一维势箱模型与休克尔分子轨道理论的关系

合集下载

结构化学第四章 分子轨道理论

结构化学第四章 分子轨道理论

久期行列式
其中H aa = H bb
H aa &#H aa − H ab E2 = 1 − S ab
E1,E2 代入久期方程,得
基态能量 第一激发态能量
1 ψ1 = (φa + φb ) 2 + 2 S ab 归一化→ 1 ψ2 = (φa − φb ) 2 − 2S ab
η2 2 e2 e2 e2 ˆ − + H =− ∇ − 2m 4πε0ra 4πε0rb 4πε0 R
ˆ Hψ = E ψ
5
原子单位制(Atomic Unit)
(1) 单位长度 (2) 单位质量 (3) 单位电荷 (4) 单位能量 (5) 单位角动量 1a.u.= a0 = 0.529177A=52.9177pm 1a.u.= me =9.1095 × 10-28g 1a.u.= e
η2 d 2 ˆ ψ * Hψdτ ∫0 x( x − l )(− 2m dx 2 ) x( x − l )dx 10 h 2 = 2⋅ = < E >= l π 8ml 2 ψ *ψdτ ∫ x( x − l ) ⋅ x( x − l )dx

l

0
与一维势箱解法相比
ΔE 10 / π 2 ⋅ h 2 / 8ml 2 − h 2 / 8ml 2 10 = = ( 2 − 1)% = 1.3% 2 2 E h / 8ml π
i=1
m
利用ψ求变分积分,可得
E=
ˆ (∑ ciφi )H (∑ ciφi )dτ ∫
i =1
m
m
∂<E> ∂<E> ∂<E> = ...... = =0 = ∂c2 ∂cm ∂c1

第四章 休克尔(Hückel) 分子轨道理论PPT课件

第四章 休克尔(Hückel) 分子轨道理论PPT课件

0
c1 ( E)c2 c3
0
c2 ( E)c3 c4 0
c3 ( E)c4 0
28.07.2020
15
25/93
量子化学 第四章
系数有非零解,则下列 久期行列式等于零:
E 0 0 E 0
0
0 E 0 0 E
28.07.2020
设:x E
x100 1 x10
0 01 x1 001 x
量子化学 第四章
4.1 变分法
设体系哈密顿算符 的本征值按大小次序排列为: E0≤E1≤E2≤…Ei≤…
等号表示有简并态情形。 设属于每个本征值的本征函数分别为: 0 , 1 , 2 , …,i ,…
则存在 的系列本征方程:
28.07.2020 4/93
量子化学 第四章
根据厄米算符本征函数的性质,i, i0,1,2
28.07.2020
点击此处输入 相关文本内容
2/93
量子化学 第四章
4.1 变分法 4.2 休克尔分子轨道法 4.3 分子对称性在HMO方法中的应用 4.4 电荷密度 4.5 键级、成键度和自由价 4.6 共轭分子的稳定性和反应性 4.7 前线轨道理论及其在化学反应中的应用
28.07.2020 3/93
量子化学 第四章
若取 x(lx) 作为波函数,
28.07.2020 7/93
量子化学 第四章
err1.3%
28.07.2020 8/93
量子化学 第四章
1. 变分原理
体系 :
试探波函数

Ψ为一合格的波函数
0 真实波函数
变分原理
28.07.2020 9/93
变分过程
量子化学 第四章

《休克尔分子轨道法》课件

《休克尔分子轨道法》课件

休克尔分子轨道法的基本原理
分子轨道的构建方式
通过线性组合原子轨道的方式来构建分子轨道。
轨道能级的计算方法
使用哈密顿矩阵的对角化求解方法来计算轨道能级。
分子轨道系数的含义和求解方法
分子轨道系数表示原子轨道在分子轨道中的贡献程度,可以通过求解线性方程组得到。
应用实例
氢分子的构建和计算
通过休克尔分子轨道法可以计 算出氢分子的轨道能级和化学 键的性质。
ห้องสมุดไป่ตู้
苯分子的构建和计算
休克尔分子轨道法可以帮助我 们了解苯分子的共轭体系和芳 香性。
其他分子的构建和计算
休克尔分子轨道法适用于多种 有机分子和配合物的计算和预 测。
休克尔分子轨道法的局限性
1 大分子的计算难度
休克尔分子轨道法在计算大分子时面临计算复杂度增加的挑战。
2 电子相关性的考虑
在处理强关联体系时,休克尔分子轨道法需要考虑电子相关性的影响。
《休克尔分子轨道法》 PPT课件
欢迎来到《休克尔分子轨道法》PPT课件!本课件将详细介绍休克尔分子轨 道法的原理、应用实例、局限性以及未来的发展方向。让我们一起深入了解 这一重要的化学理论。
引言
休克尔分子轨道法是分子轨道理论的重要突破,本节将介绍分子轨道理论的 发展历程以及休克尔分子轨道法的背景和意义。
3 其他局限性
休克尔分子轨道法在处理某些特殊情况时存在一定的限制和不足。
休克尔分子轨道法的发展方向
1
各种扩展方法的简介
介绍了一些休克尔分子轨道法的扩展方法,如密度泛函理论和多配置自洽场方法。
2
对未来应用的展望
展望了休克尔分子轨道法在材料科学、药物设计等领域的未来应用和发展前景。

