的面积是______平方米.平方米轮子压一周,周长为米,即压在路面上的长是米,压路的面积=长×宽平方米.已知圆的面积是314平方米,那圆的周长是多少米(π取近似值)由圆的面积可以求出半径的平方,算出半径后可由公式计算圆的周长,为.已知三个小圆的圆心在大圆同一直径上,周长分别为1、2、3厘米,则大圆周长为多少厘米(π取近似值)6大圆的直径等于三个小圆的直径之和,周长也恰为3个小圆周长之和.如图,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米8平方厘米小圆的半径是整个大圆半径的,因此小圆的面积是大圆面积的,为平方厘米;大圆去掉7个小圆后剩下的面积是平方厘米.已知一个扇形的圆心角为120°,半径为2,这个扇形的面积是________,周长是________(π取).面积,周长扇形的面积;周长.如图,求各图中阴影部分的面积.(取)阴影部分面积为半径为4的半圆面积减去对角线为8的等腰直角三角形面积.阴影部分面积为.已知扇形的半径为3米,面积为米,那扇形的圆心角为多少度(π取近似值)180扇形所在圆的面积≈×3=平方米,由此可知该扇形是它所在圆的.那么圆心角应该是360°的二分之一.已知一个扇形的半径为5厘米,弧长为厘米,这个扇形的面积是多少因为扇形的弧长为厘米,所以,可得.扇形面积为平方厘米.根据图中所给的数值,求这个图形的面积.(π取近似值)平方厘米.4个直角扇形的面积之和是,因此整个圆角矩形的面积就是.如图,三个圆的半径都是4,那整个图形的外周长是多少(π取近似值)整个外周长可以分为3段直线和3段弧形.如图,有七根直径为10厘米的塑料管,用一根橡皮筋把它们扎成一捆,此时橡皮筋的长度是多少厘米(π取近似值)把圆角六边形的周长分为12个部分,由6条直线段和6段圆弧组成.6条直线段中,每段的长度都是5厘米,它们的长度和是厘米6段圆弧中,每段所对应的圆心角都是60°,每段的弧长都是圆周长的,6段圆弧恰好能拼成一个完整的圆周.它们的弧长之和就是圆周长,即厘米.圆角六边形的周长就是这两部分长度之和,即厘米.。

圆和扇形的周长与面积(二)

圆和扇形的周长与面积(二)

60 A B
(2008 年北大附中“资优博雅杯”数学竞赛) 如图,阴影正方形的顶点分别是大正方形 EFGH 各边的中点,分别以大 正方形各边的一半为直径向外做半圆, 再分别以阴影正方形的各边为直径 向外作半圆, 再分别以阴影正方形的各边为直径向外作半圆, 形成 8 个“月 牙形”。这 8 个“月牙形”的总面积为 32 平方厘米,问大正方形 EFGH 的 面积是多少平方厘米?
1.圆的周长与面积 2.扇形的周长与面积 3.常用的数学思想 常用的思想: 转化思想 等积变形 借来还去 容斥 外围入手
2 Leabharlann 乙 B45°CO
C
B
1
如图是一个直径为 3cm 的半圆,让这个半圆以 A 点为轴沿逆时针方向旋 转 60°,此时 B 点移动到 B'点,求阴影部分的面积。(图中长度单位为 cm,圆周率按 3 计算)。
B'
(2008 年北大附中“资优博雅杯”数学竞赛) 如下图,在以 AB 为直径的半圆上取一点,分别以 AC 和 BC 为直径在 △ABC 外作半圆 AEC 和 BFC。 已知 AC 的长度为 4, BC 的长度为 3, AB 的长度为 5。试求阴影部分的面积。
圆和扇形的周长与面积(二)
扇形的面积 S=
n 360 n +2×半径 扇形的周长= 2 r 360
r2
扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形。 扇形是圆的一部分 扇形的圆心角占这个圆周角的几分之几 扇形的弧长
(易错点是把扇形的周长等同于扇形的弧长) 弓形: 弓形一般不要求周长,主要求面积。 一般来说,弓形面积=扇形面积-三角形面积。(除了半圆) “弯角”:弯角的面积=正方形-扇形
n C= 2 r 360

小学五年级奥数 圆和扇形的周长与面积(二)

小学五年级奥数 圆和扇形的周长与面积(二)

圆和扇形的周长与面积(二)本讲主线1. 不规则图形的求解4. 其他相关扇形:2. 差不变和等积变形弓形=扇形-△弯角=正方形-扇形.r2. 圆的面积:S=πr2谷子=弓形面积×23. 扇形:在圆的基础上×360120°5 5【例2】(★★★)板块一:不规则图形的常用解法求图中阴影部分的面积。

(π取3)如图, ABCD是正方形,且 FA=AD=DE=1,求阴影部分的面积。

(π取3.14 ) 45°45°20cm1【例4】(★★★)板块二:差不变和等积变形如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分【例3】(★★★☆)面积是多少?(圆周率取 3.14)DE 在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差。

(圆周率取3 )AC FB【例5】(★★★★)如图,矩形ABCD中,AB= 6厘米,BC= 4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB= 4厘米,求阴影部分的面积。

(π取3)5. 圆中的直角三角形:顶点在圆上,并且经过圆心的三角形是直角三.C△ABC中,∠C=90°r B【超常大挑战】(★★★★)已知AB、AC、BC分别为3个半圆的直径. 请证明:阴影部分的面积=△ABC的面积. AB C 2知识大总结【今日讲题】1. 公式:圆=π×r2n扇形=圆×3602. 基本模型:弓形,弯角,谷子3. 不规则图形:割补、平移、旋转、对称4. 两个考点:⑴同加同减差不变⑵等积变形5. 一个模型:两个月亮换个三角A例1~超常大挑战【讲题心得】____________________________________________________________【家长评价】______________________________________________________________B C3。

圆的二级公式(二)

圆的二级公式(二)

