图形全等PPT
合集下载
全等图形 PPT
识
珠
(1)
(2)
(3)
(4)
6 (5)
(7)
((8) (9)
(16)
(12) (13) (14)
(15)
(17)
答:(2) 和(4)、(3)和(14)、(5)和(17)
(6)和(16)、(8)和(13)
全等三角形:
能够完全重合的三角形叫全等三角形.
A
D
△ABC ≌△DEF
B
C
E
F
三条边、三个角对应相等的两个三角形全等.
自我反思:
我认识了…… 我学会了…… 我想到了……
课后作业
1 .课本第143页第1-4题.
我
2.你能把下面的这个平行四边形
提
升
(1)分成两个全等的图形吗?
(2)分成四个全等的图形吗?
我
(3)分成三个全等的图形吗?
快
乐
3 .在这个平行四边形的四条边上找两点(不能 是各边的中点,也不能是顶点),使得连结这 两点的线段把这个平行四边形分成两个全等的 图形.
请欣赏图片(一)
下面的图形中有些是完全一样的,如果把它们叠在一 起,它们就能重合.请你分别从图中找出这样的图 形.
两个能够重合的图形称为全等图形.
议一议:
全等图形有什么特征?
全等图形的形状和大小都相同
观察下列各组图形是不是全等图形?为什么?
பைடு நூலகம்1.
不全等
2.
全等
3.
全等
4.
不全等
慧 眼
请找出下面各图中的全等图形:
全等三角形的对应边相等、对应角相等.
牛刀小试
如图,已知 △ABC ≌△CDA,
12-1 全等三角形 课件(共26张PPT)
时,对应的顶点放在对应的位置上.
知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
知识梳理
例题 1:如图所示,△ ≌△ ,指出所有的对应边和对应角.
AB与DC,AC与DB,BC与CB是对应边;
∠ABC与∠DCB,∠A与∠D,∠ACB与∠DBC是对应角。
【解答】(1)已知△ABC≌△DCB,故公共边BC和CB
是对应边,它们所对的∠A和∠D是对应角,最短边
【结论】本题考查了全等三角形的性质及
比较角的大小,解题的关键是找到两全等
三角形的对应角、对应边.
80°
.
知识梳理
例题4:如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,
如果∠BAF = 60°,那么∠DAE= 15°
角
例题5:如图,△ ABC ≌△ ADE,则AB = AD ,∠E =
知识梳理
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合
的边叫做对应边,重合的角叫做对应角。例如,图中的△ 和△
全等,记作△ ≌ ,其中点和点,点和点,点
和点是对应顶点;和,和,和是对应边;∠和
∠,∠和∠,∠和∠是对应角.
∠BAE = 130°,∠BAD = 50°,则∠BAC=
。
80°
∠C
,若
知识梳理
例题6:如图,已知△ ABC ≌△ EBF,AB ⊥ CE,ED ⊥ AC,∠A = 24°,
则:(1)AB =
EB ,BC = BF ,∠C = 66 °,∠EFB = 66 °;
(2)若AB = 5cm,BC = 3cm,则AF = 2cm 。
AB和DC是对应边,它们所对的∠ACB和∠DBC是对应
角,余下的一对边和一对角分别是对应边和对应角.
(2)根据书写规范可知点A和点D,点B和点C,点C
图形的全等+课件+2024学年北师大版数学七+年级下册
3.下列说法中正确的是( D) A.两个面积相等的图形,一定是全等图形 B.若两个图形周长相等,则它们一定是全等图形 C.两个等边三角形一定是全等图形 D.能够完全重合的两个图形是全等图形
若△ABC与△DEF全等,记作△ABC≌△DEF
(全等时,通常把表示对应顶点的字母写在对应的位置上)
C
F
A
B
AB,AC,BC分别与哪条边对应?
