南航理论力学范钦珊PPT第11章 质点系动能定理

合集下载

理论力学质点力学课件

理论力学质点力学课件
7
五、理论力学的适用范围 1.物体运动的速度远少于光速 2.宏观物体(天体---原子) 作用量=能量x时间>>h=6.602X10^(-34)(JS)
8
参考书
❖ 郭士堃:《理论力学》上、下册 ❖ H.戈德斯坦(美):经典力学 ❖ 费恩曼 (Feynman):《物理学讲义.第一卷) ❖ 汪家訸:分析力学 ❖ 理论力学习题集
18
加速a 度 表 x 示i : y j z k a x i a y j a z k
加速度分量为:
a x x a y y
a z z
加速率表示:
a ax2 a2y az2
19
20
21
y
径向单位矢量:i
横向单位矢量:j (指向极角的 增加方向) rri
v dr drir irdiO
求 v,a, 。
35
例 求平抛物体任一时刻t的轨道曲率半径。
解:如图,平抛物体的运动方程为:
x v0t
y 1 gt2 2
O
v0
则,速率 v x 2y 2v0 2g2t2
•( x, y)
x
切向加速度
dv
g2t
a
dt
v02 g2t2
y
加速度大小 a x2y2 g
由法向加速度
an a2a2 v2
v2an
自然坐标系
s f (t)
从运动方程中消去时间 t,就得到轨迹方程
f(x,y,z)=0。
14
(Displacement, velocity and acceleration)
z
位移 (displacement):
B
r
r r C
O rA

理论力学课件 第十一章动能定理,质点的,以及力的功

理论力学课件  第十一章动能定理,质点的,以及力的功

∑ ∑ T =
i
1 2
mi
vi2
=
i
1 2
mi
(riω
)2
∑ = 1 ω2 2
i
mi ri 2
=
1 2
JOω 2
11.2 质点和质点系的动能
(3) 平面运动刚体的动能
T
=
1 2
J Pω 2
因为JP=JC + md 2
d

P
所以
T
=
1 2
(JC
+
md 2 )ω 2
=
1 2
JCω 2
+
1 2
m(d
⋅ω)2
z2
)
z1 O
x
mg M2 y z2
重力的功等于质点系的总重量与其重心高度差之乘积,重心 降低为正,重心升高为负。
重力的功仅与重心的始末位置有关,而与重心走过的 路径无关。
常见力的功
2) 弹力的功
弹性力的大小与其变
形量δ 成正比。设弹 A1
簧原长为l0 , 则弹力 δ
的功为
1
W12
=
1 2
k (δ12
T = 1 mv2 2
动能是标量,在国际单位制中动能的单位是焦耳(J)。
2. 质点系的动能
质点系内各质点动能的算术和称为质点系的动 能,即
T
=

1 2
mi vi2
11.2 质点和质点系的动能
3、刚体的动能 (1) 平动刚体的动能
T
=

1 2
mi vi2
=
1 2
v2

mi
=
1 2

11动量定理

11动量定理

理论力学电子教程
第十一章 动量定理
例11-2 在静止的小船中间站着两个人,其中m1=50kg, 面向船首方向走动1.5m。另一个人m2=60kg,面向船尾方 向走动0.5m 。若船重 M =150kg ,求船的位移。水的阻力 y 不计。 甲 乙 尾 首 【解】 x 因无水平力 水平方向质心守恒, 又初始静止
(6)
(7)
又 t 0, 0,x A 0 ,代入(7)式得 C 0, 由此存在
ml ml xA sin sin( 0 sin t ) mM mM
理论力学电子教程
第十一章 动量定理
例11-4 如图所示系统中,均质杆OA、AB与均质轮的质量 均为 m,OA杆的长度为 l1,AB杆的长度为 l 2 ,轮的半径为 R,轮沿水平面作纯滚动。在图示瞬时,OA的角速度为 ,则整个系统的动量为多少?
式中 mv——质点动量;矢量,其大小等于质点的 质量m与它在某瞬时速度v的乘积,其单位 kg m / s
或N s 。
写成微分形式
d (mv) Fdt
(11-2)
这是微分形式的质点动量定理
Fdt 称之为冲量。
⒉ 质点动量定理的积分形式
在t1与t2时刻, m v2 m v 1

t2
t1
理论力学电子教程
第十一章 动量定理
mv2 z mv z Fz dt S z 1
t1
t2
mv2 y mv y Fy dt S y 1
t1
t2
(11-5)
mv2 x mv x Fx dt S x 1
t1
t2
⒊ 质点动量守恒
若 作 用 于 质 点 上 的 力 为 零 ,F 0 , 则 有 m v2 m v 0 ,则质点动量保持不变。 1 若 Fx 0,则有 mv2 x mv x 0 。 1

