合并同类项与移项(二)(练习题)

合集下载

3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项(讲+练)

3.2解一元一次方程——合并同类项与移项合并同类项解方程的方法与步骤(1)合并同类项,即把含有未知数的同类项和常数项分别合并.(2)系数化为1,即在方程的两边同时除以未知数的系数.注意:(1)解方程中的合并同类项和整式加减中的合并同类项一样,它们的依据都是乘法分配律,实质都是系数的合并,目的是运用合并同类项,使方程变得更简单,为运用等式性质2求出方程的解创造条件;(2)系数为1或-1的项,合并时不能漏掉.题型1:解一元一次方程——合并同类项1.解下列方程∶(1)3x+2x+x=24; (2)-3x+6x=18.【答案】(1)x=4 (2)x=6【变式1-1】(1)5x-6x=-57 (2)13x-15x+x=-3.【答案】(1)x=57 (2)x=3移项解方程的方法与步骤1.移项把等式的某项变号后移到另一边,叫做移项.移项必须变号.2.移项的依据移项的依据是等式的性质1,在方程的两边加(或减)同一个适当的整式,使含未知数的项集中在方程的一边,常数项集中在另一边.3.解简单的一元一次方程的步骤(1)移项;(2)合并同类项;(3)系数化为1.注意:(1)移项通常把含有未知数的项移到“=”的左边,常数项移到“=”的右边(2)若将2=x变形为x=2,直接利用的是等式性质的对称性,不能改变符号.(3)方程中的每项都包括前面的符号.题型2:解一元一次方程——移项2.将下列方程移项(1)7+x=13,移项得x=13+7(2)5x=4x+8,移项得 5x-4x=8(3)3x-2=x+1,移项得 3x-x=2+1(4)8x=7x-2,移项得 8x-7x=-2(5)2x-1=3x+4,移项得 2x-3x=1+4【变式2-1】解下列方程(1)4x+2=3x-3; (2)4y=203y+16【答案】(1)x=-5 (2)y=-6【变式2-2】解下列方程(1)2x+3=4x-5; (2)9x-17=4x-2.【答案】(1)x=4 (2)x=3题型3:绝对值方程3.解方程 |2x-3|=1.【分析】解绝对值方程的关键是把绝对值符号去掉,将方程转化为普通方程求解.【解答】∶因为|2x-3|=1,所以2x-3=1或2x-3=-1,解得x=2或x=1.【变式3-1】如果|2x+3|=|1﹣x|,那么x的值为( )A.−23B.−32或1C.−23或﹣2D.−23或﹣4【分析】根据绝对值的意义得到2x+3=1﹣x或2x+3=﹣(1﹣x),然后解两个一次方程即可.【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),题型4:依题意构建方程求解4.代数式2x+5与x+8的值相等,则x的值是 .【答案】3【解析】【解答】解:∵代数式2x+5与x+8的值相等,∴2x+5=x+8,解得:x=3,故答案为:3.【分析】根据已知条件:2x+5与x+8的值相等,可得到关于x的方程,解方程求出x的值.【变式4-1】当x= 时,代数式6x+1与-2x-5的值互为相反数。

合并同类项与移项(2)

合并同类项与移项(2)

作 业
教材92页习题3.2第4,5题.
小 结
大家这节课学会了哪些知识?你能 说说吗?
当堂检测
1、三个连续的奇数的和是39,求这三个数. 2、我校开展的数学课外兴趣小组活动,每周四进 行一次活动,现知本月连续的三次活动的日子之和 为27,你知道是哪三天吗?本月的四次活动的日子 之和是多少呢? 3、三个连续偶数的和是30,求这三个偶数. 4、某月的日历上,在3×3的方阵中,9 个数之和是 126,则这个3×3 方阵的中心的那个数是多少?
3.2.2
解一元一次方程(一)
-----合并同类项与移项(2)
学习目标
1,会根据实际问题列出一元一次方程. 2,掌握பைடு நூலகம்项的方法,会解“ax+bx=c”类 型的一元一次方程.
自学指导
认真阅读教材P87页例2思考:知道 三个数中的某个,就能知道另两个吗?
自学检测
1、教材P88/练习2. 2、一个数列,按一定规律排列如下 形式:1,-4,16,-64,256,-1024……, 其中某三个相邻的数的和为-13312,求 这三个数各是多少?