思考
1.给出下列说法:①边数相等的两个正多边形一定全等;②内角和相 等的两个正多边形一定全等;③周长相等的两个正多边形一定全等; ④内角和相等、周长相等的两个正多边形一定全等.其中一定正确的 说法有( A ) A.1个 B.2个 C.3个 D.4个
2.下列说法:①全等图形的面积相等;②全等图形的形状相同;③全 等图形的对应边相等;④全等图形的对应角相等.其中正确的说法的 个数是( D) A.1 B.2 C.3 D.4
2.如图1,把正方形网格分割成了两个全等图形.请在图2中, 沿着虚线画出四种不同的分割方法,把的正方形网格分割成 两个全等图形
3.如图,某人不小心将一块正五边形玻璃打碎成四块,若想到玻 璃店配一块与原来一样大小的五边形玻璃,那么最省事的方法 应该带玻璃碎片( A ) A.① B.①② C.①③ D.①③④
图形的全等
学ห้องสมุดไป่ตู้目标:
1.理解图形全等的概念和特征并能识别全等图形 2.全等三角形全等的理解
观察
每组图形完全一样吗? 叠在一起的话会完全重 合吗?
平面内,能够完全重合的两个图形称为全等图形
C
F
A
B
D
E
上图中的两个三角形是全等图形,每条边,每个角都对应相等。
图中,∠A与哪个角对应? ∠C与哪个角对应? ∠B与哪个角对应?
全等图形课件
两个能够重合的图形称为全等图形.
议一议:
全等图形有什么特征?
全等图形的形状和大小都相同
观察下列各组图形是不是全等图形?为什么?
1. 2.
不全等
全等
3. 4.
全等 不全等
慧 眼 请找出下面各图中的全等图形: 识 珠
(1) (2) (3)
(4)
(5)
6
(7)
((8)
(9)
(16)
(12) (13) (14) (15) (17)
E
C
牛刀小试
如图,已知 △ABC ≌△CDA,
∠B=450 , ∠BAC =950,BC=18 A D
B C
1、写出△ABC和△CDA的对应边和对应角;
2、求∠DAC的度数和边DA的长.
我们来看一下解题过程
A
95
0
?
D C
B
450
△ABC≌△CDA
• 解:⑴AB和CD是对应 边,BC和DA是对应边, AC和CA是对应边。 ∠BAC和∠DCA是对应 角,∠B和∠D是对应角, ∠BCA和∠DAC是对应 角。 • ⑵在△ABC中, ∠BCA=1800_∠B∠BAC=1800 -450 -950 =400 。因为∠BCA和 ∠DAC是全等三角形的 对应角,所以, • ∠DAC=∠BCA=400 。 • 因为DA和BC是全等三 角形的对应边, • 所以,DA=BC=18.
√
) ( )
⒋ 若△ABC≌△DEF,则∠A=∠D,AB=EF . ×
找出下列图形中对应相等的边和角
A O C
B
A
D
A
D
D B
△ABO≌△DCO OA=OD; OB=OC AB=DC ∠A=∠D ∠B=∠C ∠AOB=∠DOC
北师大版七年级数学下册 4.2《图形的全等》教学课件%28共32张PPT%29
EF=7,求∠DEF的度数和CF的长.
E
D
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=7-4=3.
C A
F B
典型例题
例4.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D= 25°,∠EAB=120°,求∠ACB的度数.
探究新知
②如图,已知△ABC≌△A′B′C′,在△A′B′C′中画出与线段DE相 等的对应线段.
典型例题
例1.下列四个图形是全等图形的是( C)
A .(1)和(3) C .(2)和(4)
B .(2)和(3) D .(3)和(4)
典型例题
例2.如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三
探究新知
下面这些图形中有些是完全一样的,如果把它们叠在一起,它们 就能重合.你能分别从图中找出这样的图形吗?
定义:能够完全重合的两个图形称为全等图形.
探究新知
观察下面三组图形,它们是不是全等图形?为什么?
全等图形的性质:如果两个图形全等,它们的形状和大小一定都相同.
探究新知
A
D
B
C
E
F
能够完全重合的两个三角形叫做全等三角形.
(2)如图,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数 为___3_0_°_____ .