休克尔轨道法的分子图

休克尔轨道法的分子图

休克尔轨道法的分子图一、化学家休克尔E.Erich Armand Arthur Josephckel (1896~)联邦德国物理化学家。

1896年8月9日生于柏林夏洛腾堡。

1914年入格丁根大学攻读物理。

曾中断学习,在格丁根大学应用力学研究所研究空气动力学。

1918年重新攻读数学和物理,1921年在P.德拜的指导下获博士学位。

他在格丁根大学工作两年,曾任物理学家M.玻恩的助手。

1922年在苏黎世工业大学再度与德拜合作,任讲师。

1930年在斯图加特工业大学任教。

1937年任马尔堡大学理论物理学教授。

休克尔主要从事结构化学和电化学方面的研究。

他1923年和德拜一起提出强电解质溶液理论,推导出强电解质当量电导的数学表达式。

1931年提出了一种分子轨道的近似计算法即休克尔分子轨道法(HMO 法),主要用于π电子体系。

他在30年代还对芳香烃的电子特性在理论上作出了解释,并总结出:环状共轭多烯化合物中π电子数符合4n+2(n为1,2或3)者,具有芳香性。

二、休克尔分子轨道法(HMO法)的来源分子轨道理论在处理分子时,并不引进明显的价键结构的概念。

它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。

并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x,y,z)来描述。

每个分子轨道ψi都有一个确定的能值Ei 与之相对应,Ei近似地等于处在这轨道上的电子的电离能的负值,当有一个电子进占ψi 分子轨道时,分子就获得Ei的能量。

分子轨道是按能量高低依次排列的。

参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。

根据电子在分子轨道上的分布情况,可以计算分子的总能量。

π键实际上是持有电子的围绕参与组合的原子实的π分子轨道。

1931年,休克尔提出了一种计算π分子轨道及其能值的简单方法,称为休克尔分子轨道法(即HMO 法)。

休克尔分子轨道法ppt课件

休克尔分子轨道法ppt课件
评估污染物行为
在环境化学领域,休克尔分子轨道法可用于评估污染物的电子结构和性质,从而预测其在环境中的行为和归趋。
04
休克尔分子轨道法的局限性
和挑战
计算复杂度问题
计算资源需求高
由于休克尔分子轨道法涉及大量的矩 阵运算和迭代求解,因此需要高性能 的计算资源,如高性能计算机和大内 存。
计算时间长
并行化难度大
通过基组校正和基组完备性的研究, 可以进一步提高基组的描述能力,从 而得到更准确的结果。
06
结论
休克尔分子轨道法的价值和意义
理论价值
休克尔分子轨道法是量子化学中的重要理论工具,它为理解分子结构和性质提供了基础框 架。通过该方法,我们可以深入探究分子的电子结构和化学键的本质。
实际应用
休克尔分子轨道法在化学、材料科学、生物学等领域有着广泛的应用。它为新材料的合成 、药物设计、环境化学等领域提供了理论支持,有助于我们更好地理解物质性质和行为。
适用于具有共轭结构的分子,如烯烃、炔烃、芳香烃等, 可以用于预测分子的稳定性、反应活性以及电子光谱等性 质。
02
休克尔分子轨道法的基本原

分子轨道和电子云
分子轨道
描述分子中电子运动的波函数。
电子云
描述电子在分子中的概率分布。
分子中的电子排布
根据泡利不相容原理,每个分子 轨道最多只能填充两个自旋方向
促进科学发展
休克尔分子轨道法的发展推动了相关学科的进步,促进了化学与其他学科的交叉融合,为 科学技术的整体发展做出了贡献。
对未来研究和应用的建议
深入研究
技术革新
进一步深化对休克尔分子轨道法理论的研 究,探索其在更广泛领域的应用,如生物 大分子的结构和性质研究。

结构化学北大版第一章(4)势箱讲解

结构化学北大版第一章(4)势箱讲解

x nx ( x) B sin( 2mE ) B sin

nx 确定B值 ( x ) B sin
因为箱内粒子不能越过势箱,则粒子在箱内各处出现的几 率总和应满足根据归一化条件: ∫∞∣Ψ∣2dτ = 1 对一维势箱有: 所以
b


