建筑力学基本计算5力法计算一次超静定结构

合集下载

用力法求解超静定结构

用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。

用力法是一种经典的结构分析方法,常用于求解超静定结构。

本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。

一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。

用力法适用于各种类型的结构,包括梁、柱、桁架等。

二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。

2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。

通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。

3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。

平衡方程包括力的平衡条件和力的矩平衡条件。

4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。

变形方程可以根据结构的刚度和约束条件来确定。

5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。

6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。

如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。

三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。

假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。

1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。

2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。

3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。

4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。

超静定结构习题答案

超静定结构习题答案

超静定结构习题答案一、力法计算超静定结构1. 图示结构的超静定次数n = 。

答案:图示结构的超静定次数n = 8 。

2.用力法计算图示超静定刚架(利用对称性),绘出M 图。

答案:kN13.296]341621[145]4333323321[1011111111=-=⨯⨯⨯-=∆=⨯⨯+⨯⨯⨯⨯==∆+X EIEI EI EI X P P δδ 3. 图(b )为 图(a ) 结构的力法基本体系,试求典型方程中的系 数 δ11和 自 由 项 ∆1P 。

X lq(b)q答案:q⎪⎭ ⎝-===ϕδl l EIl l X C 4341111作M 图 1X M M =二、位移法1.求图示结构位移法典型方程的系数 r11 和 自 由 项 R P1 ,( 括号内 数表示相对 线刚度)。

m答案r11 = 17RP1 = 322.图示结构位移法典型方程的系数r22 和自由项 R P1 分 别 是 ⎽⎽⎽⎽ ,⎽⎽⎽⎽⎽ 。

( 括 号 内 数 表 示 相 对 线 刚 度 )22答案r22= 4.5RP1= -83. 计算图示结构位移法典型方程中的系 数 r r1122, 。

答案 :r EI 110375=.r EI 2235=.4.计算图示结构的位移法典型方程的全部自由项。

答案 :R P 10=R P 280=-k N三、力矩分配法1.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:2.用力矩分配法作图示连续梁的弯矩图(分配两轮)。

答案:。

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解
超静定结构是指在结构中存在多余的支座或者杆件,使得结构的自由度小于零,即结构无法通过静力学方法求解。

