液体混合装置控制的模拟
液体混合装置的模拟控制教学案例
液体混合装置的模拟控制教学案例中卫职业技术学校刘文新教学环节教师活动学生活动任务导入教师通过PPT或事先印好的资料,展示实训项目描述。
如图1所示为液体混合装置的模拟控制示意图:液体混合装置图1 液体混合装置的模拟控制示意图液体混合装置的具体控制要求如下:(1)按钮SB1为控制系统的启动按钮,按钮SB2为控制系统的停止按钮。
按下启动按钮后,控制系统开始运行,按下停止按钮后,控制系统必须完成当前液体的混合,并将混合后的液体由出料阀门YV3处全部输出完毕后方能停止工作。
(2)控制系统的运行过程:当液体混合装置启动后,液体A阀门YV1先打开,向混合槽中加入液体A,当混合槽中的液位到达液位开关SL2处时,液体A阀门YV1自动关闭,同时液体B阀门YV2自动打开,向混合槽中加入液体B,当液位到达液位开关SL1处时,液体B阀门YV2自动关闭,同时搅拌电机M1开始转动,搅拌6S后,搅拌电机自动停止,同时混合液体的出料阀门YV3打开开始出料,待混合槽中的液体到达液位开关SL3处时,再延时2S,自动关闭出料阀门YV3,完成液体混合全过程。
(3)若控制系统运行过程中没有按下停止按钮,则液体混合装置循环运行,直到按下停止按钮,液体混合装置完成当前混合任务并将混合液体完全输出后自动停止工作,系统恢复初始状态。
请根据上面的控制要求,编写PLC控制程序并进行电路的连接与调试。
根据任务制定完成任务的方案,现场分组三人一组自由组合,组内要有分工,明确各自所负责的内容(根据任务描述的内容进行I/O分配;设计完成任务的控制程序“梯形图—语句表”;连接控制线路;进行调试)。
03 用PLC进行混料罐的控制线路设计,并进行模拟调试
用PLC进行混料罐的控制线路设计,并进行模拟调试一、实验目的熟练使用各条基本指令,通过对工程事例的模拟,熟练地掌握PLC编程和调试。
二、液体混料罐控制模拟实验面板图:图1三、控制要求从面板图可知,本装置为两种液体混合的模拟。
SB1用于启动装置,SB2用于停止装置,开关S1用于选择配方,S2用于流程的循环选择,SL1、SL2、SL3为三个液面传感器,液体A、B及排液泵阀门由YV1、YV2、YV3控制,M为搅拌电机,由KM控制控制要求如下:初始状态:装置投入运行时,液体A、B阀门关闭,排液阀打开 3 秒。
启动操作:按下启动按钮SB1,装置开始按照以下约定的规律操作:液体A阀门打开,液体A流入混料罐,当液位升到SL2时,(若选配方1,S1=1)A阀门关闭,B阀门打开;(若选配方2,S1=0)A阀门、B阀门均开。
当液位升到SL1时,A阀门、B阀门关闭,搅拌机运行3秒,运行时间到,(配方1)排液阀YV3开,液位降至SL2时,搅拌机关;(配方2)搅拌机停止,排液阀YV3打开。
液位降到SL3时,延时3秒,混料罐放空,YV3关闭,此时完成一个工作循环,若S2=0,装置继续下一个工作循环,若S2=1,装置停止运行。
四、编制梯形图并写出程序,实验梯形图参考图2指令表五、将PTS-11挂件上PLC输出端的COM,COM0,COM1,COM2相接。
将PWD-42挂件上的液体混合装置控制模拟模块的SB1、SB2、SL1、SL2、SL3、S01、S02分别接至PTS-11挂件上的X0、X1、X2、X3、X4、X5、X6,YV1、YV2、YV3、YKM 分别接至 PTS-11挂件上的Y0、Y1、Y2、Y3,+24V、COM分别接至PWD41挂件上的+24V六.实验操作过程按实验接线接好连线,将程序输入到PLC中并运行PLC,排液阀YV3打开(指示灯亮),排出混料罐内剩余液体,3秒后关闭(指示灯灭)。