解一元一次方程(一)——合并同类项与移项

解一元一次方程(一)——合并同类项与移项
通过移项,使等号左边仅含未知数的项, 等号右边仅含常数的项,使方程更接近x=a 的形式
慧眼识金
判断下列移项是否正确,看谁又快又准 (1)若x-4=8,则x=8-4× x=8+4
(2)若3a=2a+5,则-3a-2a=5
×
3a-2a=5
(3)若5s-2=4s+1,则5s-4s=1+2

动手做一做 请你来给下列一元一次方程移项 (1)9-3y=5y+5 (2) 0.5x-0.7=6.5-1.3x (3)3x+5=4x+1 (4)6x-7=4x-5
解一元一次方程(一)—— 合并同类项与移项
第1课时 合并同类项
约公元820年,中亚细亚数学 家阿尔-花拉子米写了一本代 数书,重点论述怎样解方程. 这本书的拉丁文译本取名为 《对消与还原》.“对消”与 “还原”是什么意思呢?
某校三年共购买计算机140台,去 年购买数量是前年的2倍,今年购买的 数量又是去年的2倍.前年这个学校购 买了多少台计算机?
练习1 解下列方程: (1)6x – 7 = 4x – 5 (2)6 – 3x = 7x – 14
例4 把一些图书分给某班学生阅读,如果每 人分3本,则剩余20本;如果每人分4本, 则还缺25本.这个班有多少学生?
解;设这个班有x名学生 分析:
每人分3本,共分出3x本,加上剩余的20本,这批书共 (3x+20)本. 每人分4本,需要4x本,减去缺的25本,这批书共(4x25)本.
3x + 20 = 4x - 25
2. 对于方程– 3x – 7=12x+6,下列移项正确的是 A ()
A. – 3x – 12x=6+7
B. – 3x+12x= – 7+6

合并同类项与移项(2)(完成)

合并同类项与移项(2)(完成)

3.2.1解一元一次方程---合并同类项与移项(2)学习目标:1、自主探索、归纳解一元一次方程的一般步骤。

2、正确、熟练地运用解一元一次方程的三个基本步骤解简单的一元一次方程。

学习重点: 应用移项、合并同类项、系数化为1解一元一次方程。

学习难点: 建立方程解决实际问题及用移项解方程。

学习过程:一、自主学习问题2 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?每人分3本,共分出 本,这批书共有 ;每人分4本,需要 本,减去缺少的25本,就是这批书共 本,这批书是一个定值,因此可得方程: 。

二、探究新知探究:如何将方程 3x +20=4x-25 转化为x=a 的形式,求出方程x +2x +4x=140的解?移项:把等式一边的某项 后移到 ,叫做 。

移项的根据是: 。

解方程 3x +20=4x-25 的一般步骤:解:移项,得 . --------合并同类项, 得 . --------系数化为1,得 =x . -------归纳:解形如ax+b=cx+d 的方程步骤是:① ;② ③ .三、应用新知 例 解下列方程:(1)2385--=-x x ; (2)x x 23273-=+。

(3)x x -=-32; (4)5476-=-x x ;(5)x x 43621=-; (6) x x x 3212-=-;(7) x x x 58.42.13-=--四、相关练习: 1、方程12422412+=-+=-k k k k 变形为,这种变形称为______,变形要注意________。

移项变形的依据是________________。

2、(1)方程1253+=-x x ,移项,得_________=1+5 (2)方程4.15.07.01-=-y y ,移项,得=--y y 5.07.0_________。

3、下列四组变形属于移项变形的是 ( ) A. 由122342=-=-x x 得 B. 由2332==x x 得 C. 由124124-=--=x x x x 得 D. 由3233)2(3=+-=--y y y y 得 4、把方程x x 3735-=+进行移项,正确的是 ( ) A. 3735-=-x x B. 3735-=+x xC. 7335-=-x xD. 7335-=+x x 5、方程x x -=-22的解是 ( ) A. x=1 B. x=-1 C. x=2 D. x=0 A 层:用移项的方法解一元一次方程 6、解方程x x 23421=-,移项,得__________;合并同类项,得________; 系数化为1,得_________。

人教版数学七年级上册 第3章 3.2解一元一次方程合并同类项及移项同步测试题(有答案)

人教版数学七年级上册 第3章 3.2解一元一次方程合并同类项及移项同步测试题(有答案)