在这种情况下,我们需要采用力法或者位移法来求解结构的内力和位移。

力法是指通过假设结构内力的大小和方向,来求解结构的内力和位移的方法。

在力法中,我们需要假设结构内力的大小和方向,然后通过平衡方程和变形方程来求解结构的内力和位移。

力法的优点是计算简单,适用于简单的结构,但是对于复杂的结构,力法的假设可能会导致误差较大。

位移法是指通过假设结构的位移,来求解结构的内力和位移的方法。

在位移法中,我们需要假设结构的位移,然后通过平衡方程和变形方程来求解结构的内力和位移。

位移法的优点是适用于复杂的结构,可以准确地求解结构的内力和位移,但是计算较为繁琐。

在实际工程中,我们通常采用力法和位移法相结合的方法来求解超静定结构。

首先,我们可以通过力法来确定结构的内力大小和方向,然后再通过位移法来求解结构的位移。

这种方法可以充分利用力法和位移法的优点,减小误差,提高计算精度。

超静定结构的求解需要采用力法和位移法相结合的方法,通过假设结构的内力和位移,来求解结构的内力和位移。

在实际工程中,我们需要根据具体情况选择合适的方法,以保证计算精度和效率。

结构力学——5力法

结构力学——5力法

系数行列式之值>0 主系数 ii 0
0 副系数 ij 0 0
5)最后内力
M M 1 X 1 M 2 X 2 .......... ... M n X n M
返回
P
作业: 第106页 5-1(a)、(b)(c)、 (f)、 (g)、(i)、 (j) 5-2 (a)、(b)(c)
静力特性
非荷载外因的影响
内力与刚度的关系
无关
返回
6. 力法解超静定结构的思路 首先以一个简单的例子,说明力法的思路和基本概 念。讨论如何在计算静定结构的基础上,进一步寻求计 算超静定结构的方法。 1判断超静定次数: n=1 2. 选择基本体系(结构) 3写出变形(位移)条件:
(a)
EI 原体系(原结构)
返回
(1)对称结构作用对 称荷载
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
MP图是正对称的,故△3P=0。 X3=0 。 则
返回
(1)力法方程的物理意义为: 基本结构在全部多余 未知力和荷载共同作用下,基本结构沿多余未知力方向 上的位移,应与原结构相应的位移相等。 (2)系数及其物理意义: 下标相同的系数 i i 称为主系数(主位移),它是单位 单独作用时所引起的沿其自身方向上 多余未知力 的位移,其值恒为正。 系数 i j(i≠j)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移, 其值可能为正、为负或为零。据位移互等定理,有 i j= j i △i P称为常数项(自由项)它是荷载单独作用时所引起 的沿Xi方向的位移。其值可能为正、为负或为零。 返回 上述方程的组成具有规律性,故称为力法典型方程。

结构力学 力法计算超静定结构

结构力学 力法计算超静定结构

Δ1 = 0 称为位移协调条件。
( 3 – 1)
情景二 力法的基本原理和典型方程
知识链接
Δ1 = 0 的物理意义:基本结构在荷载与 X1 的共同作用下,B 处所产 生的竖向位移应等于原结构 B 处的实际竖向位移(因原结构 B 处无
竖向位移,故 Δ = 1 0 )。根据叠加原理,基本结构在 q 与 X1 的 共同作用下,产生的 B 处竖向位移 Δ1,应等于 q 与 X1 分别单独作 用在基本结构 B处的竖向位移的叠加,即
情景二 力法的基本原理和典型方程 知识链接
情景二 力法的基本原理和典型方程
知识链接 2.力法原理
如图 3 – 17a 所示一次超静定梁,去掉支座 B,用多余未知力 X1 代 替,得如图 3 – 17b 所示的基本结构。由前述知,只要设法求出多 余未知力 X1,则其余支反力和内力的计算就与静定结构完全相同。 但仅靠平衡条件无法求出 X1,因为在基本结构中除 X1 外还有三个 支座反力未知,故平衡方程数目少于未知力数,其解值是不定的。 为求出未知力 X1,将图 3 – 17a 所示超静定梁与图 3 – 17b 所示静 定梁的受力条件和变形条件进行比较。
Δ11=δ11X11,于是上述位移条件(3–2)可写成
δ11X11 + Δ1P= 0
(3-3)
此方程为力法的基本方程。δ11 和 Δ1P 都是静定结构在已知力作用下 的位移,完全可以由项目二中所述方法求得,于是多余未知力 X 1 即可
由式(3–3)求得。这种以多余未知力为基本知量,通过基本结构,利
用计算静定结构的位移,达到求解超静定结构的方法称为力法。 为了计算 δ11 和 Δ1P ,分别作基本结构在荷载作用下的弯矩图 MP 和
由于原结构在b点的位移为零因此基本结构在荷载和多余未知力共同作用下b点沿x1x2x3方向的水平位移竖向位移和角位移也都应该为零即b处应满足位移条件102030项目实施情景二力法的基本原理和典型方程x11单独作用时沿x1x2x3方向位移分别为112131

力法计算超静定结构

力法计算超静定结构
MP
Δ1=δ11X1 + Δ1P=0 X1=-Δ1P / δ11 ql2/8
M 1M P dx EI 1 1 ql 2 3l = - ql 4 =- l EI 3 2 4 8 EI
D 1P =
=3ql/8
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
或按: = MX1 M P 叠加 M
1
§9.1 超静定结构的组成和超静定次数
a) 静定结构 b) 超静定结构
是无多余约束的几何不变体系。 是有多余约束的几何不变体系。 由此可见:内力超静定,约束有多余,是超 静 定结构区别于静定结构的基本特点。 超静定次数确定 把原结构变成静定结构 超静定次数=多余约束的个数 时所需撤除的约束个数
撤 (1).撤除一根支杆、切断一根链杆、把固定端化成固定铰 除 支座或在连续杆上加铰,等于撤除了一个约束。 约 束 (2)撤除一个铰支座、 撤除一个单铰或撤除一个滑动支 的 座,等于撤除两个约束。 方 式: (3)撤除一个固定端或切断一个梁式杆,等于撤除三个约束。 2
P
l/2
EI=常数 l d 11 = EI l d 22 = 3EI
1
1 1
X1=1
M1 M2
P
d 12 = d 21 =
D1P
l 6 EI
Pl 2 = , D2P = 0 16EI
6 Pl 88 3Pl X2 = 88 X1 = 17
MP
Pl/4
例题:用力法解图示刚架。EI=常数。
P E D Pl/2 C 3 E P D ×Pl/20
M图
8
3ql/8
例: 解:
q ↓↓↓↓↓↓↓↓↓↓↓↓ I1 I2
q=20kN/m
q=20kN/m