《理论力学》课件 第11章

《理论力学》课件 第11章
ds Rd
因此,力F的元功又可表示为 δW F cosds F cos Rd
由静力学可知, F cosR 即为力 F 对轴 Oz 的力矩 Mz (F) ,于是有
δW Mz (F )d
(11-16)
即作用于定轴转动刚体上力的元功,等于该力对转轴的矩(简称 转矩)和微转角的乘积。
图11-5
当刚体在力 F 的作用下,绕轴转过 角时,力 F 所做的功为
v2 v1
d
1 2
mv2
M2 F dr
M1

1 2
mv22
1 2
mv12
W12
(11-22)
这就是质点动能定理的积分形式,即质点在某运动过程中动能的改 变,等于作用于质点上的力在同一过程中所做的功。
质点动能定理建立了质点动能和力的功之间的关系,它把质点的速度、作 用力和质点的路程联系在一起,对于需要求解这三个物理量的动力学问题, 应用动能定理是方便的。此外,通过动能定理对时间求导,式中将出现加 速度,因此动能定理也常用来求解质点的加速度。
则这种约束力所做功的总和为零。
图11-8
4.无重刚杆
如图 11-9 所示,无重刚杆 AB 连接两个物体,由于刚杆重量不计,因此其约束 力 FN 与 FN 应是一对大小相等、方向相反,作用线相同的平衡力。设 A,B 两点的 微小位移分别是 drA 和 drB ,则 FN 与 FN 元功之和为
δW FN drA FN drB FN | drA | cosA FN | drB | cosB FN (| drA | cosA | drB | cosB )
当力偶矩 M 常量时,上式可写为
(11-19)
W M
五、约束力的功与理想约束

理论力学课件 动能定理

理论力学课件 动能定理

z m2 m3 C rC O x' x 而
i
mi m1 y
ri
y'
mn
1 2 1 2 T= mvC mi vri 2 2
d m v m i ri dt i i 0
质点系的动能,等于系统随质心平移的动能与相 对于质心平移参考系运动的动能之和。
2012年5月3日 Thursday 理论力学CAI 4
第13章
动 能 定 理
动量定理和动量矩定理是用矢量法研究动力学问 题,而动能定理用能量法研究动力学问题。能量法不 仅在机械运动的研究中有重要的应用,而且是沟通机 械运动和其它形式运动的桥梁。动能定理建立了与运 动有关的物理量—动能和作用力的物理量—功之间的 联系,这是一种能量传递的规律。
2012年5月3日 Thursday
Fx =0, Fy =0, Fz =-mg
F mgk
W mgdz mg ( z1 z 2 )
z1 z2
对于质点系
2012年5月3日 Thursday
W mg ( z C 1 z C 2 )
理论力学CAI 11
重力的功与重心运动的高度差成正比,与路径无关。
② 弹性力的功
Jz——刚体对轴的转动惯量
2012年5月3日 Thursday 理论力学CAI 3
z'
柯尼希(Koenig) 定理
质点系动能计算
1 1 T mi vi2 mi (vC vri ) 2 2 2 1 1 2 2 mi vC mi vri mi (vC vri ) 2 2 1 2 1 2 mvC mi vri vC mi vri 2 2 1 2 1 2 mvC mi vri 2 2

第11章 质点系动能定理——【理论力学课件】

第11章 质点系动能定理——【理论力学课件】


(
mvr )
T
=
1 2
MvC 2
+ TC r
——柯尼希定理
注意:这一结论仅以质心为基点时正确。 12
质点系动能定理
三、刚体的动能
1. 平移刚体
∑ T =
1 2
mv2
=
1 2
MvC2
2. 定轴转动刚体
∑ ∑ T =
1 mv2 = 2
1 m(ωr)2
2
=
1 2
J