圆的二级公式(二)圆的二级公式1. 圆的周长公式•公式:C=2πr其中,C表示圆的周长,π表示圆周率,约等于,r表示圆的半径。

•解释:圆的周长是指围绕圆形边界的长度。

它可以通过直接乘以直径的方法得到,也可以通过将圆周率与直径相乘的方式计算得出。

2. 圆的面积公式•公式:A=πr2其中,A表示圆的面积,π表示圆周率,约等于,r表示圆的半径。

•解释:圆的面积是指圆形内部的区域大小。

通过将圆周率与半径的平方相乘,可以得到圆的面积。

3. 圆的直径公式•公式:d=2r其中,d表示圆的直径,r表示圆的半径。

•解释:圆的直径是指通过圆心的两个点之间的距离。

直径是半径的两倍,可以通过将半径乘以2来计算得到。

4. 圆的弧长公式•公式:l=αr其中,l表示圆的弧长,α表示圆心角的度数(弧度制),r表示圆的半径。

•解释:圆的弧长是指圆周上两个点之间的弧长。

弧长可以通过将圆心角的度数与半径相乘得到。

5. 圆的扇形面积公式πr2•公式:A=α360其中,A表示圆的扇形面积,α表示圆心角的度数(弧度制),π表示圆周率,约等于,r表示圆的半径。

•解释:圆的扇形面积是指由圆心、圆周上两个点和圆弧所围成的区域的大小。

扇形面积可以通过将圆心角的度数与半径平方相乘再除以360得到。

6. 圆的圆心角公式•公式:α=lr其中,α表示圆心角的度数(弧度制),l表示圆的弧长,r表示圆的半径。

•解释:圆的圆心角是指圆心所对应的圆弧的度数(弧度制)。

圆心角可以通过弧长除以半径得到。

以上是一些与圆有关的二级公式,可以用于计算圆的周长、面积、直径、弧长、扇形面积和圆心角。

这些公式在几何学、物理学等领域有广泛应用,能够帮助我们进行圆相关问题的计算和分析。

学而思-----第二讲 圆和扇形的周长与面积

学而思-----第二讲    圆和扇形的周长与面积

D
E
D
E
A
A
B
C
F
B
C
F
4、旋转法(例 6) 旋转法是本讲的重 点与难点,对于“羊吃草”的问题还是比较 简单的。关键是直线型旋转面积,学员无法 想到
直线旋转后所扫发到 过的面积,其实,由教师讲解后你会发现, 一般情况下直线所扫过一周的面积(有特例 ,如:钝
角三角形的长边绕钝角顶点旋转时)就是一个圆环的面积。所以旋转多少度就再乘以 即可。
够活动的最大范围是 多少?(

分析:如图,羊活动的范围是受绳子的牵制的,所以羊活动的最大范围即绳子 AE 所扫过的总面积。(三部分)
(1) 红色部分为按绳长 30 米所能达到的最大范围(绳子不受任何牵制),此图形为半径 30,
圆心角 270 度的扇形。
(2) 黄色部分为按绳长 10 米所能达到的最大范围(绳子受点 D 牵制),所以之后只能按半径
由第三个图可知:所求面积已转化为扇环的面积,圆心角度数为 120 度。所以 阴影=


S=
E
E
E
C
C
G
C
G
A
B
D
A
F
B
D
A
F
B
D
第二讲 圆和扇形的周长和面积 2.2
五年级秋季班 第二讲 圆和扇形的周长与面积
曹威
拓展练习:“羊吃草 ”问题
草场上有一个长 20 米,宽 10 米的关闭着的羊圈,在羊圈外的一角,用长 30 米的绳子拴着一只羊,问这只羊能
B
C
C
B
O
A
O
A
分析:与丄题同理 A 点移到 O 点,阴影面积变为扇形 OBC 的面积,注意:圆心角 COB=60 度。

北师大版九年级数学下册《圆——弧长及扇形的面积》教学PPT课件(2篇)

北师大版九年级数学下册《圆——弧长及扇形的面积》教学PPT课件(2篇)

C
A
D
B
探究新知
在一块空旷的草地上有一根柱子,柱子上栓
着一条长3m的绳子,绳子的另一端栓着一只狗。
(1)这只狗的最大活动区域有多大?

(2)如果这只狗只能绕柱子转过 n°角,
那么它的最大活动区域有多大?
解:(1)这只狗的最大活动区域是圆的面积,即9πm2 .
(2)狗的活动区域是扇形,扇形是圆的一部分,360°的圆心角对应的是圆面积,
A. 3π
B.4π
C.5π
D.6π
新知探究
4 . 如图的五个半圆,邻近的两个半圆相切,两只小虫同时出发,以相同
的速度从A点爬到B点,甲虫沿ADA1,A1EA2,A2FA3,A3GB路线爬行,乙虫沿
ACB路线爬行,则下列结论正确的是( C )
A.甲先到B点
C.甲、乙同时到B点
B.乙先到B点
D.无法确定


− ×1×

=


π- .


课堂小结
1.弧长公式:
2.扇形面积公式:

注意: 求图形的面积:
割补法、组合法
(1)公式中 n 表示1°的圆心角的倍数;
(2)若圆心角的单位不全是度,则需先化为度后再计算.
(3)题设没有标明精确度的,结果可以用 π 表示.
课堂小测
1.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.
则半径为2的“等边扇形”的面积为( C
S 扇形1ຫໍສະໝຸດ lR2)
课堂小测
2. 如图,5个圆的圆心在同一条直线上, 且互相相切.若大圆直径是12,4
12cm,那么弧AC的长是( C)
A.10cm