建筑力学教学课件 第15章力法及利用对称性计算超静定结构的内力

建筑力学教学课件 第15章力法及利用对称性计算超静定结构的内力
(2)建立力法方程。根据切口两侧截面沿 杆轴方向的相对线位移为零的条件,可建立力 法方程,即
δ11X1+Δ1P=0
15.1.3 力法计算步骤与示例
15.1.3 力法计算步骤与示例
3. 排架
排架常用于装配式单层工业厂房,其 屋架简化为一刚度无限大的直杆(杆件),屋 架与柱之间的联结为铰接。用力法分析排架 时,常取杆件的轴力作为基本未知力,其基 本结构为一组与地面固结的竖向的悬臂梁 (柱),其他计算步骤与梁相同。
15.1.2 力法典型方程
在式(15-4)的方程组中,位于从左上方δ11至右下方δnn的 一条主对角线上的系数δii称为主系数;主对角线两侧的其他系 数δij(i≠j)称为副系数;最后一项ΔiP称为自由项。所有的系数和 自由项都是基本结构上与某一多余未知力Xi作用方向相应的位 移,并规定与所设的多余未知力Xi作用方向一致时为正。因为 主系数δii代表由单位力Xi=1作用时,在其本身方向引起的位移, 它必然与单位力Xi=1的方向一致,所以主系数恒为正数。而副 系数δij(i≠j)则可正、可负或为零。根据位移互等定理有
根据以上所述,力法计算超静定结构的步骤可归纳如下: (1)选取基本结构。去掉原结构的多余约束,并以多余 未知力代替相应多余约束的作用,从而得到基本结构。 (2)建立力法方程。根据基本结构在去掉多余约束出的 位移等于原结构相应位置的位移,建立力法方程。 (3)求系数和自由项。对于一般结构,可用图乘法计算 力法方程中的系数和自由项。对于曲杆或变截面杆则不能用图 乘法。这是,必须列出弯矩方程,用位移公式计算。
Δ1=Δ11+Δ1P=0
(15-1)
式(15-1)称为变形协调条件,它是基本结构与原结
构等同的条件,也是确定多余未知力大小的依据。

超静定结构的计算

超静定结构的计算

§1.3超静定结构的计算超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑变形协调条件。

计算超静定结构的基本方法是力法和位移法。

这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。

转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。

1.3.1力法力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。

超静定结构多余约束(或多余未知力)的数目称为超静定次数,用n表示。

确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原结构的超静定次数。

在结构上去掉多余约束的方法,通常有如下几种:●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束;●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束;●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于去掉两个约束;●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。

现以图1-26a所示一次超静定结构为例,说明力法的基本原理。

其中,要特别重视力法的三个基本概念。

图1-261、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。

多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。

力法这个名称也因此而得。

2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。

在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与原结构完全相同。

超静定结构的计算

超静定结构的计算

一. 用力法计算超静定结构(一)复习重点1. 理解超静定结构及多余约束的概念,学会确定超静定次数2. 理解力法原理3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构)4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构)5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构)(二)小结1. 超静定结构、多余约束、超静定次数(1)超静定结构从几何组成角度,结构分为静定结构和超静定结构。

