系统的能控性和能观测性
第三章 线性系统的能控性与能观测性
。 显见第二、三行元素相同。 rank Qk 2 3 故不能控。
例6 桥式电路图中,若取电感L的电流 i及电容 L C的电压 v 为状态变量,取 为输出变量,则系 iL c 统方程为:
R R 1 R R iL ( 1 2 3 4 ) d L R1 R2 R3 R4 1 dt ( R2 R4 ) vC C R1 R2 R3 R4 1 R3 1 R1 ( ) iL L R1 R2 R3 R4 L u 1 1 1 ( ) vC 0 C R1 R2 R3 R4
1 0 ~ 2 A n 0 中,输入矩阵
~ b11 ~ ~ b21 , B ~ bn1
~ b12 ~ b21 ~ bn 2
~ b1r ~ b2r ~ bnr
(3.4)
.
表明: 状态变量 , x1 都可通过选择输入u而 x2 由始点 终点完全能控。 输出y只能反映状态变量 ,所以 不能观测。 x x
2
1
完全能控,不完全能观系统!
例3: 桥式电路如图所示, 选取电感L的电流为 为 状态变量, i (t ) x(t )
u (t ) 为电桥输 入,输出
量为 y (t ) 。 解: 从电路可以直观看出,如果 x(t 0 ) 0 u (t ,则不论 如何 ) 选取,对于所有 ,有 t 0 ,即ut(t)不能控制x(t)的变化, x( ) 0 t 故系统状态为不能控。 若u(t)=0,则不论电感L上的 x(t 0 ) 初始电流 取为多少, 对所有时刻 t 都恒有y(t)=0,即状态x(t)不能由输出y(t)反映,故 t0 系统是状态不能观测的。 该电路为状态既不能控,也不能观测系统。
能控性与能观性
假使输出矩阵C中有某一列全为零,譬如说第2列中c12, c22, …, cm2均为零,则在 t y(t)中将不包含 e 2 x20这个自由分量,亦即不包含 x2(t)这个状态变量,很明显,这 个x2(t)不可能从y(t)的测量值中推算出来,即x2(t)是不能观的状态。
系统是状态完全能控的
x 2 1 x2 b2u y c1 c2 x
1 1 b1 x x u; 0 0 1
对于式(3-5)的系统
x 1 1 x1 x2 b1u x 2 1 x2
x2不受u(t)的控制,而为不能控的系统。
对式(3-3)的系统,系统矩阵A为对角线型,其标量微分方程形式为
x 1 1 x1
x 2 2 x2 b2u
x 2
x 1
1 1 0 x x u; 0 1 b2
对于式(3-4)的系统
y c1 c2 x
x 1 1 x1 x2
c13 c23 c33
1 2 1t 1t 1t e x10 te x20 t e x30 2! x1 (t ) 1t 1t e x20 te x30 这时,状态方程的解为 x(t ) x2 (t ) x ( t ) 3 1t e x 30
从而
y1 (t ) c11 c12 y (t ) y2 (t ) c21 c22 y3 (t ) c31 c32
第4章(1)线性控制系统的能控性和能观性
第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
控制系统的能控性和能观测性
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu( τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 Ax Bu f (t ) x (4)
定理3-2 (2)式的线性定常系统为状态能控的充分必要条件是下 面的n×nr 维能控性矩阵满秩。
QC [ B AB
A2 B An1 B]
(6)
(7)
rankQC n
证明
应用凯-哈定理,有
e Aτ a0 ( τ ) I a1 ( τ )ቤተ መጻሕፍቲ ባይዱA an1 ( τ ) An-1 ai ( τ ) Ai
上式代入(3)式
n 1 i 0
x(0) A B ai ( τ )u( τ ) d τ
i t1 i 0 0
n 1
(8)
βi1 β t1 i2 a ( τ ) u ( τ ) d τ i 0 i βir
(i 0,1,, n 1)
定理3-7 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得以下格拉姆矩阵非奇异。
WC [t0 , t1 ] (t0 , t ) B(t ) BT (t ) T (t0 , t ) d t