0
( x) dx 1
ψ3 0
E3
n=3
0
n=3
ψ3* ψ3
ψ2 0 ψ1 0
n=2 n=1
E2
0
n=2 n=1
ψ2* ψ2
E1
0
ψ1* ψ1
5.状态能量高低与波函数节点数之间 的关系 ------节点数(n – 1)越多,能量越高。
节点: 除边界外,Ψ = 0的点。
量子数 波函数 节点数 能量
n=1
n=2 n=3 … n=n
一维势箱的应用
粒子在箱中的平均位置 粒子的动量x轴分量PX
粒子的动量平方PX2
共轭体系中π电子的运动
箱中粒子出现的几率
1.粒子在箱中的平均位置
因为
X X , X X
X * X dx
0 ^
^
^
所以无本征值,只能求平均值。
x dx
2 0
解法二: 因为势箱中位能 V = 0 2 2 所以 n h
E T
8m
2
P T 2m
所以
2 x
n h P 2 4
2 x
2
2
共轭体系中π电子的运动
例1.丁二烯的离域效应
假定有两种情况:( a ) 4 个 π 电子形成两个定
域 π 键;( b ) 4 个 π 电子形成 π44 离域 π 键,每 两个碳原子间距离为ι。分析其能量。

休克尔分子轨道理论

休克尔分子轨道理论
0.838 0.391 0.391
0.447
0.838
0.894
H2C 0.894 CH
CH
CH2
1.00
1.00
1.00 分子图
1.00
三、电荷密度、键级、自由价 、分子图
1、电荷密度 :第r个原子上出现的电子数, r 等于离域电子 在第r个碳原子附近出现的几率:
r n j C jr 2
j
2、键级Prs :原子 i和 j 间 键的强度:
Prs n j c j对大小: 原子的总成键度: N r 自由价 F r:
同除以并令x
E , 得久期行列式
3 2 4
x 1 0 0
1 x 1 0
2
0 1 x 1
0 0 0 1 x
展开得,x( x 2x) ( x 1) x 3x 1 0 解得,x 0.618 , 1.618 由E x 得
x1 1.618, x 2 0.618, x3 0.618, x 4 1.618,


2 . 丁二烯的HMO
法处理
(1) HMO 法确定轨道及能量 丁二烯( H2C CH CH CH2 电子的分子轨道为 c11 c22 c33 c44
c1、c2、c3、c4 满足久期方程:
E 0 0 E 0 0 0 E 0 0 E
可得相应的 4套组合系数
4个碳原子的p轨道线性组合成4个分子轨道:
1 0.372 1 0.602 2 0.602 3 0.372 4
2 0.602 1 0.372 2 0.372 3 0.602 4
3 0.602 1 0.372 2 0.372 3 0.602 4 4 0.372 1 0.602 2 0.602 3 0.372 4

第12讲_休克尔分子轨道

第12讲_休克尔分子轨道
(d)改变分子的性质 如:甲苯和二甲苯的紫外吸收峰比苯的紫外吸收峰向长波 长方向偏移8nm和16nm。
第三章 分子的量子力学处理
不同碳氢化合物中碳原子的杂化形式与C—C键长和键能
Ni Pij
Ni — 分子中第i个原子的成键度
Pij —原子i与其邻接的原子间 键键级之和
(4) 自由价Fi —第i个原子剩余成键能力的相对大小
Fi Fmax- Pij i
Fmax — 碳原子 键键级中最大者,为 3
Pij —原子i与其邻接的原子间 键键级之和 i
(c)画出分子图
把共轭分子由HMO法求得的电荷密度、键级、自由价都标在一张分 子结构图上
第三章 分子的量子力学处理
苯的 轨 道能 级图
电子的 总能量
E总 2E14E2 6 a 8
相减
可见苯的E离的绝对值 比丁二烯的E离要大, 所以可以推知苯比丁二 烯稳定。
E离= 2
定域键电子 总能量
E定 6 a 6
第三章 分子的量子力学处理
对于含n个碳原子的单环共轭烯烃,其休克尔行列式为:
x 1 0 0 0 …0
共轭效应(离域效应)
⑴ 概念
一般包含双键和单键相互交替排列的分子形成离域键,这 时分子的物理性质和化学性质不是各个双键和单键性质的 简单加和,而具有特有的性能,这种现象称为共轭效应或 离域效应。
⑵ 作用 (a)共轭效应为化学中的一种基本效应 (b)影响分子的构型、构象 (c)物质的电性:离域键的形成使物质的导电性增加 (d)物质的颜色:光谱由键的紫外光区移至π键的可见光区 (e)物质的酸碱性和化学反应
HMO 系数
Ej
a
2
cos
j
n 1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档