第二讲圆与扇形试题及答案

第二讲圆与扇形试题及答案

第二讲圆与扇形基础班练习二1.如右图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。

求扇形所在的圆面积。

解答:等腰三角形的角为45度,则扇形所在圆的面积为扇形面积的8倍。

而扇形面积为等腰三角形面积:S=1/2×10×10=50,则圆的面积为400。

2.求下列各图中阴影部分的面积:解答:如上右图,易得图形面积,(1)25 ;(2)ab 。

【例1】3.以等腰直角三角形的两条直角边为直径画两个半圆弧(见右图),直角边长4厘米,求图中阴影部分的面积。

(π取3)解答:如右下图所示,所求面积等于圆面积减去正方形面积,阴影部分面积=(4÷2)2π-4×4÷2= 4(厘米2)。

4.如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。

(取π=3)解答:阴影部分面积=梯形BCEF-三角形BFD-扇形=2-1-3/8=5/8 。

【例2】5.右图中的圆是以O为圆心、半径是10厘米的圆,求阴影部分的面积。

(π取3)解答:100平方厘米。

提高班练习二1.如右图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。

求扇形所在的圆面积。

解答:等腰三角形的角为45度,则扇形所在圆的面积为扇形面积的8倍。

而扇形面积为等腰三角形面积:S=1/2×10×10=50,则圆的面积为400。

2.求下列各图中阴影部分的面积:解答:如上右图,易得图形面积,(1)25 ;(2)ab 。

3.以等腰直角三角形的两条直角边为直径画两个半圆弧(见右图),直角边长4厘米,求图中阴影部分的面积。

(π取3)解答:如右下图所示,所求面积等于圆面积减去正方形面积,阴影部分面积=(4÷2)2π-4×4÷2= 4(厘米2)。

4.如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积。

圆的周长与面积(2)

圆的周长与面积(2)

圆的周长与面积(2)圆转化为近似长方形:近似长方形的长=圆周长的21。

近似长方形的宽=圆的半径。

近似长方形的周长=圆周长+半径×2=圆周长+直径。

圆的面积不变。

半圆转化为近似长方形:近似长方形的长=圆周长的41,近似长方形的宽=圆的半径。

近似长方形的周长=圆周长的21+直径。

半圆面积不变。

半圆:半圆周长=圆周长÷2+直径=π×d ÷2+d 。

半圆面积=圆面积÷2=π×r ²÷2。

整圆:圆周长=π×d 或者2πr 。

圆面积=π×r ²。

圆环面积=大圆面积-小圆面积。

S 圆环=π×大半径²-π×小半径²=π(R ²-r ²)。

41圆面积=圆面积×41。

对应的字母:半径对应r ,直径对应d ,周长对应c ,面积对应s ,圆周率对应π。

例1、有7根直径都是5厘米的塑料管,用一根绳子把它们勒紧成一捆,此时绳子的长度是多少厘米?例2、半圆的面积是3140平方厘米,求长方形的面积是多少平方厘米?例3、扇形的面积是188.4平方厘米,求正方形的面积是多少平方厘米?例4、草场上有一个长20米,宽10米的封闭式的羊圈。

在羊圈的一角用一根长30米的绳子拴着一只羊。

问这只羊的活动范围最大是多少平方米?例5、一只顽皮的狗被拴在一个边长是3米的等边三角形建筑物的一个角上,绳长4米,问可以活动的最大范围是多少平方米?例6、200米的赛道跑道的起点和终点都在直线跑道上,中间的弯道是一个半圆。

已知每条跑道宽都是1.20米,那么外道的起点在内道起点前面多少米?(精确到0.01米)。

例7、如图,圆的周长是16.4厘米,圆形的面积和长方形的面积正好相等,求图中阴影部分的周长是多少厘米?例8、正方形的边长是10厘米,求阴影部分的面积。

例9、如图,一卷紧绕着的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴。

小学奥数 圆与扇形(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  圆与扇形(二) 精选练习例题 含答案解析(附知识点拨及考点)