t0
t1
(14)
定义:M k 1 (t ) A(t ) M k (t ) d M k (t )
0 7 2 x 0 u (1) x 5 1 0 9 0 7 0 1 (2) x 4 0u x 5 1 0 7 5
能控性和能观测性
0 0
0 0
−1 0
0 2
0 1
0 0
0⎥⎥ 0⎥
x
+
⎢⎢0 ⎢0
0 0
04⎥⎥⎥u
⎢
⎥⎢
⎥
⎢ 0 0 0 0 0 2 0 0⎥ ⎢1 2 0⎥
⎢ ⎢
0
0
0
0 0 0 2 0⎥⎥
⎢⎢0 3 3⎥⎥
⎢⎣ 0 0 0 0 0 0 0 5⎥⎦ ⎣⎢3 0 0⎥⎦
解:此为8阶系统,n=8
19
S=
⎡0 0 0 1 0 0 −2 0 0 3 0 0 −4 0 0 5 0 0 −6 0 0 7 0 0 ⎤
再证必要性,即已知系统能控,证明rankS=n。
同样采用反证法假设rankS<n,表明S的各行线性相关,那么一
定存在一个非零的向量α使
α T [B AB L An−1B] = 0,
α T Ai B = 0,i = 1,2,Ln −1
12
α T Ai B = 0, i = 1,2,Ln −1
根据凯莱-哈密尔顿定理 α T Ai B = 0, i = n, n +1,L
α T e−At B = α T [I − At + 1 A2t 2 − 1 A3t3 + L]B
2!
3!
= α T B −α T ABt + 1 α T A2Bt 2 − 1 α T A3Bt 3 + L = 0
2!
3!
∫t1 [α T e−Aτ B][α T e−Aτ B]T dτ = 0
0
∫ ∫ t1 α T e−Aτ BBT e−ATταdτ = α T t1 e−Aτ BBT e−ATτ dτα
(整理)控制系统的能控性和能观测性
第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。
可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。
二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。
判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。
对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。
现代控制理论能控性和能观测性
I A1
B
I A
B f
(3-21)
式中B 为元素埏是I A的伴随矩阵。方程(3-21)两端右 乘 I A得:
BI A f I
(3-22)
由于 B 的元素 I A代数余子式,均为 n 1 次多项式,
故据矩阵加法运算规则,可将其分解为n个矩阵之和:
B
B n1 n1
B n2 n2
Bn1 I
Bn2 Bn1A an1I
Bn3 Bn2A an2I
M
B0 B1A a1I
B0A a0I
Bn1An An
Bn2An1 Bn1An an1An1
Bn3An2 Bn2An1 an2An2 M
0 1 M 1 -2 M 2 3
S2 G2 G2 L 2G2 0 0 M 0 1 0 M 0
0 M 0 0 1 M 1 -2
显见出现全零行,rankS2 2 3 ,故不能控。
多输入系统能控阵 S2,其行数小于列数,在计算列写能控阵时, 若有显时见可通过矩计S阵2算的秩为Sn的2,秩S便T2 是不否必为把n来判矩断S阵2多的输所入有系列统都的写能出控。性。 这只是需因计为算,一当次n阶非行奇列S异式2 时即,可确定能必S控非2 性奇ST2,异但,在而计算 为S方2 S阵T2 ,
系统矩阵 的阶数,或系统特征方程的阶次数。
以上研究假定了终态 x 0 0。若令终态为任意给定状态xn
则方程(3-2)变为:
n 1
nx 0 x n n1igu i
i0
(3-9)
方程两端左乘 n ,有
x 0-nx n 1g 2g L
u0
ng
u 1
M
u n 1
(3-10)
系统的能控性能观测性稳定性分析
系统的能控性能观测性稳定性分析1. 能控性(Controllability)能控性是指系统输出能否通过适当的输入方式对系统进行控制。
如果一个系统是能控的,意味着通过控制器的输入信号,我们能够将系统的输出发展到我们所期望的状态。