2
3. 平面运动刚体T=Fra bibliotek1 2
MvC 2 +
(Fx
d
x
+
Fy
d
y
+
Fz
d z() 直角坐标形式)
——解析表达式 4
质点系动能定理
三、几种常见力作的功
1. 重力的功 质点
W12 = mg ( z1 − z2 )
质点系
∑ W12 = mg(z1 − z2 )
Fx = 0, Fy = 0, Fz = −mg
= Mg (zC1 − zC 2 )
二、质点系的动能
z
z′
? ∑ T =
1mv 2 2
=
1 2
Mv
2 C
C y′
rC x′ r′
v m
r
v2 = v ⋅ v = vC2 + vr2 + 2vC ⋅ vr x
O
y
∑ T =
1 2
m(vC2
+
vr2
+
2vC
⋅vr )
v = vC + vr
∑ ∑ =

理论力学第十一章 动能定理[精]

理论力学第十一章 动能定理[精]

解:
动能: T m 2 v 2 A m 220 2 2 m 3 v c 2 2 1 r 2 2 m 3c 2 2 1 m 2 v B 2
功Cr:W xB g xCs2m 3 i C rx n A 0 M 0r 0 m 3 0Rg c xAm 2 x g PB m x vA A cg 3 o Mf s x 0 s
vB
B
§11-3 质点系动能定理
i 第 个质点
分别乘以 vid
mi
dvi
dt
tdr

Fi
m iv id v i F id r
d(12mivi2)dWi 叠加
d(12mivi2)dWi
d(12mivi2)dW i
dTdWi
质点系动能的微分等于作用于质点系的力的元功之和。
O
v
P
M v
dr M F
y
W s(F xd xF yd yF zd)z
M2 M1
dW
x

FR Fi
W F R d s F 1 d s ... ..W .i .
S
S
自然坐标形式 :
WM M 1 2F drM M 1 2Fdrcos dr ds
Jo

1 3
P g
l2
Fy
Fx
(1)式两边对时间求导
Ql2 lPsinJ0 Q gl2
900

QP 2 sin 3 1P glQ gl
P2Q3g P3Q 2l
例11-9:已知:mA=m,mB=m/2,mC=m/3,鼓轮的廻转半径为, 质量为m,鼓轮小半径为r,大半径为R,C轮的半径为r,物体A 接触的摩擦系数为fs,求物体A下落时的速度。

理论力学-11-动能定理及其应用ppt课件

理论力学-11-动能定理及其应用ppt课件

M k
其中k为扭簧的刚度系数。当杆从角度θ1转到角度θ 2时所 作的功为 12 12 2 W k dk k 1 2 1 2 1 2 2
11.1 力的功 3、内力的功
内力作功的情形 日常生活中,人的行走和奔跑是腿的肌肉内力作功; 弹簧力作功等等;摩擦力做功损耗能量。 刚体的内力不作功 刚体内任何两点间的距离始终保持不变,所以刚体 的内力所作功之和恒等于零。
11.1 力的功
W F d r F dx + F dy + F dz 12 i i x y z W
M 2 M 2 M 2 M 1 M 1 M 1

由此得到了两个常用的功的表达式: 重力的功 对于质点:
z
M1 z1
F F 0 x y
重力的元功为
F P mg z=
r = k ( r l ) d r 0 r
r0——沿位矢方向的单位矢量 A k 2 2 2 W W r l r l 12 1 0 2 0 A 1 2