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图:“谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块二 曲线型面积计算【例 1】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. 例题精讲圆与扇形DCBA【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度. 【答案】60度【例 2】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)【考点】圆与扇形 【难度】4星 【题型】解答【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°.【答案】60度【例 3】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【答案】7.5【例4】有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【考点】圆与扇形【难度】3星【题型】解答【解析】由右图知,绳长等于6个线段AB与6个BC弧长之和.将图中与BC弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒,所以BC弧所对的圆心角是60︒,6个BC弧合起来等于直径5厘米的圆的周长.而线段AB等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米).【答案】45【例5】如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【考点】圆与扇形【难度】4星【题型】解答【解析】如图,点C是在以B为中心的扇形上,所以AB CB=,同理CB AC=,则ABC∆是正三角形,同理,有CDE∆是正三角形.有60ACB ECD∠=∠=,正五边形的一个内角是1803605108-÷=,因此60210812ECA∠=⨯-=,也就是说圆弧AE的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm360⨯⨯⨯⨯=.【答案】12.56【例6】如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【考点】圆与扇形【难度】3星【题型】填空【解析】图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面积之和等于大圆的面积.而4个小圆重叠的部分为灰色部分,未覆盖的部分为黑色部分,所以这两部分面积相等,即灰色部分与黑色部分面积相等.【答案】相等【例 7】 如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,2212S r r π=-,所以()12: 3.142:257:100S S =-=. 移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 8】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【答案】8【例 9】 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【答案】2.5【例 10】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)CA【考点】圆与扇形 【难度】3星 【题型】解答【解析】 所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式2π360n R S =扇.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么120AOC ∠=︒,又知四边形ABCO 是平行四边形,所以120ABC ∠=︒,这样就可求出扇形的面积和为21206π10628360⨯⨯⨯=(平方厘米),阴影部分的面积1040628412=-=(平方厘米). 【答案】412【例 11】 (09年第十四届华杯赛初赛)如下图所示,AB 是半圆的直径,O 是圆心,AC CD DB ==,M 是CD的中点,H 是弦CD 的中点.若N 是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 如下图所示,连接OC 、OD 、OH .本题中由于C 、D 是半圆的两个三等分点,M 是CD 的中点,H 是弦CD 的中点,可见这个图形是对称的,由对称性可知CD 与AB 平行.由此可得CHN ∆的面积与CHO ∆的面积相等,所以阴影部分面积等于扇形COD面积的一半,而扇形COD的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【答案】2【巩固】如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接OC、OD、CD.由于C、D是半圆的三等分点,所以AOC∆和COD∆都是正三角形,那么CD与AO是平行的.所以ACD∆的面积与OCD∆的面积相等,那么阴影部分的面积等于扇形OCD的面积,为21π618.846⨯⨯=.【答案】18.84【例12】如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)O【考点】圆与扇形【难度】4星【题型】解答【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形BC或CD均与弓形AB相同,所以不妨割去弓形BC.剩下的图形中,容易看出来AB与CD是平行的,所以BCD∆与ACD∆的面积相等,所以剩余图形的面积与扇形ACD的面积相等,而扇形ACD的面积为260π10.5360⨯⨯=,所以图中两块阴影部分的面积之差为0.5.【答案】0.5【例13】如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【考点】圆与扇形 【难度】3星 【题型】解答【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【答案】113.04【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【答案】39【例 14】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【考点】圆与扇形 【难度】3星 【题型】解答【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和. ABP ∆的面积为:()10102225⨯÷÷=;弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【答案】32.125【例 15】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 连接小正方形AC ,有图可见ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【答案】28.56【例 16】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【考点】圆与扇形 【难度】4星 【题型】解答【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=, 则阴影部分面积与空白部分面积的比为5:11.【答案】5:11【例 17】 (西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米);⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米).【答案】4.1【例 18】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 39.25 【答案】39.25【例 19】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【考点】圆与扇形 【难度】3星 【题型】解答【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【答案】12a【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)D BA DB【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【答案】8【例 20】 (四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ).【答案】3.85【例 21】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.【考点】圆与扇形 【难度】4星 【题型】填空【解析】 根据容斥原理得1003242144S ⨯--⨯=阴影,所以100314424272S =⨯--⨯=阴影(平方厘米) 【答案】72【例 22】 如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFEDC B AS图1S 2S 1G HF E DCBA【考点】圆与扇形 【难度】3星 【题型】解答【关键词】国际小学数学竞赛 【解析】 (法1)2248cm FCDES=⨯=,21π44π4BCD S =⨯⨯=扇形2(cm ),21π2π4BFH S =⨯⨯=扇形2(cm ),而124ππ8FCDE BCD BFH S S S S S -=--=--扇形扇形3π8=-2(cm ), 所以3m =,8n =,3811m n +=+=.(法2)如右上图,1S S +=BFEA BFH S S -=扇形2422π48π⨯-⨯⨯÷=-2(cm ), 24444π4164πABCD BCD S S S S +=-=⨯-⨯⨯÷=-扇形2(cm ),所以,12(8π)(164π)3π8S S -=---=-2(cm ),故3811m n +=+=.【答案】11【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=.【答案】1.42【例 23】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【考点】圆与扇形 【难度】3星 【题型】解答【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键.我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【答案】15【巩固】求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=.【答案】41.04【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】填空【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了. 因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米), 那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米).【答案】7.125【例 24】 如图所示,阴影部分的面积为多少?(圆周率取3)33B A33A1.51.51.545︒45︒B33【考点】圆与扇形 【难度】4星 【题型】解答【解析】 图中A 、B 两部分的面积分别等于右边两幅图中的A 、B 的面积.所以()()229271.5π 1.5343π3328498416A B S S +=-⨯÷+-⨯⨯÷=÷+÷=.【答案】2716【巩固】图中阴影部分的面积是 .(π取3.14)33【考点】圆与扇形 【难度】3星 【题型】填空【解析】 如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面积.所分成的弓形的面积为:22131199π3π2242168⎡⎤⎛⎫⨯-⨯⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;另一部分的面积为:221199π33π8484⨯-⨯=-;所以阴影部分面积为:99992727πππ 1.92375 1.9216884168-+-==-=≈. 【答案】1.92【例 25】 已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)O3【考点】圆与扇形 【难度】4星 【题型】解答【解析】 图中两块阴影部分的面积相等,可以先求出其中一块的面积.而这一块的面积,等于大正方形的面积减去一个90︒扇形的面积,再减去角上的小空白部分的面积,为:()()()2142020π202020100π4754S S S S ⎡⎤---÷=⨯-⨯-⨯-÷=⎡⎤⎣⎦⎣⎦圆正方形正方形扇形(平方厘米),所以阴影部分的面积为752150⨯=(平方厘米).【答案】150【例 26】 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3) 【考点】圆与扇形 【难度】3星 【题型】填空【解析】 方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为290111π13604⨯-⨯⨯=;那么圆无法运动到的部分面积为 1414⨯=方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【答案】1【例 27】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差. 由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米).由于AOB ∆是等腰直角三角形,所以220240AB =⨯=.因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米).所以,阴影部分的面积等于:15.710 5.7-=(平方厘米).【答案】5.7【例 28】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【考点】圆与扇形 【难度】4星 【题型】解答【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯=【答案】400【例 29】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15.【答案】15【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IABCI【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC 面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ),BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【答案】12.53【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【答案】32.8【例 30】 图中的长方形的长与宽的比为8:3,求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】十三分,入学测试题【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.【答案】244【例 31】 如图,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】4星 【题型】解答【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅=6【答案】6【例 32】 如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68【考点】圆与扇形 【难度】4星 【题型】解答 【解析】S S S =-阴影直角三角形半圆, 设半圆半径为r ,直角三角形面积用r 表示为:610822r rr ⨯⨯+= 又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r =,3r =所以1249π=24 4.5π2S =-⨯-阴影【答案】24 4.5π-【例 33】 大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华校第一学期,期中测试,第6题【解析】 环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r -=平方厘米,那么环形的面积为: 2222πππ()π50=157R r R r -=-=⨯(平方厘米).【答案】157【巩固】图中阴影部分的面积是225cm ,求圆环的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==. 【答案】157【例 34】 已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】101中学,考题【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米).【答案】47.1【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米).【答案】60【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【答案】212a【巩固】一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm ,请问阴影部分的面积为多少平方厘米?(取22π7=)。

六年级奥数讲义:圆与扇形

六年级奥数讲义:圆与扇形

|六年级奥数讲义:圆与扇形1. 利用圆与扇形面积公式进行面积计算.2. 会将不规则图形转化为规则图形进行面积计算.研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积=2r π;扇形的面积=2360nr π⨯; 圆的周长=2r π;扇形的弧长=2360n r π⨯.一、 跟曲线有关的图形元素。

1、 扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n . 比如:扇形的面积=所在圆的面积360n⨯; 扇形中的弧长部分=所在圆的周长360n ⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长)2、弓形:弓形一般不要求周长,主要求面积。