解一元一次方程合并同类项及移项同步测试题(有答案)一.选择题1.一元一次方程2x﹣5=0的解是()A.x=5B.x=﹣C.x=D.x=2.解关于x的方程﹣3x﹣9=x+5时,下面的变形正确的是()A.﹣3x+x=5﹣9B.﹣3x﹣x=(﹣9)+(﹣5)C.x+3x=(﹣9)+(﹣5)D.x+3x=5+93.若代数式4x﹣5与3x﹣2的值互为相反数,则x的值为()A.1B.﹣1C.0D.24.方程|x+3|﹣|1﹣x|=x+1的解是()A.x=3B.x=﹣5C.x=﹣1或3或5D.x=﹣5,或﹣1或35.若代数式3x﹣4与﹣2x+1的值相等,则x的值是()A.1B.2C.3D.56.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 7.在解方程﹣1=时,去分母正确的是()A.2(2x﹣1)﹣1=3(x+2)B.2(2x﹣1)﹣6=3(x+2)C.3(2x﹣1)﹣1=2(x+2)D.3(2x﹣1)﹣6=2(x+2)8.一元一次方程+++…+=的解是()A.1B.2C.2014D.2015 9.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.010.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)二.填空题11.对于有理数a、b,规定一种新运算:a⊕b=ab+b,则方程(x﹣4)⊕3=6的解为.12.当x=时,代数式3x+1的值与代数式2(3﹣x)的值互为相反数.13.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc.则满足等式=1的x的值为.14.当x=时,5(x﹣2)与2[7x﹣(4x﹣3)]的值相等.15.对于有理数a、b,定义运算“★”;a★b=,例如:2★1,因为2>1,所以2★1=22+12=5,若(x+1)★3=﹣12,则x=.三.解答题16.解方程:①2x+5=3(x﹣1);②﹣=1.17.解下列方程:(1)5x+3=2x﹣9(2)18.解下列方程:(1)=(2)=(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0(4){()﹣3]﹣3}﹣3=019.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求3⊗(﹣1)的值;(2)若(a+1)⊗2=36,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.20.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?参考答案与试题解析一.选择题1.【解答】解:方程2x﹣5=0,解得:x=,故选:C.2.【解答】解:移项可知:﹣3x﹣x=9+5∴3x+x=﹣9﹣5故选:C.3.【解答】解:根据题意得:4x﹣5+3x﹣2=0,移项合并得:7x=7,解得:x=1,故选:A.4.【解答】解:当x<﹣3时,方程整理得:﹣x﹣3﹣1+x=x+1,解得:x=﹣5;当﹣3≤x<1时,方程整理得:x+3﹣1+x=x+1,解得:x=﹣1;当x≥1时,方程整理得:x+3+1﹣x=x+1,解得:x=3,则方程的解为x=﹣5,﹣1,3,故选:D.5.【解答】解:根据题意得:3x﹣4=﹣2x+1,移项合并得:5x=5,解得:x=1,故选:A.6.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.。

七年级数学一元一次方程合并同类项与移项常考题型

七年级数学一元一次方程合并同类项与移项常考题型

七年级数学一元一次方程的常考题型包括合并同类项与移项。

以下是一些常见的考试题目类型:
1. 合并同类项:
例题:3x + 5x = ()
解析:此题考查的是合并同类项,根据合并同类项的法则,把系数相加作为系数,字母和字母的指数不变,即可得出答案。

答案:8x
2. 移项:
例题:5x - 7 = 22,移项后得()
解析:此题考查的是移项,根据等式的性质,移项后得5x = 22 + 7,再根据合并同类项的法则进行计算即可。

答案:5x = 29
除了以上两种题型,还有以下几种常见的考试题目类型:
1. 解一元一次方程:
例题:3x - 7 = 26,求解x的值。

解析:此题考查的是解一元一次方程,根据等式的性质,把未知数移到方程的左边,常数移到方程的右边,再根据合并同类项的法则进行计算即可。

答案:x = 9
2. 一元一次方程的应用题:
例题:一个数的3倍比这个数大4,求这个数是多少?
解析:此题考查的是一元一次方程的应用题,设出未知数,根据题目中的等量关系列出一元一次方程求解即可。