1 、 2 ——弹簧在初始位置和最终位置的变形量 。
k 2 2 W ( ) 12 1 2 2

vO O
C*
FN
W F d r F v d t 0 F C C

约束力为无功力的约束称为理想约束
11.1 力的功
总结: 内力不能改变质点系的动量和动量矩,但 它可能改变质点系的能量; 外力能改变质点系的动量和动量矩,但不 一定能改变其能量。
第11章 动能定理及其应用
11.2 质点与质点系的动能
弹性力作的功只与弹簧在初始和终止位置的变形量有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11-4 势能 · 机械能守恒定律
一、势力场 力场 若质点在某空间内的任何位置都受到一个大小和方
向完全由所在位置确定的力的作用,则此空间称为力场。 势力场 在力场中,若作用于质点的力所作功仅决定于质点
的始末位置,而与运动路径无关,这种力场称为势力场。
例如: 重力场,弹性力场,万有引力场。
在势力场中质点受到的力称为有势力或保守力。
13
质点系动能定理
[例11-2] 已知滑块A的质量为 m1,质点B的质量为m2 , 杆AB长度为 l ,质量不计,可绕A点转动,且与铅垂线
夹角为θ ,滑块A速度为vA。
求:系统的动能。
A
vA
解: 滑块 A作直线平移,有
TA
=
1 2
m1vA2
杆AB作平面运动,以 A
为基点,则B点速度为
vB = v A + vBA
解:(1)取整个系统为研究对象 (2)受力分析,计算力的功 W12 = mgh (3)运动分析,计算功能 T1 = 0
因 ∑ Fxe = 0,故C点铅垂落下。
C
vC
h
mg mg
A
B
FA
FB
由A、C两点速度方向,可 知A即为杆AC的速度瞬心。
28
质点系动能定理
当铰C落地时
ω AC
=
vC l
,
ω BC
(Fx
d
x
+
Fy
d
y
+
Fz
d z() 直角坐标形式)
——解析表达式 4
质点系动能定理
三、几种常见力作的功
1. 重力的功 质点
W12 = mg ( z1 − z2 )
质点系
∑ W12 = mi g(zi1 − zi2 )
Fx = 0, Fy = 0, Fz = −mg
= mg(zC1 − zC 2 )
=
1 2
m2 R2 2
+
m2 R2 2
=
3 2
m2 R2 2
设圆柱中心C的速度为vC,则由运动学关系有 23
质点系动能定理
ω1
=
vC R1
,
ω2
=
vC R2

T2
=
1 4
(2m1
+
3m2 )vC2
(4)应用质点系动能定理
P
T2 − T1 = W12
1 4
(2m1
+
3m2
)vC2
−0= M
s R1

2
• 正标量,与速度方向无关; • 量纲与功相同,单位也是焦耳(J); • 与动量的比较
同: 均是机械运动强弱程度的一种度量; 异: 动能与质点速度平方成正比,为标量;
动量与质点速度一次方成正比,为矢量。
10
质点系动能定理
二、质点系的动能
∑ ? T =
1 2
mi
vi
2
=
1 2
mv
2 C
vi2 = vi ⋅ vi = vC2 + vi2r + 2vC ⋅ vir x
25
质点系动能定理
[例11-4] 行星齿轮机构 (在水平面内)
已知:动齿轮半径 r ,质量 m1,视 为均质圆盘;曲柄质量 m2 ,长 l , 作用常力偶矩M。由静止开始转动。
求:曲柄的角速度和角加速度。
(表示为转角ϕ 的函数)
解:(1)取整个系统为研究对象
(2)受力分析,并计算力的功 系统具有理想约束,内力作功和为零,
质点系动能定理
基 础 部 分 —— 动 力 学
第 11 章 质点系动能定理
2014年12月15日Monday
1
质点系动能定理
第11章 质点系动能定理
§11-1 力的功 §11-2 质点系的动能 §11-3 质点系动能定理 §11-4 势能 · 机械能守恒定律 §11-5 动力学普遍定理综合应用 §11-6 本章讨论与小结
盘质量为m2 ,半径为 R。初始时两者静止,下落至图示
位置时杆的角速度为ω0 ,求系统的总动能。
解:杆OA作定轴转动,故有
T杆
=
1 2
(
1 3
m1l
2
)ω02
由盘相对于质心的动量矩
O
ω0
A A
定理,可知盘作平移,故有 ωA = ?
T盘
=
1 2
m2vA2
=
1 2
m2

0l
)
2
T系统 = T杆 + T盘
d riC
Fi

Mi
d rC C
= FR ⋅ d rC + M C ⋅ d ϕ
作用于刚体上力系作功为
FR —力系主矢 M C—力系对质心主矩
∫ ∫ W12 =
C2 C1
FR
d rC
+
ϕ2 ϕ1
MC