静定结构:几何不变,无多余约束。

超静定结构:几何不变,有多余约束。

(2)多余约束多余约束的选取方案不唯一,但是多余约束的总数目是不变的。

(3)超静定次数多余约束的个数是超静定次数。

判断方法:去掉多余约束使原结构变成静定结构。

2. 力法原理力法是计算超静定结构最基本的方法(1)将原结构变为基本结构(2)位移条件:(3)建立力法方程3.用力法求解超静定梁和刚架例:二次超静定结构(1)原结构变为基本结构(2)位移条件(3)力法方程(3)绘弯矩图4. 用力法计算超静定桁架和组合结构注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。

例:超静定组合结构(1)原结构变为基本结构(2)位移条件(3)力法方程(4)绘弯矩图5. 了解温度变化、支座移动时超静定结构的内力计算(1)温度变化时,超静定结构的内力计算原结构变为基本结构位移条件力法方程(2)支座移动时,超静定结构的内力计算原结构变为基本结构位移条件二. 用位移法计算超静定结构(一)复习重点1. 了解位移法基本概念及位移法与力法的区别2. 掌握用位移法计算超静定结构(具有一个及两个结点位移)3. 掌握计算对称结构的简化方法(二)小结1. 了解位移法基本概念及位移法与力法的区别位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。

位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构)例:求连续梁的内力解:(1)确定基本未知量及基本体系基本未知量是结点B的角位移。

力法求解超静定结构的步骤

力法求解超静定结构的步骤

力法求解超静定结构的步骤在结构力学中,超静定结构是指不仅能同时满足静力学平衡条件,而且还有多余的约束力,因此外加一个作用力时其约束力不会被破坏。

力法求解超静定结构是求解这类结构体系的一种有效方法,下面是力法求解超静定结构的步骤。

步骤1:建立超静定结构的外部受力与内力等效关系超静定结构的约束力有多余的约束力,即力学平衡条件所无法求解的约束力。

因此,我们需要建立超静定结构的外部受力与内力等效关系,通过已知的受力条件推导约束力的作用,确定超静定结构的内力状态。

步骤2:建立超静定结构的位移方程或应力方程建立超静定结构的位移方程或应力方程,是力法求解超静定结构的关键步骤之一。

位移方程的建立可以基于杆件测量法或截面受力法,应力方程的建立可以基于材料本构关系和边界条件等。

步骤3:解超静定结构的位移方程或应力方程解超静定结构的位移方程或应力方程,可以采用数值解法和解析解法两种方法。

数值解法主要包括矩阵法、有限元法、边界元法等,解析解法则借助微积分和常微分方程等数学方法进行求解。

步骤4:计算超静定结构的内力与应变通过已解出的位移或应力,可以计算得到超静定结构的内力状态和应变分布。

同时,超静定结构的内力状态也可以用于检验该结构的可靠性以及对超静定结构进行所需的修理和维护。

步骤5:检验超静定结构的可靠性超静定结构的可靠性检验,是通过计算得到的内力状态来评估该结构是否满足设计和使用要求的一项重要工作。

该步骤可以基于强度理论、变形理论等方法,利用计算机强度分析软件来实现。

,力法求解超静定结构是求解这类结构体系的一种常用方法。

通过以上步骤的实施,我们可以获得超静定结构的内力状态,进而检验该结构的可靠性。

材料力学-力法求解超静定结构

材料力学-力法求解超静定结构
外超静定系统:支座反力不能全 由平衡方程求出
内超静定系统:支座反力可由平 衡方程求出,但杆件的内力却不
能全由平衡方程求出;
简单的超静定结构
1 超静定系统的几个基本概念
求解超静定系统的基本方法,是解除多余约束, 代之以多余约束反力,根据多余约束处的变形协 调条件建立补充方程进行求解。
解除多余约束后得到的静定结构,称为原超静定 系统的静定基本系统。
在求解超静定结构时,一般先解除多余约束, 代之以多余约束力,得到基本静定系。再根 据变形协调条件得到关于多余约束力的补充 方程。这种以“力”为未知量,由变形协调 条件为基本方程的方法,称为力法。
a
A
A
C
l
F
A
C
B 1F
B F
F 01 单击此处添加标题
X1
02 单击此处添加标题
A
C
B
1X1
1 1 F 1 X0
MP图
M10图
材料力学Ⅰ电子教案
补充:力法求解超静定结构
11
1 EI
a2 2
2a 3
a2
a
4a 3 3 EI
1P
1 EI
qa 2
3
a
qa 4 2 ቤተ መጻሕፍቲ ባይዱI
由 11 X 1 1P 0