将SL1、SL2、SL3断开。
用PLC实现多种液体自动混合控制
用PLC实现多种液体自动混合控制近年来PLC在处理速度、控制功能、通信能力以及控制领域等方面都不断有新突破,因此当今PLC是集计算机技术、通信技术和自动控制技术为一体的新型工业控制装置,它具有可靠性高,编程方便、环境要求低、体积小、重量轻、功耗低等特点,是一种专为工业控制设计及过程控制的数字运算操作的电子系统,是实现机电一体化的理想控制设备。
PLC的应用范围很广泛,目前国内市场的PLC较常见的进口机有美国的AB 公司和通用电气(CE)公司,日本的三菱公司的立石公司,以及德国的西门子公司的产品。
日本松下电工公司的FP系列PLC进入国内市场相对较晚,但因其品种齐全、功能完善,而且在设计上有其独到之处,所以近年来推广很快。
FP1系列机属于小型机,它一般由主控单元、扩展单元、智能单元三部分组成。
该系列包括有C14, C16, C24, C40, C56, C72六种型号的主机和E8,E16,E24,E40四种型号的扩展单元。
主控单元加扩展单元的I/O点数最大可扩展至152点。
FP1系列不但硬件配置齐全,而且软件功能也很强,共有192条指令。
它具有结构紧凑、硬件配置齐全、软件功能强大等特点,而且它的某些功能甚至可与大型机相媲美,所以具有较高的性价比,特别适合于在轻工行业的中小型企业中推广应用。
本文采用日本松下公司生产的FP1系列C40---AFP12416(电源电压为AC100—240V,输入点数为24点,输出点数为16点,输入电压为DC24V,输出类型为继电器输出,AFP12416为品名)可编程控制器为主控部件,设计了一种对多种液体进行自动混合的控制系统。
一、系统简介及控制要求多种液体混合控制主要是将3种液体分别注入、搅拌、加热,最终达到自动混合的目的,L1、L2、L3为液位传感器,被液面淹没时输出高电平;Y1、Y2、Y3、Y4为电磁阀,得电时打开,失电时关闭;M为搅拌电机;H为加热器,如图1所示。
具体控制要求如下:1.初始状态容器是空的,阀门Y1、Y2、Y3、Y4均为OFF,液位传感器L1、L2、L3均为OFF,搅拌机M为OFF,加热器H为OFF。
西门子PLC实验
实验四液体混合装置控制的模拟
5.思考题:
1.试修改程序实现先让B阀门进料, 然后A阀门进料, 即调换A,B阀门进料的顺序。
2.试修改程序实现搅拌电机工作的时间, 将其设置为30S。
实验五(1) LED数码显示控制
1. 5.思考题:
2.试修改程序实现LED灯亮的顺序颠倒, 即显示次序是数字及字符, 显示次序是F、E、d、
C、b、A、9、8、7、6、5、4、3、2、1、0, 随后显示单位段码H, G, F, E, D, C, B,
A。
3.试修改程序实现改变LED显示变换的速度。
实验六水塔水位模拟控制参考实验程序
4.思考题:
1.能否用定时器来实现水塔水位控制的全自动控制?
实验九十字路口交通灯控制的模拟实验参考程序:
4.工作过程
当起动开关SD合上时, I0.0触点接通, T37开始计时, 南北红灯亮;同时T38开始计时, 东西绿灯亮。
20s之后T38时间到, 将东西绿灯亮绿灯亮(M0.2)复位, 同时T39开始计时, 东西绿灯闪亮3s, 3s之后T40开始计时, 东西黄灯亮2s;2s后南北红灯灭、东西黄灯灭、东西红灯亮(T41开始计时25s)、南北绿灯亮(T42开始计时20s), 20s之后T43开始计时, 南北绿灯闪亮3s(T43计时3s)后T44开始计时, 南北黄灯亮2s.