随堂练习
(3)如图,C为直线BE上一点,△ABC≌△ADC,∠DCF= ∠ECF,则AC和CF的位置关系是 A_C__⊥__C_F.
随堂练习
4.找出下列图形中的全等图形.
(1) (2) (3) (4) (5) (6)
全等三角形ppt课件
∴ ∠C =180°-∠A -∠B B
=50° ∵ △DEF ≌△ABC ∴ ∠F =∠C =50° (全等三角形的对应角相等) E
A
C D
F
探究活动
先写出全等式,再指
B
∵△ABC≌△ABD
∴AB = AB , BC=BD , AC=AD
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D
A
D
B
C
E
F
小试牛刀
已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm; (2)若∠A =100°,则∠D 的度数为 100°;
A
D
B
CE
F
小试牛刀
已知:如图,△ABC ≌△DEF.
(3)若∠A =100°,∠B =30°,求∠F 的度数.
解:
∵ ∠A =100°,∠B =30°
按照上述探究活动 进行平移、翻折、旋转,变换前 后的两个三角形还全等吗?
一个图形经过平移、翻折、旋转后,位置变化了, 但 形状、大小 都没有改变,即平移、翻折、旋转前后 的图形全等 .
图(1)中,△ABC ≌△DEF; 图(2)中,△ABC ≌△DBC; 图(3)中,△ABC ≌△AED.
你能说出它们的对应顶点、对应边和对应 角吗?
温馨提示:记三角形全等时,要把表示对 应顶点的字母写在对应的位置.
练习巩固
2.如图,△OCA≌△OBD,点C和点B、点AA和点D是 对应顶点.说出这两个三角形中相等的边和角.
对应边的关系: OC=OB CA=BD OA=OD
对应角的关系: ∠A=∠D ∠C= ∠B ∠COA= ∠BOD
课堂总结
通过这节课的学习,谈谈你掌握了 什么?
=50° ∵ △DEF ≌△ABC ∴ ∠F =∠C =50° (全等三角形的对应角相等) E
A
C D
F
探究活动
先写出全等式,再指
B
∵△ABC≌△ABD
∴AB = AB , BC=BD , AC=AD
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D
A
D
B
C
E
F
小试牛刀
已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm; (2)若∠A =100°,则∠D 的度数为 100°;
A
D
B
CE
F
小试牛刀
已知:如图,△ABC ≌△DEF.
(3)若∠A =100°,∠B =30°,求∠F 的度数.
解:
∵ ∠A =100°,∠B =30°
按照上述探究活动 进行平移、翻折、旋转,变换前 后的两个三角形还全等吗?
一个图形经过平移、翻折、旋转后,位置变化了, 但 形状、大小 都没有改变,即平移、翻折、旋转前后 的图形全等 .
图(1)中,△ABC ≌△DEF; 图(2)中,△ABC ≌△DBC; 图(3)中,△ABC ≌△AED.
你能说出它们的对应顶点、对应边和对应 角吗?
温馨提示:记三角形全等时,要把表示对 应顶点的字母写在对应的位置.
练习巩固
2.如图,△OCA≌△OBD,点C和点B、点AA和点D是 对应顶点.说出这两个三角形中相等的边和角.
对应边的关系: OC=OB CA=BD OA=OD
对应角的关系: ∠A=∠D ∠C= ∠B ∠COA= ∠BOD
课堂总结
通过这节课的学习,谈谈你掌握了 什么?
【七年级数学下册】第三章 图形的全等课件 北师大版
∠D=∠C
∠DOA=∠COB
A
O
B
如图,若△ABC≌△EFC,且CF=3cm,∠EFC=64°,
3 64° 则BC=_____cm,∠B=_____.
你还能求出哪些边的长度,
A
F
哪些角的度数?
B
C
E
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
如果上图1是4×4的方格子有哪些分割方法?
课堂小结
通过这节课的学习,你对全等图形有哪些认识?
作 业
你能把下面的这个平行四边形 1.分成两个全等的图形吗? 2.分成四个全等的图形吗? 3.分成三个全等的图形吗?