X1
3qa 8
X B 0,
YB
3qa 8
X A 0,
YA
11qa 8
,
M
A
qa 2 8
正对称载荷:绕对称轴对折 后,结构在对称轴两边的载 荷的作用点和作用方向将重 合,而且每对力数值相等。
反对称载荷:绕对称轴对 折后,结构在对称轴两边 的载荷的数值相等,作用 点重合而作用方向相反。

力法—超静定次数的确定与基本结构(建筑力学)

力法—超静定次数的确定与基本结构(建筑力学)
力法
第三节 超静定次数的确定与基本结构
超静定次数是指超静定结构中多余约束的个数。 通常可以用去掉多余约束使原结构变成静定结构的方法 来确定超静定次数。 如果原结构在去掉n个约束后,就成为静定的,则原结构 的超静定次数就是n次。 在超静定结构中去掉多余约束的方式有以下几种:
力法
在超静定结构中去掉多余约束的方式有以下几种: 1)去掉一根支座链杆或切断一根链杆,相当于去掉一个 约束。
超静定次数为2
超静定次数为1
力法
2)拆除一个单铰或去掉一个铰支座,相当于去掉两个约束。 3)切断一根梁式杆或去掉一个固定支座,相当于去掉三个 约束。
超静定次数为5
力法
2)拆除一个单铰或去掉一个铰支座,相当于去掉两个约束。 3)切断一根梁式杆或去掉一个固定支座,相当于去掉三个 约束。
超静定次数为2
超静定次数为3
力法
4)把刚性连接改为单铰连接或把固定支座改为铰支座, 相当于去掉一个约束。
超静定次数为3
需要指出,对于同一结构,可用各种不同方式去掉多余 约束而得到不同的静定结构。但是无论哪种方式,所去掉 的多余约束的个数必然是相等的。
ቤተ መጻሕፍቲ ባይዱ
X2 X1
X3
一个无铰封闭框有三个多余约束. 若闭合框格的个数是c,单铰的个数是h,则闭合框格 的超静定次数为
n 3c h
力法
由于去掉多余约束的方式的多样性,所以,在力法计 算中,同一结构的基本结构可有各种不同的形式。
应注意,基本结构必须是几何不变的,因此,某些约束 是绝对不能去掉的。例如对于上述结构中任一根竖向支座 链杆就不能去掉,否则将成为瞬变体系(图d)。

力法计算超静定结构举例

力法计算超静定结构举例
的相对位移)
3)计算系数和自由 绘 N1 和NP 。 项
11
1 EA
1
1
3
4 3
4 4 2 ( 3
5 ) ( 3
5 3
)
5
3
45 EA
1P
1 EA
(75) (
5)5 3
60
4 3
4
945 EA
例:用力法计算图示桁架的轴力。(各杆EA相等且为常数)
4)计算多余未知力X1
945
X1
1P
11
EA 45
21(kN)
EA
5)作最后内力图
N=N1X1+NP
四、超静定组合结构
五、力法计算铰接排架
例:用力法计算图示铰结排架,并作弯矩图。
解:1)选取图示基本体系 2)力法方程为: 11X1 1p 0 3)绘单位弯矩图M1和 荷载弯矩图MP
3)绘单位弯矩图M1和荷载弯矩图
MP
11
2 EI
(1 3 3 2
EA
EA
ip
NiN EA
p
dx
NiN EA
p
l
各杆的最后轴力按下式计算:
N N1X1 N2 X2 Nn Xn N p
例:用力法计算图示桁架的轴力。(各杆EA相等且为常数)
解:1) 确定基本体系(如图所示) 2)建立力法方程:
11X1+△1P=0 (基本体系在切口两边截面沿X1方向
取结点A为脱离体 取结点C为脱离体
Y 0,
2 RA 5 ql
()
Y 0,
RC
ql 2
3 ql 5
11 ql 10
()
讨 ①超静定结构在荷载作用下其内力与EI 的实际值无关,只与EI的相对值有关;