一般来说,弓形面积=扇形面积-三角形面积。

(除了半圆)3、“弯角”:如图:弯角的面积=正方形-扇形4、“谷子”:如图:“谷子”的面积=弓形面积×2二、常用的思想方法:1、转化思想(复杂转化为简单,不熟悉的转化为熟悉的)2、等积变形(割补、平移、旋转等)3、借来还去(加减法)4、外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的“关系”)用平移、旋转、割补法求面积【例 1】如图,在18⨯8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【分析】我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有2|6+6+8=20个,部分有6+6+8=20(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772. [拓展] 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa[分析] 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形 21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【例 2】 如图,阴影部分的面积是多少?224【分析】首先观察阴影部分,我们发现阴影部分形如一个号角,但是我们并没有学习过如何求号角的面积,那么我们要怎么办呢?阴影部分我们找不到出路,那么我们不妨考虑下除了阴影部分之外的部分吧!观察发现,阴影部分左侧是一个扇形,而阴影部分右边的空白部分恰好与左边的扇形构成一个边长为4的正方形,那么阴影部分的面积就等于大的矩形面积减去正方形面积。

【精】 《弧长和扇形面积(第2课时)》精品教案

【精】 《弧长和扇形面积(第2课时)》精品教案

《弧长和扇形面积(第2课时)》精品教案课题24.4弧长和扇形面积(2)单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标培养学生的观察、想象、实践能力,获得数学学习经验,懂的数学与生活的密切联系。

能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题。

知识目标 1.了解圆锥母线的概念.2.理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用。

重点圆锥侧面积和全面积的计算公式的探索与运用。

难点探索圆锥侧面积计算公式。

学法自主探索、合作交流、启发引导教法情景教学法、活动探究法;教学过程教学环节教师活动学生活动设计意图导入新课一、复习引入回忆n°的圆心角所对的弧长公式和扇形面积公式,并讲讲它们的区别与联系.这节课主要探究圆锥的侧面积计算方法. 通过回顾上节课的主要知识,引导学生巩固重点,引出课题。

通过知识回顾,巩固重点,提出问题,激发学生的学习兴趣。

讲授新课二、探究新知活动1:圆锥的有关概念1.圆锥的形成①一个底面和一个侧面围成的;②一个直角三角形绕一条直角边所在直线旋转一周得到的.引导学生思考圆锥的形成,学生按教师要求操作,观察,思考,通过探索圆锥的概念,将学生的思维从生活中走进2.把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.3圆锥的高:连接底面圆圆心和圆锥顶点的线段.4圆锥的侧面(曲面)和底面(圆)活动2:圆锥的侧面积问题:圆锥的侧面是一个曲面,无法直接求其面积.圆柱的侧面也是一个曲面,因为展开图是一个长方形,所以求圆柱的侧面积就是求其展开图的面积.类似的,利用圆锥的侧面展开图求其侧面的面积可以吗?圆锥的侧面展开图是什么图形?沿圆锥一条母线将圆锥侧面剪开并展平,圆锥的侧面展开图是一个以圆锥的顶点为圆心,母线为半径的扇形.如图所示,设圆锥的母线长为l,•底面圆的半径为r,•那么这个扇形的半径为_____,扇形的弧长为______,因此圆锥的侧面积为_______.扇形的弧长:2πr,圆锥的侧面积:注意:计算时需搞清圆锥与侧面展开扇形之间几个量的对应关系:交流,教师给出圆锥的母线、圆锥的高等定义。

《弧长和扇形面积的计算》PPT课件下载(第2课时)

《弧长和扇形面积的计算》PPT课件下载(第2课时)
7.已知圆锥的底面直径为20 cm,母线长为90 cm,则圆锥的表面 积是_1__0_0_0_π__ cm². (结果保留π)
8.粮仓顶部是一个圆锥形,其底面周长为36 m,母线长为8 m,为 防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合部 分,那么这座粮仓实际需用_1__6_0__m2的油毡.
例2 如图,用一张半径为24 cm的扇形纸板制作一顶圆锥形帽子(接
缝忽略不计),如果圆锥形帽子的底面半径为10 cm,那么这张扇形
纸板的面积是( A )
A.240π cm2
B.480π cm2
C.1 200π cm2
D.2 400π cm2
导引:圆锥的侧面展开图是扇形,圆锥的侧面积就是相关 扇形的面积,直接利用圆锥的侧面积公式S=πrl计算.S= πrl=π×10×24=240π(cm2),故选择A .
如图,PA为圆锥的一条母线,PO为圆锥的高 . 将圆锥的侧面沿母线PA展开成平面图形,该图形为 一个扇形,扇形的半径长等于圆锥的母线长 .
反过来,扇形也可以围成一个圆锥 .
1.圆锥:圆锥是由一个底面和一个侧面围成的几何体.如图所示. 2.圆锥的母线:如图所示,圆锥的顶点与底面圆周上任意一点的连 线叫做圆锥的母线.母线有无数条,且每条母线都相等. 3.圆锥的高:如图所示,圆锥的顶点与底面圆心之间的线段叫做圆 锥的高.
锥的高为=5(cm),故应选A .
结论
圆锥的侧面展开图的弧长等于底面的圆周长, 圆锥的母线l、圆锥的底面半径r、圆锥的高h,三 者满足r2+h2=l2 .
1 如图,圆心角∠AOB=20°,将 AB 旋转n°得到 CD,则 CD 的度 数是__2_0__°.
2 已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母长 为_1_0_c__m__.