图片欣赏:
D
B
C
E
F
你能找到图中的对应边和对应角吗?
表示方法: △ABC≌△DEF
A D
B
C
E
F
注意:要把表示对应顶点的字母写在 对应的位置上
用纸板、剪刀等工具制作全等三角形
改变它们的摆放位置,找出对应边,对应角.
全等三角形的性质
全等三角形的对应边相等,对应角相等.
练习:
找出下列图形中的全等图形
想一想:如图是由几种全等图形拼凑而成的
如图,做四个全等的小“L”型纸片,将它们拼 成一个与大“L”全等的图案。
与图1所示图形全等的图形是图1ABC
D
将图2绕A点顺时针转90°所得到的图形是
B
A 图2
C
A
B
C
D
本 课 概 要
两个能够重合
的图形称为全等图形;
如果两个图形全等,那么它们的
形状和大小一定都相同;
全等三角形的概念 ;
华师大版七年级数学下册第十章《图形的全等》优质课课件
探究性问题
4.判断下列说法是否正确,不正确的请改正. ①所有的等边三角形都全等. ②所有的正方形都全等.
对应角分别对应相等的两 个多边形不一定全等
反馈训练
找一找
1.观察下图,从中找出全等图形,与同学交流。
①
②
③
④
⑤
⑥
⑦
⑧
⑨
⑩
全等图形有①和⑨; ②和⑧; ③和⑥.
反馈训练
想一想
2.如图,四边形ABCD ≌四边形A′B′C′D′, ∠A=__7_0_°_,∠B=__8_5_°__,B′C′=__1_2___,AD=__6____, A′B′=__1_0___,CD=__8____,四边形A′B′C′D′的 周长为__3_6_____.
(1)
实验台
(2)
探究性问题
3.全等多边形除了对应边相等,对应角相等之外,还有什
么相等呢?如下图, 五边形ABCDE≌五边形
A´B´C´D´E´,请结合A图形加以说明.
A'
E
E'
B
B'
C
D
C'
D'
◆ S五边形ABCDE=S五边形A´B´C´D´E´; ◆ C五边形ABCDE=C五边形A´B´C´D´E´; ◆ ∠CAD=∠C´A´D´, ∠DAE=∠D´A´E´; ◆ AC=A´C´,AD=A´D´;……
◆知识与能力:知道全等图形、全等多边形、全等三角 形的概念和性质;能找出全等多边形、全等三角形的对 应元素,会利用图形的全等解决一些简单的问题. ◆过程与方法:培养学生动手操作能力;培养学生观察 、探索、分析与归纳能力. ◆情感、态度、价值观:在学生动手操作的过程中,激 发学生学习数学的积极性,培养学生主动探索,敢于实 践的科学精神,培养学生交流合作和创新意识.
图形的全等-课件
即:AF⊥CD
•
9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/282021/2/28Sunday, February 28, 2021
•
10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/282021/2/282021/2/282/28/2021 1:19:18 PM
•
11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21
又∵AC=AB+BD
∴∠B=2∠C
∴CE=DE
根据等腰三角形的两个底角相等 ∴∠C=∠EDC
14、如图,已知AB=AE,BC=ED,∠B=
∠E,∠BAF=∠EAF,试说明AF⊥CD。
解答:连结AC、AD
A
在△ABC与△AED中
∵AB=AE
∠B=∠E
B
E
BC=ED
∴△ABC≌△AED (SAS)
CF D
M
解: △MPQ ≌ △PNR
P 因为P是MN的中点,
Q
所以MP=PN,
N
R又因为MQ=PR,P源自=NR,根据SSS可以知道,
△MPQ ≌ △PNR。
5.点A,B,E在同一直线上,∠ DBE=∠ CBE,
BC=BD,找出图中所有全等的三角形,并说明
理由。你能说出两组相等的角吗?
