5第五章 点的运动学描述和刚体的简单运动

合集下载

理论力学-5-运动学基础

理论力学-5-运动学基础

ds =v =s dt
dv at s dt
an
v
2

a a a
2 τ
2 n
5.1 点的运动学
自然轴系
自然轴系
当运动轨迹为空间曲线时,弧坐标系中所得 到的结论同样成立,只需将弧坐标系扩展为自然 轴系。
5.1 点的运动学
自然轴系P-TNB
B(副法线) N(主法线)
0
dτ n d
5.1 点的运动学
τ vτ av
τ
弧坐标法
τ ?
ds =v =s dt
dτ dτ d ds dt d ds dt
dτ n d
d 1 曲率 ds
a at an at τ an n
速度方向的变化率 法向加速度
xA OC CM R
M

CM v0t R R
v0t x OC AM sin v t R sin 0 R 于是M点的运动方程为: vt y AC AM cos R R cos 0 R
5.1 点的运动学
v0t x OC AM sin v t R sin 0 R vt y AC AM cos R R cos 0 R
切线方向的单位矢量为t ,则有 r ds lim τ =v = s t 0 s dt t指向弧坐标s增加的方向。 动点的速度为
τ v vτ s
速度方向
速度大小
5.1 点的运动学
弧坐标法
加速度
dτ dτ d ds dt d ds dt dτ d 1 ds 曲率 ? =v =s ds d dt τ

大学物理第5章刚体

大学物理第5章刚体
由转动定律:
l 3 mg 1 2 2 3g M 3 1 2 2 J 4l 2 ml 3
B
例2 如图,质量均为m的两物体A和B。A放在倾角 20 为a的光滑斜面上,通过绕在定滑轮上的细绳与B相 连,定滑轮是质量为m 半径为R的圆盘。求绳中张 力T1和T2以及A和B的加速度aA 、aB 。
解 受力 N , mg , 只有mg产生力矩
系统对0轴的力矩:
N
0
A
30
mg mg
L L M o M 0 A M 0 B mg mg sin 600 2 2 1 1 2 系统对O轴的J: J J A J B ml 2 ml 2 ml 2 3 3 3
F F F11
第一项的方向垂直于轴,对轴力矩为零:
10
将第二项的数值定义为力对轴的力矩,即
M轴
r F
方向平行于轴
二、刚体定轴转动定律 dL 由质点的角动量定理: M r F dt 刚体是 N 个质点组成的特殊质点系:
第 i个质点有
对 N 个质点求和
4. 线量与角量关系
ai
dvi d dri ai ri dt dt dt d ri ( ri ) dt dv d at ri ri 切向分量 dt dt v2 2 法向分量 an ri ri
注意:1.转动定律是力矩的瞬时作用规律,与牛顿第二 定律地位相当。 2.式中力矩、角加速度、转动惯量都是相对同一 转轴而言。
5.3 转动惯量的计算
一、转动惯量的定义 由 M 轴外 J 可知
13
在M相同的条件下,J 越大, 越小,转动状态越难改变。

大学物理第5章刚体的定轴转动

大学物理第5章刚体的定轴转动

d ctdt

对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150

得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标

刚体的简单运动—刚体绕定轴的转动(理论力学)

刚体的简单运动—刚体绕定轴的转动(理论力学)

主轴转动两圈后停止 0
2 02 2
0 10π2 2 4π
负号表示 的转向与主轴转动方向相反,故为减速运动。
小结
1.刚体绕定轴转动 刚体运动时,有上或其扩展部分有两点保持不动,这种运动
为刚体的绕定轴转动。通过两点的直线称为转轴,不在转轴上 的各点都在垂直于转轴的平面内做圆周运动。
2.角速度
三、定轴转动的角速度和角加速度
1、角速度
lim
Δt 0
Δ Δt
d
dt
代数量 正负与转角相同
若已知转动方程 f (t)
f (t)
刚体转动的快慢和方向 单位为 rad/s
2、角加速度
设当t 时刻为 , t +△t 时刻为 +△
角加速度
lim
t 0
t
d
dt
d2
dt2
f (t)
表征角速度变化的快慢 单位:rad/s2 (代数量)
§6-2 刚体绕定轴的转动
一、刚体绕定轴转动
刚体运动时,其上或其扩展部分有两点保持不动, 这种运动为刚体的绕定轴转动。通过两点的直线称为 转轴,不在转轴上的各点都在垂直于转轴的平面内做 圆周运动。
二、转角和转动方程
____ 转角,单位弧度(rad)
=f(t)
转动方程
方向规定: 从Z轴正向看
逆时针为正
f (t) 刚体转动的快慢和方向 单位为 rad/s (代数量)
3.角加速度
f (t)
如果与同号,则转动是加速的;如果与异号,则转动是减
速的。