按照上顺序周而复始地运行。
甲车为东西方向行车, 乙车为南北方向行车。
5.思考题:
1、本次试验中小车的运行状态是与相反方向的红灯状态同时进行的, 如何实现小车运行与同向绿灯同步?。
两种液体的混合装置PLC控制系统设计说明
两种液体的混合装置PLC控制系统设计设有两种液体A和B在容器按照一定比例进行混合搅拌,装置结构如图10-1所示。
其中SL1、SL2、SL3为液面传感器,当液面淹没时分别输出信号。
YV1、YV2、YV3为电磁阀,M为搅拌用电动机。
图10-1 两种液体混合装置示意图1.控制要求(1)初始状态此时各阀门关闭,容器是空的。
YV1=YV2=YV3=OFFSL1=SL2=SL3=OFFM=OFF(2)启动操作合上起动开关,开始下列操作:①YVl=ON,液体A流入容器,当液面到达SL3时,YV1=OFF, YV2=ON;②液体B流入,液面达到SL1时,YV2=OFF,M=ON,开始搅拌(设时间为16 s)。
在搅拌期间,为了搅拌的均匀,缩短搅拌时间,要求:正、反转搅拌;③混合液体搅拌均匀后,M=OFF,YV3=ON,放出混合液体。
④当液体下降到SL2时,SL2从ON变为OFF,再过20 s后容器放空,关闭YV3。
(YV3=OFF)完成一个操作周期;⑤只要没断开开关,则自动进入下一操作周期。
(3)停止操作当断开起停开关,待当前混合操作周期结束后,才停止操作,使系统停止于初始状态。
(4)拖动情况搅拌机由一台三相异步电动机拖动,要求电动机可正、反转,直接起动,自由停机。
2.设计要求(1)完成控制要求中的控制过程。
(2)搅拌液体时,要求:正、反搅拌交替进行。
(3)在发生突发事件后(如突然停电)整个控制系统能继续突发事件前工作状态工作,也能通过手动使系统回到原始(循环工作前)状态。
(4)作出I/O分配表、PLC的I/O接线图。
设计流程图、梯形图、指令表、调试操作板布置图。
(5)编制设计使用说明书。
3.设计过程(1) I/O分配表(见表10 -1)在了解了系统工艺要求和控制要求后,首先要做I/O分配,把已知的输入信号和输出信号分配给PLC的指定I/O端子。
表10-1 I/O分配表(2) PLC的I/O接线图(见图10 -2)图10-2 PLC的I/O接线图(3)设计梯形图程序根据控制要求,选择用顺序控制设计两种液体混合装置的系统控制,其步骤如下:①A液体流入(对应的Y11=ON),当SL3液面中位传感器动作(X3=ON),使KV1停止工作( Y11=OFF)。
【精品】液体混合装置plc控制
内容摘要液体混合装置在工业生产中扮演着重要的角色,保障液体混合装置安全、可靠的运转,并提高该系统的自动化水平是本次设计的首要目标。
随着PLC技术的日趋完善以及PLC在实际工程自动化控制领域中所表现出来的高可靠性、高稳定性等优点逐渐显现,其在自动化控制领域的应用也越来越广泛。
将PLC应用于工业混合搅拌设备,使得搅拌过程实现了自动化控制、并且提升了搅拌设备工作的稳定性,为搅拌机械可靠、安全、有序的工作提供了强有力的保障。
本文所介绍的两种液体混合装置的PLC控制程序可进行连续自动循环工作,在设计的过程中充分进行了设备运行的可靠性分析,并辅助以高分辨率的光电液位传感器严格控制所注入的两种液体的比例,严格保证混合溶液的质量,为后续工序的进行奠定良好的基础。
同时,PLC所具有的高稳定性和高可靠性可确保该装置长期连续运行,减少了线路检修和维护的时间,大大提高了生产效率。
关键词:可编程序控制器PLC;液体混合装置;自动化控制目录第1章前言--------------------------------------------------------------- 11.1设计内容 ---------------------------------------------------------- 11.2控制要求 ---------------------------------------------------------- 1第2章总体方案设计------------------------------------------------------- 32.1总体方案论证 ------------------------------------------------------ 32.2系统硬件配置 ------------------------------------------------------ 42.3系统可靠性设计 ---------------------------------------------------- 6第3章PLC控制系统设计--------------------------------------------------- 73.1主电路的设计 ------------------------------------------------------ 73.2确定I/O数量,选择PLC类型 ---------------------------------------- 73.2.1I/O数量的确定 (7)3.2.2PLC类型的选择 (7)3.3I/O点的分配与编号 ------------------------------------------------- 83.4控制流程图 -------------------------------------------------------- 83.5元器件明细表 ----------------------------------------------------- 103.6I/O接线图 -------------------------------------------------------- 103.7控制程序梯形图 --------------------------------------------------- 113.8控制程序语句表 --------------------------------------------------- 133.9程序调试 --------------------------------------------------------- 15结论-------------------------------------------------------------------- 19设计总结---------------------------------------------------------------- 20谢辞-------------------------------------------------------------------- 21参考文献---------------------------------------------------------------- 22第1章前言1.1设计内容利用西门子PLC的S7-200系列设计两种液体混合装置控制系统。
第10章多种液体混合装置控制
5.关闭“启动”开关,在当前的混合液处理完毕后,停止操作。
三、程序流程图
四、I/O分配
PLC地址(PLC端子) 电气符号(面板端子)
功能说明
多种液体混合装置控制
多种液体混合装置控制
一、工艺要求
二、控制要求
1.总体控制要求:如面板图所示,本装置为三种液体混合 模拟装置,由液面传感器SL1、SL2、SL3,液体A、B、 C阀门与混合液阀门由电磁阀YV1、YV2、YV3、YV4, 搅匀电机M,加热器H,温度传感器T组成。实现三种液 体的混合,搅匀,加热等功能。
X00
SD
启动(SD)
X01
SL1
液位传感器SL1
X02
SL2
液位传感器SL2
X03
SL3
液位传感器SL3
X04
T
温度传感器T
Y00
YV1
进液阀门A
Y01
YV2
进液阀门B
Y02
YV3
进液阀门C
Y03
YV4
排液阀门
Y04
YKM
搅拌电机
Y05
H
加热器
主机COM、面板COM接电源GND
电源地端
主机COM0、COM1、COM2、COM3、COM4、COM5、 接电源GND
七、程序设计
电源地端
面板V+接电源+241.检查实训设备中器材及调试程序。 按照I/O端口分配表或接线图完成PLC与实训模块之间的
接线,认真检查,确保正确无误。 打开示例程序或用户自己编写的控制程序,进行编译,
液体混合装置(全).
液体混合装置的控制系统设计摘要随着科学技术的发展,人们的生活日趋自动化,生产技术更是如此。
PLC 作为计算机家族中的一员,是为工业控制应用而设计的。
随着微处理器、计算机和通信技术的飞速发展,可编程序控制器PLC在工业控制中的地位也日益提升并且在工业控制中得到广泛应用,而且可编程控制器在工业控制中所占比重在迅速的上升。
本次设计是利用PLC实现两种液体的自动混合。
此次设计主要考虑其各个不同状态动作的连续和关联,对不同的状态进行不同的动作控制输出,从而实现将AB两种液体混合的周期性控制(包括单周期)。
本次设计的主要意义是:用PLC编程来控制,一方面可以省去人力物力,从而达到节省成本的目的;另一方面,程序的合理性,全面性和可靠性可以使液体混合能更安全可靠全面的实现。
关键词:液体混合装置;PLC编程;自动控制目录1 绪论 (4)1.1 研究现状 (4)1.2液体混合的特点及新型控制的特点 (4)1.3研究的方法 (5)1.3.1继电器控制系统 (5)1.3.2单片机控制 (5)1.3.3可编程序控制器控制 (6)1.4研究本课题的意义 (6)2 混合装置系统设计 (8)2.1设计任务书 (8)2.2 系统的整体设计要求 (8)2.3系统方案的设计思想 (10)3 系统硬件的设计 (11)3.1系统流程图 (11)3.2 电机硬件接线图 (12)3.3系统主电路图 (12)3.4 PLC输入输出的分配 (13)3.5 液体混合装置的接线图 (13)3.6 PLC控制的相关流程 (14)4 软件设计 (15)4.1 PLC概况 (15)4.2 PLC特点 (15)4.3 PLC的基本组成 (15)4.3.1 中央处理器(CPU) (16)4.3.2 存储器模块 (16)4.3.3输入/输出模块 (16)4.3.4 编程器 (16)4.3.5 电源模块 (16)4.4 PLC的工作原理 (17)4.4.1扫描技术 (17)4.4.2 PLC的两种工作状态 (18)4.5可编程控制器梯形图 (19)4-6 语句表 (20)5 各部件的选择与校核 (21)5.1液面传感器的选择 (21)5.2 电磁阀的选择 (22)5.3缸体材质的选择 (23)5.4搅拌器的选用与校核 (24)5.5轴封的选用与校核 (25)5.6搅拌轴的校核 (26)5.7 电动机的选用与校核 (27)5.8元件选择 (28)6总结及进一步研究方向 (29)致谢 (30)参考文献 (31)1 绪论1.1 研究现状随着工业技术的不断革新,在炼油、化工、制药等行业中,多种液体混合是必不可少的工序,而且也是其生产过程中是非常重要的组成部分。
PLC液体混合实验报告
实验三液体混合装置控制模拟实验1. 实验目的(1)结合多种液体自动混合系统,应用PLC技术对化工生产过程实施控制;(2)学会熟练使用PLC解决生产实际问题。
2. 实验设备(1)计算机(编程器)1台;(2)实验装置(含S7-200 24点CPU 1台;(3)多种液体自动混合实验模板1块;(4)连接导线若干。
3•液体自动混合系统的控制要求VI ¥2 Y4 II K T Li LI LS 鮎丫(1)液体自动混合系统的初始状态:图1.19多种液体混合模拟控制板在初始状态,容器为空,电磁阀丫1, 丫2, 丫3, Y4和搅拌机M以及加热元件R均为OFF 液面传感器L1,L2,L3和温度检测T均为OFF(2)液体混合操作过程:按动启动按钮,电磁阀丫1闭合(Y1为ON,开始注入液体A,当液面高度达到L3时(L3为ON -关闭电磁阀丫1 (Y1为OFF,液体A停止注入,同时,开启电磁阀门丫2 (Y2为ON注入液体B ,当液面升至L2时(L2为ON - 关闭电磁阀丫2 (Y2为OFF,液体B停止注入,同时,开启电磁阀丫3( Y3为ON,注入液体C,当液面升至L1时(L1为ON - 关闭电磁阀Y3 (Y3为OFF,液体C停止注入,然后开启搅拌电动机 M搅拌10秒—停止搅拌,加热(启动电炉R)-当温度(检测器T动作)达到设定值时-停止加热(R为OFF,并放出混合液体(丫4为ON,至液体高度降为L3后,再经5秒延时,液体可以全部放完 -停止放出(Y4为OFF。
液体混合过程结束。
按动停止按钮,液体混合操作停止。
4.实验内容及要求(1)按液体混合要求,设计 PLC 外部电路(配合使用通用器件板开关元器件);(2) 连接PLC外部(输入、输出)电路,编写用户程序;(3) 输入、编辑、编译、下载、调试用户程序;(4) 运行用户程序,观察程序运行结果。
5.思考练习功能表图:,SM0.1-10事起功搖钮v--------------------------RL10 TSS Ml 0 TSS梯形图:精品资料。
【三菱PLC理实一体化教学项目】项目八 液体混合系统控制
输出端接线 输入端接线
PLC实训台模拟调试接线图。
04
基本应用技巧
part
PLC与外部设备的连接
PLC常见的输入设备有按钮、行程开关、接近开关、转换开关、编 码器、各种传感器等,输出设备有继电器、接触器、电磁阀等。
这些外部元件或设备与PLC连接时,必须符合PLC输入和输出接口 电路的电气特性要求,才能保证PLC安全可靠的工作。
(四)PLC与感性输出设备的连接
1.直流感性负载,在其两端并联续流二极管。如 图中与Y4连接的是直流感性负载; 2.交流感性负载,在其两端并联阻容吸收电路。 如图中与Y0连接的是交流感性负载
图中续流二极管选用额定电流大于负载电流、额定电压大于电源电压的5-10倍;电阻值 可取50~120Ω,电容值可取0.1~0.47μF,电容的额定电压应大于电源的峰值电压。
图 PLC与一般输出设备的连接示意图
如图所示,KM1、KM2、KM3均为交流220V电源情况,所以COM1组公共端;而KA则使用了COM2组, 保证了不同电压等级的输出设备连接的安全性。要注意的是在设计过程中,尽可能采取措施使PLC 输出端连接的控制元件为同一电压等级。
另外还要注意,在PLC输出继电器同为ON时可能造成电气故障的情况,应首先考虑外部互锁的 解决措施。例如图中KM2与KM3之间具有外部互锁的接线情况。
PLC的I/O分配地址如表所示:
输入信号 1 X0 启动按钮 SB1 2 X1 停止按钮 SB2 3 X2 上限液位开关SL1 4 X3 中限液位开关SL2 5 X4 下限液位开关SL3 6 X5 热保护继电器 FR
输出信号 1 Y0 接触器 KM 2 Y1 中间继电器KA1 3 Y2 中间继电器KA2 4 Y3 中间继电器KA3
基于MCGS的PLC液体混合控制系统设计
摘要本组课题是对液体自动混合装置的模拟控制,实现液体混合装置的自动添加液体、自动混合等自动控制功能。
在本设计的梯形图设计中是大量运用计时器和顺序控制继电器指令来完成的。
在PLC程序设计的基础上结合有关的外围设备形成一个易于工业控制的系统整体,在易于扩展其功能的原则而设计。
本监控系统采用PLC为控制核心,具备自动混合两种液体的功能,由传感器检测储藏罐中的液面高度,按顺序加入A和B两种液体,搅拌40s后放出混合液体。