【讲义】5年级下册第02讲_圆与扇形进阶

【讲义】5年级下册第02讲_圆与扇形进阶

第二讲圆与扇形进阶- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -自然界中,圆与方是最基本的两种图形.古人认为“天圆地方”,宇宙就像一个圆形的大锅盖在一个方形的棋盘上.中国古代的建筑也会经常采用圆形和正方形的图案.而在面积计算中,圆与正方形也有很大的关系.关于正方形和圆,有以下的面积关系:由此我们可以进一步推断:圆外切正方形面积是内接正方形面积的______倍;正方形外接圆面积是内切圆面积的______倍.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.(1)左图中正方形的面积是8,那么圆的面积是多少?(π取3.14)(2)右图中正方形的面积是16,那么圆的面积是多少?(π取3.14)分析:利用圆中方和方中圆的比例关系可以轻松求解.练习1.如图,已知正方形的边长是2,求大圆及小圆的面积.(π取3.14)圆的外切正方形 与内接正方形 正方形的外接圆 与内切圆方中圆 圆中方例题2.计算下面各图中阴影部分的面积,并比较大小.(π取3.14)分析:利用方中圆的比例关系可以轻松求解.练习2.如图,已知长方形的面积是12,则图中阴影部分的面积是多少?(π取3.14)- - - - - - - - - - - - - -小故事圆与方有一天,圆形和方形碰到了一起,它们一见面就吵了个面红耳赤,不管谁劝都不听.圆形说:“我们圆形就是比你们方形用处大,人们日常生活中用的锅呀、碗呀,体育中的蓝球、排球,水果里的苹果、桔子,大到汽车轮胎、自行车轮胎,都是我的家族.瞧,我们是不是比你们用处大!”圆形得意洋洋地说完.方形“哼”了一声说:“我们方形家族才是无处不在呢,人们用的电器、冰箱、彩电、电脑,就连学生用的课本都是我们方形的哟!”方形也自豪地说.它们谁也无法说服谁,都来到大街上.望着街上的车,方形对着圆形的车轮喊了声:“变!”转眼间车轮变成了方形.正当方形喜笑颜开时,人群出现了混乱,汽车开不了,自行车也只能扛着了,大家都在说:“这是谁干的呀!真是害人呀!”而圆形来到一座刚建好的大楼前,望着由一块块方形红砖盖成的大楼,圆形生气地大声 喊了声“变!”呀,方形红砖变成圆形了.圆形还没来及高兴呢,就听“轰”一声大楼倒了下来.看到这个情景,圆形呆住了:“这是怎么回事?”只见混乱的人群里走出了一位老人,他来到方形和圆形面前对它们说:“其实你们都很棒,只是你们分工不同而已,只要你们齐心协力,一定会为人类作更大的贡献.在上一讲中,我们主要使用割补的方法来计算不规则图形的面积.而对于一些比较特殊8的形状,我们可以把它看成是一些基本图形的重叠部分,利用容斥原理计算出它的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.如图,求下面各图中阴影部分的面积.(π取3.14)分析:阴影部分可以看成是哪些图形的重叠部分?练习3.已知下图中正方形的面积是16,那么阴影部分的面积是多少?(π取3.14)在生活当中,有很多旋转的物体,比如车轮、方向盘等.这些物体在运动的过程中,扫过的图形都是曲线形.这些曲线形的周长和面积应该怎么计算呢?例题4.图中正方形的边长是4厘米,圆形的半径是1厘米.当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)分析:要求扫过的面积,关键在于弄清扫过的区域;而要弄清扫过的区域,关键在于弄清区域的边界.你能通过合理动态想象,画出边界来吗?练习4.如图,正方形的边长是2厘米,圆形的半径是1厘米.当圆形绕正方形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)例题5.如图,求阴影部分的面积.(π取3.14)分析:阴影部分可以看成是四个扇形的重叠部分,但是扇形的半径图中并没有给出,那么应该怎么计算扇形的面积呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题6.(1)如图,一只小狗被拴在一个边长为4米的正方形的建筑物的顶点A处,四周都是空地.绳长8米.小狗的活动范围是多少平方米?(2)如果小狗不是被拴在A处,而是在一边的中点B处,那么小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3.14)分析:如果没有建筑物的阻挡,小狗的活动范围应该是一个圆.有建筑物的话,活动范围会受到什么样的影响呢?A含有“圆”字的成语圆首方足:出自《淮南子·精神训》:“头之圆也象天,足之方也象地.”用来代指人类.戴圆履方:出自《淮南子·本经训》:“戴圆履方,抱表怀绳.”履:踩着;圆、方:古人以为天圆地方.头顶着天,脚踩着地.指生活在人间.方枘圆凿:出自战国时楚国宋玉的《九辨》:“圆凿而方枘兮,吾固知其龃龉而难入.”凿:榫眼;枘:榫头.方枘装不进圆凿.比喻格格不入,不能相合.这三个成语之外,还有很多成语中都含有“圆”和“方”这两个字,如圆孔方木、圆颅方趾、外圆内方等.这说明古人对于圆和方的认识非常深刻,已经将其应用到了生活中的很多方面.而我们在圆与扇形的学习中,也要注意圆形与正方形之间的联系.元方,你怎么看?破镜重圆:这个成语故事是由华阴人、隋越国公杨素的一段成人之美的佳话而来的.杨素,字处道,在辅佐隋文帝杨坚结束割据,统一天下,建立隋朝江山方面立下了汗马功劳.他不仅足智多谋,才华横溢,而且文武双全,风流倜傥.在朝野上下都声势显赫,颇著声名.隋开皇九年(公元589年)杨素与文帝杨坚的两个儿子陈后主叔宝的嫔妃、亲戚,其中有陈叔宝的妹妹枣陈太子舍人徐德言之妻,也就是陈国的乐昌公主.由于杨素破陈有功,加之乐昌公主才色绝代,隋文帝就乱点鸳鸯,将乐昌公主送进杨素中,赐为杨素小妾.杨素既仰慕乐昌公主的才华,又贪图乐昌公主的美色,因此就更加宠爱,还为乐昌公主专门营造了宅院.然而乐昌公主却终日郁郁寡欢,默无一语.原来,乐昌公主与丈夫徐德言两心相知,情义深厚.陈国将亡之际,徐德言曾流着泪对妻子说:“国已危如累卵,家安岂能保全,你我分离已成必然.以你这般容貌与才华,国亡后必然会被掠入豪宅之家,我们夫妻长久离散,名居一方,唯有日夜相思,梦中神会.倘若老天有眼,不割断我们今世的这段情缘,你我今后定会有相见之日.所以我们应当有个信物,以求日后相认重逢.”说完,徐德言把一枚铜镜一劈两半,夫妻二人各藏半边.徐德言又说:“如果你真的被掠进富豪人家,就在明年正月十五那天,将你的半片铜镜拿到街市去卖,假若我也幸存人世,那一天就一定会赶到都市,通过铜镜去打问你的消息.”一对恩爱夫妻,在国家山河破碎之时,虽然劫后余生,却受尽了离散之苦.好容易盼到第二年正月十五,徐德言经过千辛万苦,颠沛流离,终于赶到都市大街,果然看见一个老头在叫卖半片铜镜,而且价钱昂贵,令人不敢问津.徐德言一看半片铜镜,知妻子已有下落,禁不住涕泪俱下.他不敢怠慢,忙按老者要的价给了钱,又立即把老者领到自己的住处.吃喝已罢,徐德言向老者讲述一年前破镜的故事,并拿出自己珍藏的另一半铜镜.颤索索两半铜镜还未吻合,徐德言早已泣不成声……卖镜老人被他们的夫妻深情感动得热泪盈眶.他答应徐德言,一定要在他们之间传递消息,让他们夫妻早日团圆.徐德言就着月光题诗一首,托老人带给乐昌公主.诗这样写道:镜与人俱去,镜归人不归.无复嫦娥影,空留明月辉.乐昌公主看到丈夫题诗,想到与丈夫咫尺天涯,难以相见,更是大放悲声,终日容颜凄苦,水米不进.杨素再三盘问,才知道了其中情由,也不由得被他二人的真情深深打动.他立即派人将徐德言召入府中,让他夫妻二人团聚.府中上下都为徐陈二人破镜重圆和越国公杨素的宽宏大度、成人之美而感叹不已.在欢庆的感激之情.宴罢,夫妻二人携手同归江南故里.这段佳话被四处传扬,所以就有了破镜重圆的典故,一直流传至今.作业1. 如图,图中较小圆的面积是3.14,较大圆的面积是多少?作业2. 如图,正方形的面积是8,阴影部分的面积是多少?(π取3.14)作业3. 如图,一头山羊被拴在一个边长为4米的等边三角形的建筑物的一个顶点处,四周都很空旷.绳长刚好够山羊走到三角形建筑物外的任一位置,山羊的活动范围有多少平方米?(建筑外墙不可逾越,山羊身长忽略不计,π取3)作业4. 如图,正方形ABCD 边长为1厘米,依次以A 、B 、C 、D 为圆心,以AD 、BE 、CF 、DG 为半径画出四个直角扇形,那么阴影部分的面积是多少?(π取3.14)作业5. 如图,长方形的长为6厘米,宽为2厘米,圆形的半径是1厘米.当圆形绕长方形滚动一周又回到原来位置时,扫过的面积有多大?(π取3.14)第1题图 第2题图 第3题图 第4题图 AB C D EH F。