对于一个线性时不变(LTI)系统,能控性可以通过判断其控制矩阵的秩来确定。
控制矩阵(也称为控制可达矩阵)是由系统的状态方程和控制器的输入方程组成的。
如果控制矩阵的秩等于系统的状态数量,则系统是能控的;否则,系统是无法被完全控制的。
能控性的分析可以帮助我们选择合适的控制策略和控制器设计。
当系统的能控性差时,我们可能需要通过增加或修改系统的状态变量或控制器的输入方式来提高系统的能控性。
2. 能观测性(Observability)能观测性是指系统的内部状态能否通过系统的输出信号来判断。
一个能观测的系统意味着我们可以通过观测系统的输出来估计系统的状态。
对于一个线性时不变系统,能观测性可以通过判断其观测矩阵的秩来确定。
观测矩阵(也称为观测可达矩阵)是由系统的状态方程和输出方程组成的。
如果观测矩阵的秩等于系统的状态数量,则系统是能观测的;否则,系统的一些状态是无法通过输出来观测到的。
能观测性的分析可以帮助我们选择合适的观测器设计,以实现对系统状态的估计。
当系统的能观测性差时,我们可能需要增加或改变系统的输出方程来提高系统的能观测性。
3. 稳定性(Stability)稳定性是指系统在受到扰动后是否会逐渐恢复到原来的状态。
对于线性时不变系统,稳定性可以分为几种类型:零状态稳定、有限状态稳定和无限状态稳定。
零状态稳定(Zero-state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到零。
有限状态稳定(Finite state stability)是指当系统受到初始条件扰动时,输出信号会在有限时间内收敛到一些有限值。
无限状态稳定(Infinite state stability)是指当系统受到初始条件扰动时,输出信号会在无限时间内收敛到一些有限值。
能控性及能观测性
第三章:控制系统的能控性及能观测性(第五讲)内容介绍:能控性和能观测性定义、判据、对偶关系、标准型、结构分解。
能控性和能观测性是现代控制理论中最基本概念,是回答:“输入能否控制状态的变化”及“状态的变化能否由输出反映出来”这样两个问题。
换句话说,能控性是“能否找到一向量u(t)有效控制x(t)变化”。
能观测性问题是:“能否通过输出y(t)观测到状态的变化。
”一、能控性定义及判据 给出一个多变量系统(多输入、多输出)若系统G(s)在适当的控制u(t)作用下,每个状态都受影响,亦在有限的时间内能使系统G 由任意初始状态转移到零状态,或者说在有限的时间内能使系统由零状态转移到任意指定状态。
这说明:输入对状态的控制能力强,反之若G 的某一状态根本不受影响,那么在有限时间内就无法利用控制使这个状态变量发生变化。
说明输入对状态控制能力差。
可见:反映输入对状态控制能力的概念是能控性概念。
1. 定义:若对系统,在时刻的任意状态x()都存在一个有限的时间区间(ξt t ,0)(0t t 〉ξ)和定义在[]ξt ,t 0上适当的控制u(t),使在u(t)作用下x()=0。
则称系统在时刻是状态能控的。
如果系统在有定义的时间区域上的每一时刻都能控,称系统为完全能控。
()x u x 01011012=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=考查能控性?状态变量图(信号流图):y2由于u 的作用只影响不影响,故()t x 2为不能控。
某一状态不能控,则称系统不能控。
2.判据:u 1 : y1:对线性定常系统=Ax+Bu ,若对某一时刻能控,则称系统完全能控。
设: p输出 n n A *、p n B *、n m C *给出一定理:由=Ax+Bu 所描述的系统是状态完全能控的必要且充分条件为下列n ×np 阵的秩等于n 。
=BAB ……B A n 1-称为能控性阵。
换言之:系统的状态完全能控的必要且充分的条件是能控性阵的秩为n 。
线性系统理论(第四章)线性系统的能控性和能观测性
An1B] T S 0
rankS n 系统状态不能控,与已知矛盾。
同理可证充分性。
例 线性定常连续系统的状态方程如下,判断其能控性。
0 1 0 0 0 1
0 0 1 0 1 0
x
x u0 0 0 1 Nhomakorabea0
1
0 0 5 0 2 0
系统的特征值: 1 2 0 ,3 5 ,4 5
当 1 2 0 时:
② 系统能控:如果状态空间中的所有非零状态都是在 t0 时 刻可控的,则称系统在 t0 时刻是完全可控,简称系统在 时刻 t0 可控。如果系统对任意初始时刻 t0 完全可控, 则称系统一致可控。
③系统不完全能控:如果对给定得初始时刻 t0 Tt ,如果状
态空间中存在一个或一些非零状态在 t0 时刻是不可控的,则 称系统在 t0 时刻是不完全可控的,也称系统是不可控的。
x0TWC (0, t1)x0
t1 0
x0T
eAt
BBT
eAT t
x0
dt
t1 0
BT
eAT t
x0
2
dt
0,
BT eATt x0 0
x(t1) eAt1 x0
t1 eA(t1t) Bu(t) d t 0
0
x0
et1 -At1
0
Bu(t) d t
x0
2
x0T x0
[
et1 -At1
An1B] T S 0
T Ai B 0; i 0,1,2, ,n 1 应用凯-哈定理 An , An1 均可表示为A 的 n-1 阶多项式
T Ai B 0; i 0,1,2,3,
对 t1 0
(1)i T
Ai t i i!
现代控制理论基础_周军_第三章能控性和能观测性
3.1 线性定常系统的能控性线性系统的能控性和能观测性概念是卡尔曼在1960年首先提出来的。
当系统用状态空间描述以后,能控性、能观测性成为线性系统的一个重要结构特性。
这是由于系统需用状态方程和输出方程两个方程来描述输入-输出关系,状态作为被控量,输出量仅是状态的线性组合,于是有“能否找到使任意初态转移到任意终态的控制量”的问题,即能控性问题。
并非所有状态都受输入量的控制,有时只存在使任意初态转移到确定终态而不是任意终态的控制。
还有“能否由测量到的由状态分量线性组合起来的输出量来确定出各状态分量”的问题,即能观测性问题。
并非所有状态分量都可由其线性组合起来的输出测量值来确定。
能控性、能观测性在现代控制系统的分析综合中占有很重要的地位,也是许多最优控制、最优估计问题的解的存在条件,本章主要介绍能控性、能观测性与状态空间结构的关系。
第一节线性定常系统的能控性能控性分为状态能控性、输出能控性(如不特别指明便泛指状态能控性)。
状态能控性问题只与状态方程有关,下面对定常离散系统、定常连续系统分别进行研究(各自又包含单输入与多输入两种情况):一、离散系统的状态可控性引例设单输入离散状态方程为:初始状态为:用递推法可解得状态序列:可看出状态变量只能在+1或-1之间周期变化,不受的控制,不能从初态转移到任意给定的状态,以致影响状态向量也不能在作用下转移成任意给定的状态向量。
系统中只要有一个状态变量不受控制,便称作状态不完全可控,简称不可控。
可控性与系统矩阵及输入矩阵密切相关,是系统的一种固有特性。
下面来进行一般分析。
设单输入离散系统状态方程为:(3-1)式中,为维状态向量;为纯量,且在区间是常数,其幅值不受约束;为维非奇异矩阵,为系统矩阵;为维输入矩阵:表示离散瞬时,为采样周期。
初始状态任意给定,设为;终端状态任意给定,设为,为研究方便,且不失一般性地假定。
单输入离散系统状态可控性定义如下:在有限时间间隔内,存在无约束的阶梯控制信号,,,能使系统从任意初态转移到任意终态,则称系统是状态完全可控的,简称是可控的。
控制系统的能控性和能观性
第4章 控制系统的能控性和能观性第1节 能控性和能观性的定义◆设线性连续时变系统为()()x A t x B t u =+ ()y C t x =如果在[f t t ,0]上,对任意初始状态00)(x t x =,必能找到控制作用()u t ,能使)(t x 由0x 转移到0)(=f t x ,则称系统在0t 时刻是状态完全能控的,简称系统能控。
如果由[f t t ,0]上的)t y (,能惟一地确定0t 时刻的初始状态00)(x t x =,则称系统在0t 时刻是状态完全能观的,简称系统能观。
注意:能控性描述入)(t u 支配状态)(t x 的能力,能观性描述)(t y 反映)(t x 的能力。
能控性和能观性的定义要求初始状态的任意性。
◆线性定常连续系统x Ax Bu =+ y Cx =的能控性和能观性与0t 无关,常取00=t 。
对线性定常系统,能控性实质上是描述)(t u 支配模态(1,2,,)i te i n λ=的能力,若有任一模态不受输入的控制,系统便不能控;能观性实质上是)(t y 反映模态(1,2,,)i te i n λ=的能力,若有任一模态在输出中得不到反映,系统便不能观。