过程监控上,我们采用的是MCGS组态软件,这是我国自主研发的组态软件,适用于各品牌的PLC。
在课程设计中主要进行的是设备的基本机构图,混合装置控制的模拟实验面板图,PLC 的选型,外部硬件接线图,以及绘制所要实现的功能图,进而在GX_Developer与GX.Simulator中仿真调试,输出对应的指令表;在MCGS中设计监控的人机界面,对于储藏罐以及传感器和电磁阀和流动块的属性设置,同时绘制历史报表,最后将PLC中的程序同步到MCGS中,进行仿真调试,实现界面的实时监控,以及历史数据和曲线的实时监测。
关键词:液体自动混合,可编程控制器PLC,MCGS组态软件冯祥:基于MCGS的PLC液体混合控制系统设计AbstractThis topic is for liquid automatically mixing device simulation control,the fulfilling liquid mixing device automatically add liquid,automatic mixing automatic control function.In this design ladder diagram design is application of a timer and sequence control relay instructions to finish. On the basis of the PLC program design combined with related peripheral devices formed an easy to industrial control of the whole system,easy to expand its function in the principle of design. The monitor system adopts PLC as control core,with automatic mixing two liquids function by the tanks sensor test highly liquid surface,in order to join A and B two liquids,stirring 3min after release mixture liquid. Process monitoring, we use is MCGS software,this is our country self-developed configuration software,applicable to the brand of PLC.In the course design of main equipment of the basic organization chart is mixing device control simulation experiments of panel figure,PLC selection,external hardware hookup and mapping to achieve the functional diagram,and in the GX_Developer GX. With weathering steel during commissioning,output of simulation corresponding instruction form;In the MCGS in design human-machine interface,for monitoring and tanks sensor and solenoid and flow pieces of attribute to set,while drawing history statements and will last a program in a PLC synchronization to MCGS,debugging realize simulation,real-time monitoring of the interface and the history data and curve of real-time monitoring.Keywords:liquid automatically mixing,PLC programmable controller,MCGS目录前言 (5)1 PLC及液体混合机的PLC控制 (6)1.1 PLC的由来及其定义 (6)1.2 PLC的发展历程 (6)1.3 PLC与MCGS通讯要求 (7)1.4 MCGS运行环境 (8)2基于FX2N的液体混合实际控制系统设计 (9)2.1 选择PLC型号 (9)2.2 I/O分配表 (9)2.3 外部接线图以及控制要求 (10)3工作过程分析 (11)3.1 工作过程分析 (11)3.2 详细过程分析 (12)4软件设计 (14)4.1 手动部分软件设计 (14)4.2自动部分软件设计 (16)4.3 指令表 (18)5基于MCGS的虚拟混合液位控制系统设计 (19)5.1组建系统工程 (19)5.2液体自动混合画面中构件的属性设置 (20)6. MCGS与PLC通讯与工程模拟 (22)冯祥:基于MCGS的PLC液体混合控制系统设计6.1制作动画显示画面 (22)6.2脚本程序编写 (23)6.3建立设备构件 (24)6.4程序下载整体运行与综合测试 (25)7结束语 (26)致谢 (27)参考文献 (27)附录 (28)前言今天,我们的生活环境和工作环境有越来越多称之为可编程控制器的小电脑在为我们服务,可编程控制器的应用非常广泛,它在工业控制,尖端武器,通信设备,信息处理,家用电器等各测、控制领域都发挥着举足轻重的作用。