力系主矢的功
力系对质心主矩的功
9
质点系动能定理
§11-2 质点系的动能
一、质点的动能 1 mv 2
质点系动能定理
3. 定轴转动刚体上作用力的功
力F 的元功为
dW = F ⋅dr = Ft d s = Ft R dϕ ∵ Ft R = M z (F ) = M z
∴ dW = Mz dϕ
当刚体从 ϕ1到ϕ2的转动过程
中力F 所作的功为
∫ W12 =
ϕ2 ϕ1
M
z

上式也适用于力偶。 7
质点系动能定理
可见:质点系重力作功仅与质心运动始、末位置的高度 差有关,而与质心运动路径无关。
5
质点系动能定理
2. 弹性力的功
直线弹簧
FF = k−δk (=rk−(rl0−)lr00)
W12
=
k 2
(δ12

δ
2 2
)
——δ1和δ2为弹簧变形量 扭转弹簧Fra bibliotekW12
=
k 2
(θ12
−θ22)
可见:弹簧力的功也与运动路径无关。 6
4. 平面运动刚体上力系的功 刚体上任一力Fi作用点Mi
的无限小位移为
d ri = d rC + d riC
d riC θ Fi

Mi
d rC C
式中: d riC = M iC ⋅ dϕ
力Fi 作的元功为
d rC —质心无限小位移
dϕ —刚体无限小转角
dWi = Fi ⋅ d ri = Fi ⋅ d rC + Fi ⋅ d riC
质点系动能定理
三、刚体的动能
1. 平移刚体
∑ T =
1 2
mi
vi2
=
1 2
mvC2
2. 定轴转动刚体
∑ ∑ T =
1 2
mivi2
=
1 2
mi
(ωri
)
2
=
1 2
J zω 2
3. 平面运动刚体
T
=
1 2
mvC
2
+
1 2
J
Czω
2
=
1 2
J Pzω 2
12
质点系动能定理
[例11-1] 质量为m1的均质细杆OA绕水平轴O转动,其 另一端有一均质圆盘,可绕A轴转动。已知:OA= l,圆
19
质点系动能定理
dW = −FA ⋅ drAB
(1) drAB ≠ 0
dW ≠ 0
即当两点之间距离改变时,内力作功之和不等于零。
例如:变形体的内力; 汽车发动机的内力;
机器中轴和轴承之间的摩擦力。
(2) drAB = 0
dW = 0
即当两点之间距离保持不变时,内力作功之和等于零。
例如: 刚体内力;
其中: Fi ⋅ d riC = Fi cosθ ⋅ d riC = Fi cosθ ⋅ MiC ⋅dϕ = M C (Fi ) ⋅ dϕ
8
质点系动能定理
dWi = Fi ⋅ d rC + M C (Fi ) ⋅ dϕ
∑ 力系元功:dW = dWi ∑ ∑ = Fi ⋅ d rC + M C (Fi ) ⋅ dϕ
=
vC l
T2 =
1 2
1 ( 3
ml
2

AC
2
+
1 2
1 ( 3
ml
2

BC
2
=
1 3
mvC
2
(4)应用质点系动能定理,得
1 3
mvC 2

0
=
mgh
vC = 3gh
思考:若要求铰C到达地面时的加速度,则能否直接对 上式求导?
思考:若杆AC质量为2m,其它条件不变,则结果如何?
29
质点系动能定理
m2 g
⋅ sinθ

s
解得
vC = 2
(M − m2 gR1 sinθ )s
R1(2m1 + 3m2 )
24
质点系动能定理
应用动能定理的解题步骤: (1)选取研究对象;( 一般取整个系统) (2)分析受力,计算力的功;
z 区分主动力与约束力 z 在理想约束情况下约束力不做功 z 考虑内力作功和是否为零 (3)分析运动,计算质点系在起点和终点的动能; (4)应用质点系动能定理建立方程,求解未知量。
1 2
mv22

1 2
mv12
=
W12
二、质点系动能定理
——微分形式 ——积分形式
相关文档
最新文档