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解

力法、位移法求解超静定结构讲解超静定结构是指在静力学计算中具有过多约束的结构体系,其问题在于不能通过传统的静力学方法直接计算出结构体系的内力以及位移的分布情况,需要利用力法或者位移法来求解超静定结构。

力法是指将结构体系的内力分配给各个构件,然后根据各个构件的受力情况和变形情况,逐步推导出结构体系的内力和位移分布情况的一种方法。

其基本思想是通过外部荷载作用下的内力分配,将超静定结构分解成多个静定结构分析,同时通过协调各个分析时的界面条件,进行内力和位移的匹配,最终得到了超静定结构的内力和位移分布情况。

具体实现步骤如下:1. 选定一个自由图,并对该自由图进行划分,将超静定结构分成多个静定结构,其中每个静定结构的节点数均满足有一个自由度。

分割完毕后,确定每个静定结构的支座反力,然后由每个静定结构自己采用传统的静力学原理分析,并得到各自的内力和位移。

2. 对于静定结构之间的相互配合,需要根据结构体系的受力变形情况建立相互之间的协调关系。

最常用的协调方法是确定静定结构之间的界面条件,如节点位移和节点荷载的相等,以及弹簧刚度之和等于零。

3. 在确定了静定结构之间的界面条件后,就可以获得超静定结构的结构内力分布,接下来需要计算出结构的位移分布。

这一步可以通过位移影响系数法进行求解,具体来说,先在静定结构中确定一个位移分量,然后根据约束条件求得其余节点的位移分量,最终获得超静定结构的位移分布。

相比于力法,位移法的思路更加简洁明了,具体步骤如下:1. 建立超静定结构的初始刚度方程,包括构件中的整体刚度和节点位移自由度的边界条件等。

2. 将超静定结构受到的外载按照一定的规律进行分配,使得该结构从受力变形的点出发经过一系列刚度修正后,其总体刚度等于原结构的刚度。

这个修正过程是迭代的,一般采用迭代矩阵求逆的方式进行求解。

3. 当总体刚度修正后,结构的总位移就变为了一个已知量。

根据节点位移自由度的边界条件,可以直接解出各节点的位移分量。

力法求解超静定结构的步骤

力法求解超静定结构的步骤

力法求解超静定结构的步骤:
1、先判定其超静定次数,(含多余联系数),去掉原结构的所有多余联系,用相应的多余力代替,得一静定的基本结构(形式可能很多,尽量简单);
2、根据基本结构在原荷载及所有多余力共同作用下,在每一个去掉的多余联系处位移和原结构相应位置的已知位移相同,建立力法典型方程;
3、求方程所有系数和自由项,(静定结构的位移计算)积分法或图乘法,写出基本结构X i∑=在单位力及原荷载分别单独作用下的内力表达式或作出内力图;
4、解方程,求出所有多余力;
5、作最后内力图(静定结构的计算问题)梁、刚架:M N P 组合结构:
6、校核,两方面:平衡条件(截取结构中+ X i N i ∑=M P →Q→N 桁架:N +M i M=0 )∑Y=0 ∑ X=0 ∑刚结点、杆件或某一部分,应满足;变形协调条件(多余约束处位移是否与已知位移相等)
注:选取基本结构的原则:
(1)基本结构为静定结构;
(2)选取的基本结构应使力法方程中系数和自由项的计算尽可能方便,并尽量使较多的副系数和自由项为0
(3)较易绘M 图及MP 图。