实验八液体混合装置控制的模拟
实验八液体混合装置控制的模拟在MF24模拟实验挂箱中液体混合装置的模拟控制实验区完成本实验一、实验目的熟练使用各条基本指令,通过对工程实例的模拟,熟练地掌握PLC的编程和程序调试。
二、控制要求本装置为两种液体混合模拟装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅匀电机,控制要求如下:初始状态:装置投入运行时,液体A、B阀门关闭,混合液阀门打开20秒将容器放空后关闭。
启动操作:按下启动按钮SB1,装置就开始按下列约定的规律操作:液体A阀门打开,液体A流入容器。
当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。
液面到达SL1时,关闭液体B阀门,搅匀电机开始搅匀。
搅匀电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。
当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。
停止操作:按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。
三、液体混合装置控制的模拟实验面板图:此面板中,液面传感器用钮子开关来模拟,启动、停止用动合按钮来实现,液体A阀门、液体B阀门、混合液阀门的打开与关闭以及搅匀电机的运行与停转用发光二极管的点亮与熄灭来模拟。
四、输入/输出接线列表输入接线SB1SB2SL1SL2SL3 X0X1X2X3X4输出接线YV1YV2YV3YKM Y0Y1Y2Y3五、工作过程分析根据控制要求编写的梯形图分析其工作过程。
启动操作:按下启动按钮SB1,X000的动合触点闭合,M100产生启动脉冲,M100的动合触点闭合,使Y000保持接通,液体A电磁阀YV1打开,液体A流入容器。
当液面上升到SL3时,虽然X004动合触点接通,但没有引起输出动作。
当液面上升到SL2位置时,SL2接通,X003的动合触点接通,M103产生脉冲,M103的动合触点接通一个扫描周期,复位指令RST Y000使Y000线圈断开,YV1电磁阀关闭,液体A停止流入;与此同时,M103的动合触点接通一个扫描周期,保持操作指令SET Y001使Y001线圈接通,液体B电磁阀YV2打开,液体B流入。
液体混合装置控制plc实验报告
液体混合装置控制plc实验报告液体混合装置控制PLC实验报告一、实验目的本实验旨在通过液体混合装置控制PLC实验,学习PLC控制系统的基本原理和应用,了解液体混合装置的工作原理及其控制方法,并能够独立完成液体混合装置的PLC程序设计和调试。
二、实验原理1. 液体混合装置的工作原理液体混合装置是一种常见的工业设备,它主要由搅拌器、进料管道、出料管道、计量泵等组成。
在工作时,将需要混合的物质分别加入到不同的容器中,通过计量泵将各个容器中的物质按照一定比例送入搅拌器中进行混合。
最终得到所需的混合物。
2. PLC控制系统的基本原理PLC是可编程逻辑控制器(Programmable Logic Controller)的简称,它是一种广泛应用于工业自动化领域中数字电子计算机系统。
PLC 可以根据用户需求编写程序,在特定条件下对各种设备进行精确控制。
其具有高可靠性、高稳定性和强抗干扰能力等特点。
三、实验器材1. 液体混合装置2. PLC控制器3. 计量泵4. 电缆及连接器5. 电源四、实验步骤1. 连接液体混合装置和PLC控制器,按照电路图连接计量泵和电源。
2. 打开PLC编程软件,编写液体混合装置的PLC程序。
3. 将编写好的PLC程序下载到PLC控制器中。
4. 启动液体混合装置,观察其工作状态,检查是否正常运行。
5. 调整计量泵的流量,验证液体混合比例是否正确。
五、实验结果分析在本次实验中,成功地应用了PLC控制系统对液体混合装置进行了精确控制。
通过调整计量泵的流量,得到了所需的混合物,并验证了其比例正确。
六、实验总结本次实验通过液体混合装置控制PLC实验的设计与操作,使学生们更加深入地理解了PLC系统的基本原理和应用,并且能够独立完成液体混合装置的PLC程序设计和调试。
同时也让学生们更加熟悉工业自动化领域中的数字电子计算机系统,为今后的工作和学习打下坚实的基础。
PLC的两种液体混合控制系统设计方案