C
A
B
解:△CBE≌ △DBE
D
A' E' C
A
B
E
8、如图,△ABC中,AD⊥BC,垂足为D, BE⊥AC,垂足为E,AD、BE相交于点F。如果
BF=AC,那么∠ABC的度数是 ( B )
《图形的全等》三角形PPT课件
10.如图,△ABC≌△DBE,AB⊥BC,DE的延长线交AC于点F ,那么DF与AC垂直吗?为什么?
∴∠DBE=90°
∴DF⊥AC
F
E
D
C
B
A
三、解答题
请按暂停键完成此题
请按暂停键完成各题
课外研讨
12、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数。
∵△ABC≌△FDE
∴A B=F D,A C=F E,B C=D E(全等三角形对应边相等)
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
6、全等三角形的性质
如图△ABC≌ △A’B’C’图中红色线段是对应边中线,紫色线段为对应边角平分线,蓝色线段为对应边高
3、还具备:全等三角形对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的周长相等、面积也相等.
北师大版数学七年级下册第四章 三角形图形的全等
1.了解全等图形的概念,会判断两个图形是不是全等图形.2.理解全等三角形的概念,能正确表示全等三角形,能识别全等三角形中的对应边、对应角.(难点)3.掌握全等三角形的性质,能利用全等三角形的性质解决相关问题.(重点)
学习目标
图形的全等
把它们叠在一起,能够完全重合
F
E
D
C
B
A
我校要修一座等边三角形花池(形状如下),有这么几种方案: 1、把它分成两个全等的三角形 2、把它分成三个全等的三角形 3、把它分成四个全等的三角形请你设计图纸
请按暂停键完成此设计
完全重合
对应顶点
对应边
对应角
相等
相等
对应位置
3.最长边与最长边(最短边与最短边)为对应边; 最大角与最大角(最小角与最小角)为对应角;
∴∠DBE=90°
∴DF⊥AC
F
E
D
C
B
A
三、解答题
请按暂停键完成此题
请按暂停键完成各题
课外研讨
12、如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数。
∵△ABC≌△FDE
∴A B=F D,A C=F E,B C=D E(全等三角形对应边相等)
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
6、全等三角形的性质
如图△ABC≌ △A’B’C’图中红色线段是对应边中线,紫色线段为对应边角平分线,蓝色线段为对应边高
3、还具备:全等三角形对应边上的中线相等,对应边上的高相等,对应角平分线相等;全等三角形的周长相等、面积也相等.
北师大版数学七年级下册第四章 三角形图形的全等
1.了解全等图形的概念,会判断两个图形是不是全等图形.2.理解全等三角形的概念,能正确表示全等三角形,能识别全等三角形中的对应边、对应角.(难点)3.掌握全等三角形的性质,能利用全等三角形的性质解决相关问题.(重点)
学习目标
图形的全等
把它们叠在一起,能够完全重合
F
E
D
C
B
A
我校要修一座等边三角形花池(形状如下),有这么几种方案: 1、把它分成两个全等的三角形 2、把它分成三个全等的三角形 3、把它分成四个全等的三角形请你设计图纸
请按暂停键完成此设计
完全重合
对应顶点
对应边
对应角
相等
相等
对应位置
3.最长边与最长边(最短边与最短边)为对应边; 最大角与最大角(最小角与最小角)为对应角;
华师大版图形的全等全等三角形的识别PPT教学课件
以2.5cm,3.5cm为三角形的两边,
长度为2.5cm的边所对的角为40° ,
情况又怎样?动手画一画,你发现了
什Hale Waihona Puke ?CFA 40°
B
40°
D
E
结论:两边及其一边所对的角相等,
两个三角形不一定全等
巩
若AB=AC
固
练
则添加什么条件可得ΔABD≌ΔACD
习
A
ΔABD≌ΔACD
S
A
S
AD=AD ∠BAD= ∠ CAD AB=AC
回顾与思考
如果已知两个三角形有两边和一角对应相
等时,应分为几种情形讨论?
A
A
B
C
B
C
A’
A’
B’
C’
边-角-边
B’
C’
边-边-角
做 一 做
画一个三角形,使它的一个内角为
45° ,夹这个角的一条边为3厘米,另
一条边长为4厘米.