建筑材料力学第五章力法

建筑材料力学第五章力法
q
A
D
Δ1P B
C
A
X1=1
δ11 δ21
D
B
C
A
δ12
X2=1 δ22
D
B
C
建筑力学
1. 力法方程
11X1 12 X 2 1P B 0 21X1 22 X 2 2P C 0
方程各系数示于上页图中。讨论方程和系 数的物理意义。
2. 方程求解 M1图、M 2 图及MP图见下页图示。上述弯矩
建筑力学
ql2 15
A
C
D
B
ql2 60
11ql2 120 M图
2) 根据M图求各杆剪力并画Q图。
建筑力学
13ql 30 A
ql 12
BC 17ql 30
ql 60 D
Q图
建筑力学
二、超静定刚架
例5-3-1 求图示刚架M图。
q
B
C
X1
E1I1 l
E2I2 l
E1I1 k
E2 I 2
A
原结构
X2
11 ——基本结构在X1=1作用下沿X1方向的位移。
1P ——基本结构在FP作用下沿X1方向的位移。
建筑力学
3. 力法计算 1) 求系数及自由项
FPl 2
A
FP
A l/2
MP图
B l
M图
11
1 EI
1 2
l
l
2l 3
l3 3EI
1P
1 EI
1 2
FPl 2
l 2
(2 3
l
1 3
l) 2
1 FPl2 5 l 5FPl3 EI 8 6 48EI
如下图超静定梁,若只满足平衡条件,支 座B的竖向反力可以是任意值。

力法求解超静定结构的步骤:

力法求解超静定结构的步骤:

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。

二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。

即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。

多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。

多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。

即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。

3、物理条件:即变形或位移与内力之间的物理关系。

精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。

力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。

五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑力学基本计算5
力法计算一次超静定结构
1、基本概念和计算要求
在学习力法计算超静定结构的时候,要注意下列几点:
1) 力法的基本原理,通过多余未知力的概念,把超静定结构问题转化为静定结构的计算问题。

2) 结构超静定次数的确定,多余约束、多余约束反力和抄静定次数的关系,基本结构的确定。

3) 力法典型方程的建立及方程中想关系数的意义。

2、基本计算方法
在学习力法的基本方法时,要注意下列问题:
1) 选择基本结构。

由于力法是以多余未知力作为基本未知量,首先应根据去掉多余约束的
原则和方法去掉多余约束代之以多余未知力,得到与原结构相应的静定结构即基本结构。

选择基本结构应注意:基本结构必须是几何不变体系的静定结构,几何可变体系(或瞬变体系)不能用作基本结构;多余约束力的方向应该符合约束的方向;选择的基本结构应该尽量使解题步骤简化。

2) 基本方程的建立。

将基本结构与原结构以受力条件进行比较会发现:只要多余未知力就
是原结构的支座反力,则基本结构与原结构受力情况完全一致;当解出多余未知力,将其视为荷载加在基本结构上,超静定结构的计算即转化为静定结构的计算。

3、计算步骤和常用方法
考试要求基本是以力法计算一次超静定刚架(或梁)为主,基本计算步骤是:
1) 选择基本结构。

确定超静定结构的次数,去掉多余约束,并以相应的约束力代替而得到
的一个静定结构作为基本结构。

2)
建立力法典型方程。

01111=∆+P X δ(一次超静定结构) 3) 计算δ11和Δ1P 。

首先要画出基本结构在荷载作用下的M P 图和基本结构在单位未知力作用下的1M 图,然后用图乘法分别计算δ11(1M 图和1M 图图乘)和Δ1P (M P 图和1M 图图乘)。

4)
求多余未知力。

代入力法典型方程求出多余未知力。

5) 作内力图(一般为作弯矩图)。

可按P M X M M +⋅=11式叠加对应点的弯矩,从而画
出弯矩图。

4、举例
作图(a )所示超静定刚架的弯矩图。

已知刚架各杆EI 均为常数。

[解](1)选择基本结构
图(a )为二次超静定刚架,去掉C 支座约束,代之以多余未知力X 1、X 2得到如图(b )所示悬臂刚架作为基本结构。

(2)建立力法典型方程
原结构C 支座处无竖向位移和水平位移,故△1=O ,△2=0,则其力法方程为
(3)计算系数和自由项
①画基本结构荷载弯矩图M P 图如图(c )所示。

②画基本结构单位弯矩图1M 图和2M 图分别如图(d )、(e )所示。

③用图乘法计算各系数和自由项:
(4)求多余未知力
将以上所求得的系数和自由项代入力法方程,得
解得
其中X1为负值,说明C支座竖向反力的实际方向与假设相反,即应向上。

(5)根据叠加原理作M图,如图f所示。

相关文档
最新文档