五年级奥数专题 圆与扇形(学生版)

五年级奥数专题 圆与扇形(学生版)

学科培优 数学 圆与扇形 学生姓名授课日期 教师姓名授课时长 知识定位 本讲主要介绍与圆和扇形的周长、面积相关的几何问题。

学校里已讲过基本的圆和扇形周长以及面积的计算公式,这里主要介绍对对象进行适当的移动、拼割、分部以简化运算为目的的方法.重点难点1.复杂图形的化简2.带入圆周率时的计算准确度考点1.熟练运用分割、拼补等手段简化运算2.结合情景的曲线面积计算知识梳理一、圆形的面积与周长(1) 圆的周长2C d r ππ==(d 为直径,r 为半径)(2) 圆的面积212S r Cr π== 【授课批注】公式很简单,主要是如何化为简单的公式运算。

注意到面积公式可表示为周长与半径之积的一半,说明圆的面积计算推导与三角形面积公式有关。

二、扇形的面积与弧长(1)扇形的弧长2360l r θπ= (2)扇形的面积213602S r lr θπ==扇 例题精讲【试题来源】【题目】如图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.如果圆周率π取 3.1416,那么花瓣图形的面积是多少平方厘米?【试题来源】【题目】如图,一套绞盘和一组滑轮形成一个提升机构,其中盘A 直径为10厘米,盘B 直径为40厘米,盘C 直径为20厘米.问:A 顺时针方向转动一周时,重物上升多少厘米?( π取3.14.)【试题来源】【题目】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长?【试题来源】【题目】如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【试题来源】【题目】如图,用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【试题来源】【题目】图中是一个直径是3厘米的半圆,AB是直径.让A点不动,把整个半圆逆时针转60,此时B点移动到C点,如图所示.那么图中阴影部分的面积是多少平方厘米?【试题来源】【题目】图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?【试题来源】【题目】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率取近似值【试题来源】【题目】如图17-13,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度.(π取3.14)【试题来源】【题目】图中阴影部分的面积是多少平方厘米?π227【试题来源】【题目】如下页图.等腰直角三角形ABC的腰为10厘米;以A为圆心,EF 为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等.求扇形所在的圆面积.【试题来源】【题目】平面上有7个大小相同的圆,位置如图所示.如果每个圆的面积都是10,那么阴影部分的面积是多少?【试题来源】【题目】如右图,正方形的边长为5厘米,则图中阴影部分的面积是平方厘米.(π取3.14)【试题来源】【题目】传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如右下图).那么,阴影部分的面积是多少平方米?【试题来源】【题目】在右图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.【试题来源】【题目】如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,是以C为圆心,AC为半径的圆弧,求阴影部分面积.【试题来源】【题目】如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB弦约等于17厘米,半径为10厘米,求阴影部分的面积.【试题来源】【题目】求图中阴影部分的面积.( 取3.14)【试题来源】【题目】如下图所示,曲线PRSQ和ROS是两个半圆.RS平行于PQ.如果大半圆的半径是1米,那么阴影部分是多少平方米?(π取3.14)【试题来源】【题目】右图是由正方形和半圆形组成的图形,其中P点为半圆周的中点,Q点为正方形一边的中点,已知正方形的边长为10,那么阴影部分的面积是多少?(丌取3.14)习题演练【试题来源】【题目】.右图是一个圆心角为45°的扇形,其中直角三角形BOC的直角边为6厘米,求阴影部分面积。