第2节 线性时变系统的能控性能观性判据1、格拉姆矩阵判据n 阶线性时变连续系统((),(),())S A t B t C t 在0t 时刻能控的充要条件是能控性格拉姆(Gramian )矩阵000(,)(,)()()(,)d ft t tC f t W t t t t B t B t t t t =ΦΦ⎰满秩;在0t 时刻能观的充要条件是能观性格拉姆矩阵000(,)(,)()()(,)d ft t tO f t W t t t t C t C t t t t =ΦΦ⎰满秩。
证明:1)能控性判据证明◆充分性证明。
假设),(0f C t t W 满秩,则),(01f ct t W -存在。
用构造法。
对任意的初始状态0()x t ,系统的状态解为00()()(,)(,)(()d tt x t t B u t t x t ττττ=-Φ+Φ⎰)]d )((),()()[,(0000ττττu B t t x t t tt )⎰Φ+Φ-=选择0100((),)(,))ttCf u t B t t t t W t x t -=-Φ()(代入系统状态解式并令f t t =,则有1000000()(,)[()(,)()()(,)(,)()d ]ft t tf f Cf t x t t t x t t t B t B t t t W t t x t t -=-Φ-ΦΦ⎰)()],(),()[,(00100t x t t W t t W I t t f Cf C f --Φ-=0)(])[,(00=-Φ-=t x I I t t f充分性得证。
线性系统理论第4章 线性系统的能控性和能观测性
满秩,即rankQ o=n
结论5
n 维连续时间线性时不变系统完全能观测的充分必要条件为:
SI A rank n S C C
或
i I A 为系统特征值 rank n , 1 , 2 ,n C
Wc [0, t1 ] e At BBe A t dt
T
t1
0
为非奇异。
结论3:n 维连续时间线性时变系统 x A(t ) x B(t )u x(t 0 ) x0
设A(t),B(t)对t为n-1阶连续可微,定义
t, t0 J
M 0 (t ) B (t ) d M 0 (t ) dt d M 2 (t ) A(t ) M 1 (t ) M 1 (t ) dt d M n 1 (t ) A(t ) M n 2 (t ) M n 2 (t ) dt M 1 (t ) A(t ) M 0 (t )
6/8,9/45
1 L QC [b, Ab] 0
R3 R4 1 R1 R2 2 L R1 R2 R3 R4 1 R2 R4 LC R1 R2 R3 R4
现代控制理论实验报告三系统的能控性、能观测性分析
nc =
3
system is completely state controllable
system is completely state observe
(3)
A=[0,2,-1;5,1,2;-2,0,0];B=[1;0;-1];C=[1,1,0];
Uc=ctrb(A,B);
p1=[0,0,1]*inv(Uc);
else
disp('system is not completely state controllable')
end
if nc==n2
disp('system is completely state observe')
else
disp('system is not completelystate observe')
3、构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。
六、数据处理
题3.1已知系数阵A和输入阵B分别如下,判断系统的状态能控性
,
解:
A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];B=[0;1;1];
Uc=ctrb(A,B)
n=det(Uc);%de计算矩阵对应的行列式的值,abs为求n的绝对值
Co=C*T
T =
-0.5000 0 -1.0000
0.5000 0 2.0000
1.0000 1.0000 0
Ao =
0 0 -10
1 0 12
0 1 1
Co =
0 0 1
七、分析讨论
1、掌握了能控性和能观测性的概念。学会了用MATLAB判断能控性和能观测性。
第三章线性控制系统的能控性和能观性