答案:设这个数为x,则有3x - x = 4,解得x = 2。

希望以上信息对你有帮助,具体题目可以结合具体的知识点进行练习。

七年级数学上册解一元一次方程合并同类项与移项练习题

七年级数学上册解一元一次方程合并同类项与移项练习题

七年级数学上册解一元一次方程合并同类项与移项练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 2.已知21x y =⎧⎨=-⎩是方程7mx y +=的解,则m =______. 3.若3x =是关于x 的方程3250x m --=的解,则m 的值为_________.4.求代数式的值的步骤:_______和计算.5.已知x =1是关于x 的方程6-(m -x )=5x 的解,则代数式m 2-6m +2=___________.6.有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;①_______,故列方程组为_______.二、单选题7.方程185x =-的解为( )A .13-B .13C .23D .23-8.如果方程24=x 与方程310x k +=的解相同,则k 的值为( )A .2B .-2C .4D .-49.在物理学中,导体中的电流①跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R =去分母得IR U =,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质210.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6;①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.下列说法中,正确的是( )A .2与2-互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是2-12.已知点P 的坐标为(2,36)a a +-,且P 到两坐标轴的距离相等,则点P 的坐标为( )A .(3,3)B .(3,3)-C .(6,6)D .(6,6)或(3,3)-三、解答题13.已知关于x 的方程372x x a -=+的解与方程427x x +=-的解相同,试求a 的值.14.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m++-的结果是多少? 15.如图是某小区的一块长为b 米、宽为2a 米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a 米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a ,b 的式子表示)(2)当a =10,b =40时,草坪的面积是多少平方米?(π取3.14)参考答案:1.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.2.4【分析】把21x y =⎧⎨=-⎩代入方程7mx y +=,求解即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程7mx y +=,得 2m -1=7,解得:m =4,故答案为:4.【点睛】本题考查方程的解,解一元一次方程,熟练掌握方程的解的定义:能使方程左右两边相等的未知数值叫方程的解是解题的关键.3.2【分析】将x =3代入方程计算即可求出m 的值.【详解】解:将x =3代入方程得:9-2m -5=0,解得m =2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.代数【解析】略5.-6【分析】根据一元一次方程的解的定义可知m 的值,然后代入求值即可.【详解】解:把x =1代入6-(m -x )=5x ,得6-(m -1)=5×1.解得m =2.所以m 2-6m +2=22-6×2+2=-6.故答案为:-6.【点睛】本题主要考查了方程的解、代数式求值.解答关键是理解方程的解的定义:就是能够使方程左右两边相等的未知数的值.6. 10y x + 10x y + 8x y += ()()101036x y x y +-+= 8(10)(10)36x y x y x y +=⎧⎨+-+=⎩【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x +,新数表示为10x y +,两个等量关系为:①个位上的数字+十位上的数字=8;①新数+36=原数;列方程组为8103610x y x y y x ⎧+=⎨++=+⎩; 故答案为:10y x +;10x y +;8x y +=;()()101036x y x y +-+=;8(10)(10)36x y x y x y +=⎧⎨+-+=⎩. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.7.A【分析】先移项,再合并同类项,即可求解.【详解】解:185x =-,移项得:518x =-,解得:13x =-.故选:A【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键. 8.C【分析】首先求出方程24=x 的解,然后代入方程310x k +=即可求出k 的值.【详解】解:①2x =4,①x =2,①方程2x =4与方程3x +k =-2的解相同,①将x =2代入方程310x k +=得:3×2+k =10,解得,k =4,故选:C .【点睛】此题考查了一元一次方程的解的含义,已知方程的解求参数问题,解题的关键是熟练掌握解得含义并根据题意求出方程24=x 的解.9.B【分析】根据等式的性质2可得答案. 【详解】解:U I R =去分母得IR U =,其变形的依据是等式的性质2, 故选:B .【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立. 10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可.【详解】解:A. 2与2-互为相反数,故选项A 不正确B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确.故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键.12.D【分析】由点P 到两坐标轴的距离相等,建立绝对值方程236a a +=-,再解方程即可得到答案. 【详解】解: 点P 到两坐标轴的距离相等,236a a ∴+=-,236a a ∴+=-或2360a a ++-=,当236a a +=-时,解得:4a =,()6,6P ∴;当2360a a ++-=时,解得:1a =,()3,3P ∴-;综上分析可知,P 的坐标为:()6,6P 或()3,3P -,故D 正确.故选:D .【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.13.-6【分析】先解方程4x +2=7-x ,然后将解代入方程3x -7=2x +a 中,求出a 的值.【详解】解:解方程427x x +=-,得:1x =,方程372x x a -=+的解与方程427x x +=-的解相同,把1x =代入372x x a -=+,得:372a -=+,解得6a =-.a ∴的值为6-.【点睛】本题考查了方程的解,需要抓住“方程的解就是使方程成立的未知数的值”这个定义进行“求解——代入——求解”的过程,从而得到a 的值.14.0或-2【分析】由互为相反数两数之和为0得到a +b =0,由互为倒数两数之积为1得到cd =1,再根据倒数等于本身的数为-1和1得到m =1或m =-1,代入所求式子中计算即可求出值.【详解】解:由题意得a +b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=; 当m =-1时,原式10(1)|1|21=+⨯---=--; 综上:()||cd a b m m m++-的结果是0或-2. 【点睛】此题考查了代数式求值,有理数的混合运算,相反数,以及倒数,熟练掌握相反数及倒数的定义是解本题的关键.15.(1)2ab ﹣πa 2平方米(2)486平方米【分析】(1)由图可知,四个扇形的面积等于一个圆的面积,用矩形的面积减去一个圆的面积即可, (2)将a 和b 的值代入(1)中的式子进行计算即可.(1)修建后剩余草坪的面积为22ab a π-(平方米).(2)当a =10,b =40时,22ab a π-≈221040 3.1410⨯⨯-⨯=800﹣314=486(平方米).【点睛】本题主要考查了用字母表示数,熟练掌握各个图形的面积公式是解题的关键.。