PLC课程设计报告液体混合的模拟控制2016年5月25日摘要PLC以其独特的优点得到迅速地发展和普及,并在冶金、机械、纺织、轻工等诸多领域取代了传统的继电接触器控制。
掌握可编程控制器的工作原理、具备设计、调试可编程控制器系统的能力,已成为现代工业对电气技术人员的基本要求。
将PLC应用于液体混合装置的控制,对于学习和工业上的应用显得尤为重要。
本设计以两种液体的混合控制为例,要求是将两种液体按一定比例混合,在搅匀电机搅匀后将混合液体输出容器。
并自动开始下一周期,形成一个循环状态。
在按下停止按钮后所有工序停止操作。
同时,该设计采用西门子公司的S7-200系列机型进行控制系统的PLC程序设计,利用模拟装置对两种液体混合的工业流程进行模拟。
关键词:两种液体、混合装置、自动控制目录1 液体自动混合系统方案设计01.1 控制要求01.2 编程软件地址分配表01.3 PLC外部电路接线图11.4 主电路连接图11.5 控制程序21.6顺序功能图22 液体自动混合系统的硬件设计32.1 硬件选型32.2 主电路的设计32.3 液体混合控制系统示意43液体自动混合系统的软件设计53.1 PLC控制的相关流程图53.2 可编程控制器梯形图54 心得体会9参考文献101 液体自动混合系统方案设计1.1 控制要求本课程设计是基于PLC的液体自动混合搅拌系统设计,L1、L2、L3是液面传感器。
两种液体的流入由电磁阀Y1和Y2控制,混合液的流出由电磁阀Y3控制。
搅拌电动机用于驱动桨叶将液体混合均匀。
本系统的工作原理如图1-1-1所示。
按下起动按钮,电磁阀Y1闭合,开始注入液体A,按L2表示液体到了L2的高度,停止注入液体A。
同时电磁阀Y2闭合,注入液体B,按L1表示液体到了L1的高度,停止注入液体B,开启搅拌机M,搅拌4s,停止搅拌。
同时Y3为ON,开始放出液体至液体高度为L3,再经2s停止放出液体。
同时液体A注入。
开始循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液体混合装置控制的模拟
在MF24模拟实验挂箱中液体混合装置的模拟控制实验区完成本实验
一、实验目的
熟练使用各条基本指令,通过对工程实例的模拟,熟练地掌握PLC的编程和程序调试。
二、控制要求
本装置为两种液体混合模拟装置,SL1、SL2、SL3为液面传感器,液体A、B阀门与混合液阀门由电磁阀YV1、YV2、YV3控制,M为搅匀电机,控制要求如下:
初始状态:装置投入运行时,液体A、B阀门关闭,混合液阀门打开20秒将容器放空后关闭。
启动操作:按下启动按钮SB1,装置就开始按下列约定的规律操作:
液体A阀门打开,液体A流入容器。
当液面到达SL2时,SL2接通,关闭液体A阀门,打开液体B阀门。
液面到达SL1时,关闭液体B阀门,搅匀电机开始搅匀。
搅匀电机工作6秒后停止搅动,混合液体阀门打开,开始放出混合液体。
当液面下降到SL3时,SL3由接通变为断开,再过2秒后,容器放空,混合液阀门关闭,开始下一周期。
停止操作:按下停止按钮SB2后,在当前的混合液操作处理完毕后,才停止操作(停在初始状态上)。
三、液体混合装置控制的模拟实验面板图:
此面板中,液面传感器用钮子开关来模拟,启动、停止用动合按钮来实现,液体A阀门、液体B阀门、混合液阀门的打开与关闭以及搅匀电机的运行与停转用发光二极管的点亮与熄灭来模拟。
五、工作过程分析
根据控制要求编写的梯形图分析其工作过程。
启动操作:按下启动按钮SB1,X000的动合触点闭合,M100产生启动脉冲,M100的动合触点闭合,使Y000保持接通,液体A电磁阀YV1打开,液体A流入容器。
当液面上升到SL3时,虽然X004动合触点接通,但没有引起输出动作。
当液面上升到SL2位置时,SL2接通,X003的动合触点接通,M103产生脉冲,M103的动合触点接通一个扫描周期,复位指令RST Y000使Y000线圈断开,YV1电磁阀关闭,液体A 停止流入;与此同时,M103的动合触点接通一个扫描周期,保持操作指令SET Y001使Y001线圈接通,液体B电磁阀YV2打开,液体B流入。
当液面上升到SL1时,SL1接通,M102产生脉冲,M102动合触点闭合,使Y001线圈断开,YV2关闭,液体B停止注入,M102动合触点闭合,Y003线圈接通,搅匀电机工作,开始搅匀。
搅匀电机工作时,Y003的动合触点闭合,启动定时器T0,过了6秒,T0动合触点闭合,Y003线圈断开,电机停止搅动。
当搅匀电机由接通变为断开时,使M112产生一个扫描周期的脉冲,M112的动合触点闭合,Y002线圈接通,混合液电磁阀YV3打开,开始放混合液。
液面下降到SL3,液面传感器SL3由接通变为断开,使M110动合触点接通一个扫描周期,M201线圈接通,T1开始工作,2秒后混合液流完,T1动合触点闭合,Y002线圈断开,电磁阀YV3关闭。
同时T1的动合触点闭合,Y000线圈接通,YV1打开,液体A流入,开始下一循环。
停止操作:按下停止按钮SB2,X001的动合触点接通,M101产生停止脉冲,使M200线圈复位断开,M200动合触点断开,在当前的混合操作处理完毕后,使Y000不能再接通,即停止操作。
六、梯形图参考程序。