第三章 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是卡尔曼(Kalman )在1960年首先提出来的,它是最优控制和最优估值的设计基础。
能控性和能观性是分别分析)(t u 对状态)(t x 的控制能力以及输出)(t y 对状态)(t x 的反映能力。
§3-1 能控性的定义能控性所研究的只是系统在控制作用)(t u 的作用下,状态矢量)(t x 的转移情况,而与输出)(t y 无关。
矢量的线性无关与线性相关:如果0x x x x 332211=++++n n C C C C 式中的常数n C C C 21,满足0321====n C C C C ,则把向量n x x ,x 21 叫做线性无关。
例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0102x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1003x 便是线性无关。
若向量n x x ,x 21 中有一个向量i X 为其余向量的线性组合,即:∑≠==nij j jj i C 1x x 则称向量n x x ,x 21 为线性相关。
例如向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3211x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012x⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4223x 便是线性相关。
又例如在式中213x x x +=,0x 3x x 321=++式中系数并不全为零。
故为线性相关。
具有约旦标准型系统的能控性判据 1.单输入系统先将线性定常系统进行状态变换,把状态方程的A 阵和B 阵化为约旦标准型)ˆ,ˆ(B A,再根据B 阵确定系统的能控性。
具有约旦标准型系统矩阵的单输入系统,状态方程为bu x x+=λ ,或bu Jx x+= 。
其中:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n λλλλλ 00321,各根互异。
其中:(特征值有重根的)⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=++n m m J λλλλλλ010010121111 ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n b b b b 21 下面列举两个二阶系统,对其能控性加以剖析。
现代控制理论-4-线性系统的能控性和能观测性-第7讲
能控性的定义
能控性是指对于一个线性系统,如果 存在一个控制输入,使得系统状态能 够在有限的时间内从任意初始状态转 移到任意目标状态,则称该系统为能 控的。
能控性的判断依据是系统的能控性矩 阵,如果该矩阵满秩,则系统能控。
能观测性的定义
能观测性是指对于一个线性系统,如果存在一个观测器,能够通过系统的输出测量并估计出系统的所有状态,则称该系统为 能观测的。
传递函数判据
对于线性时不变系统,如果传递 函数的零点和极点个数满足一定 条件,则系统能观测;否则系统 不能观测。
03
能控性和能观测性的应用
在控制系统设计中的应用
系统性能分析
通过分析系统的能控性和能观测性,可以评估系统的稳定 性和动态性能,从而优化系统设计。
控制器设计
在控制器设计中,需要考虑系统的能控性和能观测性,以 确保控制器能够有效地控制系统的状态并观测系统的状态。
初始状态和目标状态
系统初始和目标状态的定义,以及它们对最优控 制策略的影响。
最优控制问题的求解方法
动态规划
将最优控制问题分解为一系列子问题, 通过求解子问题的最优解逐步逼近原问
题的最优解。
极大值原理
通过求解极值条件来找到最优控制输 入,适用于具有特定性能指标的最优
控制问题。
线性二次调节器
通过最小化状态和控制输入的二次范 数来求解最优控制问题,适用于线性 二次最优控制问题。
现代控制理论-4-线性系统 的能控性和能观测性-第7讲
目录
• 线性系统的能控性和能观测性的 定义
• 能控性和能观测性的判定方法 • 能控性和能观测性的应用 • 线性系统的状态反馈和状态观测
器设计
目录
• 线性系统的最优控制问题 • 现代控制理论的发展趋势和前沿