合并同类项与移项练习题及答案

合并同类项与移项练习题及答案

合并同类项与移项练习题及答案一、选择题1.下列移项正确的是()A.从12-2x=-6,得到12-6=2xB.从-8x+4=-5x-2,得到8x+5x=-4-2C.从5x+3=4x+2,得到5x-2=4x-3D.从-3x-4=2x-8,得到8-7=2x-3x2.方程3x+2=x-4b 的解是5,则b=( )A.-1 B.-2 C.2 D-33.51348x-=的解为()A.1124B.1124- C.2411D.2411-4.某蔬菜商店备有100千克蔬菜,上午按每千克1.2元价格售出50千克,中午按每千克1元的价格售出30千克,下午按每千克x元价格售出20千克,已知这批蔬菜的平均价格是每千克1.06元,则x的值为()A.0.75 B.0.8 C.1.24 D.1.355.小王用2000元买了债券,一年后的本息和2200元,则小王买的债券年利率是()A.9%B.10% C.11% D.12%二、填空题6.5x-8与3x互为相反数,可列方程_____________________________,它的解是_______.7.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队是乙队的相等,问应调往甲队的人数是_____________,调往乙队的人数是____________________.8.一群小孩分一堆苹果,1人3个多7个,1人4个少3个,则有___个小孩,____个苹果.三、解答题9.一个箱子,假如装橙子能够装18个,假如装梨能够装16个,现共有橙子、梨若400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?10.甲、乙两列火车从相距480km的A、B两地同时动身,相向而行,甲列车每小时行80km,乙列车每小时行70km,问多少小时后两列车相距30km?答案:1.C 2.D 3.A 4.B5.B6.5x-8=-3x,17.10,188.10,379.装橙子的箱子8个,装梨的箱子16个.10.3小时或3.4小时后两列车相距30km.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 解一元一次方程——合并同类项与移项(二)
基础练习
1.若x=2是k(2x-1)=kx+7的解,则k 的值为( )
A .1
B .-1
C .7
D .-7 2.方程5174732+-=--
x x 去分母得( )
A .2-5(3x-7)=-4(x+17)
B .40-15x-35=-4x-68
C .40-5(3x-7)=-4x+68
D .40-5(3x-7)=-4(x+17)
3.若方程(a+2)x=b-1的解为21+-=
a b x ,则下列结论中正确的是( ) A .a>b
B .a<b
C .a ≠-2且b ≠1
D .a ≠ -2且b 为任意实数
4.方程2
.0)25.0(3.003.025.0+=-+x x x 的解是( ) A .179764-=x B .179764=x C .179765-=x D .179
765=x 5.小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的3
1,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积为(单位:平方米)( )
A .
340,3
20 B .30,10 C .15,5 D .12,8 6.方程k x x x +=--2416的解是x=3,那么k k 12+的值等于_____________. 7.若方程b x a k =⋅-74是一元一次方程,那么k=______________.
8.当x=-1时,二次三项式12++mx x 的值等于0,那么当x=1时,
12++mx x =___________. 9.已知三个数的比是5:7:9,若这三个数的和是252,则这三个数依次是_________. 拓展提高
10. 已知y =1是方程2-3
1(m -y )=2y 的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是多少? 11.m 取什么整数时,关于x 的方程4x +m (x -6)=2(2-3m )的解是正整数,并求出方程的解.
12.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.
(1)问成人票与学生票各售出多少张?
(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?。

相关文档
最新文档