你画的三角形与同伴画的一定全等吗?
CF
3cm
45°
AD 4cm
BE
实践与探索
壮词与结尾一句话是否相符?
相符。 一方面表明了前面所描述的年轻时的
经历现在只是一种追忆。 一方面说明自己已年近半百,还能有
机会实现自己的理想吗? 所以最后一句也是壮语,只是它已变
雄壮为悲壮,充满了作者壮志不遂的抑郁、 愤慨。
本文凭什么可以称得上是“壮词”?
•
明确: • 从题材看写军营生活; • 从情感看表达了建功立业的雄心壮志; • 从语言看豪放、壮丽。
“沙场秋点兵”。 秋天在沙场上检阅军队,阵 容威武雄壮秋高马肥,把杀气腾腾的气氛渲染 得符合实际 。
图形的全等PPT课件
(20206年)10月和2日 (14)、(8)和(11)
6
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
如果上图1是4×4的方格子有哪些分割方法?
2020年10月2日
7
2020年10月2日
8
2020年10月2日
9
随堂练习:
1、如图,做四个全等的小“L”型纸片, 将它们拼成一个与大“L”全等的图案。
汇报人:XXX 汇报日期:20XX年10月10日
13
形状 相同
大小 相同
全等图形的形状和大小都相同
2020年10月2日
4
观察下列各组图形是不是全等图形?为什么?
1.
不全等
2.
全等
3. 4.
2020年10月2日
全等
不全等
5
(1)
(2) (3)
(4)
(5)
(6)
(7)
(8)
(9) (10)
(11)
(12)
(13)
(14) (15)
答:(2) 和(4)、(3)和(12)、(5)和(15)
2020年10月2日
12
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
七年级(下册)
2020年10月2日
1
请欣赏图片(一)
2020年10月2日
图形的全等PPT课件(北师大版)
第四章 三角形
2 图形的全等
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解全等形及全等三角形的概念,掌握全等三 角形的表示方法,理解和掌握全等三角形的性质;
(重点) 2.了解对应边和对应角的概念,能准确找到全等
三角形对应边和对应角;(难点) 3.学生通过视察、发现生活中的全等形和实际操作
中获得全等三角形的体验,在探索和运用全等三 角形性质的过程中感受到数学的乐趣.
解:∵ △ABC≌△AED,(已知)
A
∴∠E= ∠B= 35°,(全等三角形对应角
相等)
BC
D E ∠ADE=∠ACB=180°-25°-35° =120 °, (全等三角形对应角相等)
DE=BC=1cm, AE=AB=3cm. (全等三角形对应边相等)
摆一摆:利用平移,翻折,旋转等变换所得到的三 角形与原三角形组成各种各样新的图形,你还能拼 出什么不同的造型吗?比一比看谁更有创意!
(B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE 是△AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出 ∠E, ∠ ADE的度数和线段DE,AE 的长度.
拼接的图形展示
课堂小结
全等形:能够完全重合的两个 图形叫作全等形.
全等三角形
全等三角形:能够完全重合的 两个三角形叫作全等三角形.
全等三角 形的性质
全等三角形的对应 边相等
全等三角形的对应 角相等
2.如图,△ABC≌ △ADE,若∠D=∠B, ∠C= ∠AED,则∠DAE= ∠BAC ; D ∠DAB= ∠EAC .
2 图形的全等
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解全等形及全等三角形的概念,掌握全等三 角形的表示方法,理解和掌握全等三角形的性质;
(重点) 2.了解对应边和对应角的概念,能准确找到全等
三角形对应边和对应角;(难点) 3.学生通过视察、发现生活中的全等形和实际操作
中获得全等三角形的体验,在探索和运用全等三 角形性质的过程中感受到数学的乐趣.
解:∵ △ABC≌△AED,(已知)
A
∴∠E= ∠B= 35°,(全等三角形对应角
相等)
BC
D E ∠ADE=∠ACB=180°-25°-35° =120 °, (全等三角形对应角相等)
DE=BC=1cm, AE=AB=3cm. (全等三角形对应边相等)
摆一摆:利用平移,翻折,旋转等变换所得到的三 角形与原三角形组成各种各样新的图形,你还能拼 出什么不同的造型吗?比一比看谁更有创意!