五年级奥数学练习试卷思维培训资料 圆与扇形

五年级奥数学练习试卷思维培训资料 圆与扇形
分析:如右图(1)所示,将1/4圆1拼补到3,将1/4圆2拼补到4,这样就容易看出阴影部分面积就是正方形面积的一半,即4×4÷2=8。
课外知识
唐老鸭卖鸭蛋
唐老鸭开起小店卖鸭蛋了。
第一天,小狐狸拿一元钱买了一个鸭蛋,唐老鸭找给他2张钞票;第二天,小狐狸又拿了一元钱买了同样的两个鸭蛋,唐老鸭又找给他2张钞票;第三天,小狐狸又拿了一元钱买了同样三个鸭蛋,还是找回2张钞票;第四天,小狐狸还是拿了一元钱想买4个同样鸭蛋,可是这回唐老鸭说小狐狸的钱不够了。
第二讲圆与扇形
内容概述
这一讲我们一起研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。
基本公式:
圆的面积=πr2,圆的周长=2πr;
例题精讲
【例1】 数学小组的同学们正在热烈的研究圆和扇形之间到底有什么关系?亲爱的小朋友,你能够帮助他们吗?
则阴影部分的面积为= ;
法2:连接AC,我们发现阴影部分面积的一半就是1/4圆减去三角形的面积,所以
阴影部分面积= 。
【例5】(06年实验中学培训试题)如右图,ABCD是边长为a的正方形,以AB,BC,CD,DA分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)
分析:这道题目是很常见的面积计算问题。我们只需要在图形上添加两条辅助线就明了了,如下右图。
【例6】 (05年12月人大附中选拔内测题)求右图中阴影部分的面积。(π取3)
分析:如下图所示,将左下角的阴影部分分为两部分,然后按照下图所示,将这两部分分别拼补在阴影位置。可以看出,原题图的阴影部分等于下右图中AB弧所形成的弓形,其面积等于扇形OAB与三角形OAB的面积之差,即: 。切割,拼移补齐是我们求不规则图形面积的常用手段。

小学数学竞赛:圆与扇形(二).学生版解题技巧 培优 易错 难

小学数学竞赛:圆与扇形(二).学生版解题技巧 培优 易错 难
【例 42】某仿古钱币直径为 厘米,钱币内孔边缘恰好是圆心在钱币外缘均匀分布的等弧(如图).求钱币在桌面上能覆盖的面积为多少?
【例 43】传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如右图).那么,阴影部分的面积是平方米.
【巩固】图中是一个钟表的圆面,图中阴影部分甲与阴影部分乙的面积之比是多少?
【例 22】如图所示, 是一边长为 的正方形, 是 的中点,而 是 的中点.以 为圆心、半径为 的四分之一圆的圆弧交 于 ,以 为圆心、半径为 的四分之一圆的圆弧交 于 点,若图中 和 两块面积之差为 (其中 、 为正整数),请问 之值为何?
【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取 )
【例 48】将一块边长为 厘米的有缺损的正方形铁皮(如图)剪成一块无缺损的正方形铁皮,求剪成的正方形铁皮的面积的最大值.
图1图2图3
【例 8】用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?
【例 9】如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.
【例 10】如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取 )
【例 36】如下图所示,两个相同的正方形,左图中阴影部分是9个圆,右图中阴影部分是16个圆.哪个图中阴影部分的面积大?为什么?
【例 37】如图,在 方格表中,分别以 、 、 为圆心,半径为3、2、1,圆心角都是 的三段圆弧与正方形 的边界围成了两个带形,那么这两个带形的面积之比
【例 38】如图中,正方形的边长是 ,两个顶点正好在圆心上,求图形的总面积是多少?(圆周率取 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲
圆形、扇形的面积与周长(二)
重点摘要本讲主要讲授利用等积变形,重叠等方法求解圆形、扇形的面积与周长。

以及求解圆形、扇形与其他平面图形所组成的平面组合图形的面积。

精讲精练
例题1、有七根直径5cm 的塑料管,用一根橡皮筋把它们勒成一捆(如图所示),此时橡皮筋的长度是多少?(π取3.14)
练习1、如下图所示,圆的周长为15.7分米,圆的面积是长方形面积的3
2,问图中阴影部分的周长是多少分米?(π=3.14)
例题2、如图,图①和图②是两个相同的正方形,图①中阴影部分是4个圆,图②中阴影部分是9个圆。

那么图中阴影部分的面积大?为什么?
练习2、下左图是一个圆环,L 是圆环内最长的线段,下右图是以L 为直径的圆。

问:下左图的圆环与下右图的圆相比,谁的面积大?
L L
例题3、如下图,等边三角形边长是10厘米,那么阴影部分的周长是厘米?(π取3.14)
练习3、如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(π取3.14,得数保留两位小数)。

例题4、如图所示,阴影部分的面积是200平方厘米,求两个圆之间的圆环面积。

(π取3.14)
练习4、在正方形ABCD中,AC=6厘米。

求阴影部分的面积。

例题5、如图所示,求图中阴影部分的面积(π取3.14)。

练习5、图中阴影部分的面积是多少平方厘米?(π取3.14)
例题6、求图中阴影部分的面积(π取3.14)。

练习6、等腰直角三角形的一腰的长是8厘米,以它的两腰为直径分别画了两个半圆,那么阴影部分的面积共有多少平方厘米?(π取3.14)
【拓展题】如图正方形边长为1,则阴影部分面积为多少?。

(结果保留π)
【课堂练习】
1、求图形中阴影部分的面积(π取3.14)。

2、右图是由五个圆所构成的,其中总共有3种不同长度的直径,且有部分的圆彼此相切,如图所示。

若最大圆内白色部分的总面积是20cm2,则其中阴影部分的面积是多少平方厘米?
3、三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米.AB长40厘米,BC长多少厘米?(π取3.14)
4、下图三个圆的半径都是5厘米,三个圆两两相交于圆心。

阴影部分的面积是多少?(π取近似值3.14)
5、一个直径是3厘米的半圆,AB是直径.让A点不动,把整个半圆逆时针转60°,此时B点移动到C点,如图所示.那么图中阴影部分的面积是多少平方厘米?(π取3.14)
6、在图中,正方形的边长是10厘米,求图中阴影部分的面积。

(π取3.14)。

相关文档
最新文档