(B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE 是△AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出 ∠E, ∠ ADE的度数和线段DE,AE 的长度.
拼接的图形展示
课堂小结
全等形:能够完全重合的两个 图形叫作全等形.
全等三角形
全等三角形:能够完全重合的 两个三角形叫作全等三角形.
全等三角 形的性质
全等三角形的对应 边相等
全等三角形的对应 角相等
2.如图,△ABC≌ △ADE,若∠D=∠B, ∠C= ∠AED,则∠DAE= ∠BAC ; D ∠DAB= ∠EAC .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B A 图2 C A B C D
图中共有多少对全等图形,他们分别是
(1)
(2)
(3)
(4)
(5)
(6)
(7)
((8)
(9) (16)
(12)
(13)
(14)
(15) (17)
想一想:
如图是由几种全等图形拼凑而成的
做一做1:
如图1 ,你能将它分成两个全等的图形吗? 可以用几种方法?能将它分成四个全等的 图形吗?可以用几种方法呢? 沿着图2的虚线,分别把下面的图形划分为 两个 全等图形(至少找出两种方法),并 与同伴交流。
图形的全等
罗萍制作
请欣赏图片1
请欣赏图片2
两个能够重合的图形称为全等图形
观察下面两组图形,它们是不是全等图形?为 什么?与同伴进行交流。
(1)
(2)
如果两个图形全等,它们的形 状和大小一定都相等
练习:
一、找出下列图形中的全等图形
与图1所示图形全等的图形是
图1
A
B
C
D
将图2所示绕A点顺时针转90°所得到 的图形是
艺术家M.C.埃舍尔
1
ቤተ መጻሕፍቲ ባይዱ
2
做一做2:
如图是一个4×4方格,一只蚂蚁想从A 点到C点,请问,它怎么走,就能满足 沿其路线剪开,所得的两个图形正好全 等? C (至少想两种方法)
A
如图,做四个全等的小“L”型纸片,将它 们拼成一个与大“L”全等的图案。
把自己称为一个“图 形艺术家”他专门从事于 木板画。在1956年举办的 艺次画展得到了许多数学 家的称赏,在他的作品中 数学的原则和思想得到了 非同寻常的形象化。
图中共有多少对全等图形,他们分别是
(1)
(2)
(3)
(4)
(5)
(6)
(7)
((8)
(9) (16)
(12)
(13)
(14)
(15) (17)
想一想:
如图是由几种全等图形拼凑而成的
做一做1:
如图1 ,你能将它分成两个全等的图形吗? 可以用几种方法?能将它分成四个全等的 图形吗?可以用几种方法呢? 沿着图2的虚线,分别把下面的图形划分为 两个 全等图形(至少找出两种方法),并 与同伴交流。
图形的全等
罗萍制作
请欣赏图片1
请欣赏图片2
两个能够重合的图形称为全等图形
观察下面两组图形,它们是不是全等图形?为 什么?与同伴进行交流。
(1)
(2)
如果两个图形全等,它们的形 状和大小一定都相等
练习:
一、找出下列图形中的全等图形
与图1所示图形全等的图形是
图1
A
B
C
D
将图2所示绕A点顺时针转90°所得到 的图形是
艺术家M.C.埃舍尔
1
ቤተ መጻሕፍቲ ባይዱ
2
做一做2:
如图是一个4×4方格,一只蚂蚁想从A 点到C点,请问,它怎么走,就能满足 沿其路线剪开,所得的两个图形正好全 等? C (至少想两种方法)
A
如图,做四个全等的小“L”型纸片,将它 们拼成一个与大“L”全等的图案。
把自己称为一个“图 形艺术家”他专门从事于 木板画。在1956年举办的 艺次画展得到了许多数学 家的称赏,在他的作品中 数学的原则和思想得到了 非同寻常的形象化。