如果与同号,则转动是加速的; 如果与异号,则转动是减速的。
与同号,转动加速
与异号,转动减速
O

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结

大学物理刚体部分知识点总结大学物理刚体部分知识点总结一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

角速度ω表示刚体转动快慢程度和转向,是代数量,。

,当α与ω。

角速度也可以用矢量表示,角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示,。

绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

传动比。

二.转动定律转动惯量转动定律力矩相同,若转动惯量不同,产生的角加速度不同与牛顿定律比较:转动惯量刚体绕给定轴的转动惯量J等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。

定义式质量不连续分布质量连续分布物理意义转动惯量是描述刚体在转动中的惯性大小的物理量。

它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素:(1)总质量;(2)质量分布;(3)转轴的位置(1)J与刚体的总质量有关几种典型的匀质刚体的转动惯量刚体细棒(质量为m,长为l)细棒(质量为m,长为l)转轴位置过中心与棒垂直过一点与棒垂直转动惯量Jml212ml23细环(质量为m,半径为R)过中心对称轴与环面垂直细环(质量为m,半径为R)圆盘(质量为m,半径为R)圆盘(质量为m,半径为R)球体(质量为m,半径为R)薄球壳(质量为m,半径为R)平行轴定理和转动惯量的可加性1)平行轴定理直径过中心与盘面垂直直径过球心过球心mR2mR22mR22mR242mR252mR23设刚体相对于通过质心轴线的转动惯量为Ic,相对于与之平行的另一轴的转动惯量为I,则可以证明I与Ic之间有下列关系IIcmd22)转动惯量的可加性对同一转轴而言,物体各部分转动惯量之和等于整个物体的转动惯量。

刚体一般运动的描述

刚体一般运动的描述

第40卷第5期大 学 物 理Vol.40No.52021年5月COLLEGE PHYSICSMay2021 收稿日期:2020-09-11;修回日期:2020-11-18作者简介:邵瀚雍(2000—),男,四川德阳人,北京师范大学物理学系2018级本科生.櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍櫍殻殻殻殻大学生园地 刚体一般运动的描述邵瀚雍(北京师范大学物理学系,北京 100875)摘要:刚体的一般运动是刚体运动学中最复杂的一类运动,其求解通常需要借助欧拉定理或沙勒定理.通过这两个定理,我们可以把刚体的一般运动分解成较简单的定轴转动和平动.本文主要应用代数理论中的正交矩阵描述刚体的运动,并用代数语言分析了定点转动的本征问题,证明了欧拉定理.随后,将刚体的定点转动进行分解,并给出了物理图像和推导结论,完成了对刚体复杂的一般运动的简单描述. 关键词:刚体一般运动;正交矩阵;沙勒定理;欧拉角中图分类号:O31 文献标识码:A 文章编号:1000 0712(2021)05 0062 05【DOI】10.16854/j.cnki.1000 0712.200405一般运动是刚体运动学中最复杂的问题,因此国内的理论力学教材大多对此介绍较少.且由于刚体运动学教学难度大,课时少,故多数同学跳过了刚体一般运动的内容,但这恰是将刚体运动转化成代数知识的极佳机会,不得不说是一种遗憾.事实上,刚体的一般运动总能分解成基点的运动和绕过该点某轴线的定轴转动,国外教材对此用代数语言给出了证明,但也没有就代数理论和刚体运动的关联进行深入的探讨.本文从正交矩阵讲起,力图用清晰简明的语言,论证使用矩阵描述刚体运动的合理性和优越性,并借用代数思想,将刚体运动和线性代数的知识联系起来,希望能对理论力学的相关教学和学生的学习起到一定的补充和帮助作用.1 参考系实验室参考系,即观者所在的惯性参考系;本体参考系,即固连在刚体上,并与之共同运动的参考系,一般是非惯性系.固连在两种参考系上的坐标系各有利弊.在实验室坐标系中,基矢对时间的微商为零,便于建立动力学方程,但许多力学量在该系中较复杂并不断变动;在本体坐标系中,这些力学量虽然直观简单,恒定不变,但其坐标轴的基矢处在变动之中.在研究刚体定点转动的问题时,我们需要寻找这两种系之间的关联,恰当使用它们描述刚体的运动[1].2 刚体的一般运动刚体在空间不受约束自由运动时,其自由度s=6.一般选定广义坐标(xc,yc,zc,φ,θ,ψ)描述刚体的状态,其中xc、yc、zc为刚体质心在实验室系中的笛卡尔坐标,φ、θ、ψ为刚体的本体系和实验室系坐标变换对应的欧拉角.刚体一般运动有4类特殊情况:平动、定轴转动、平面平行运动、定点转动.虽然它们形式各异,但可以证明如下两点[2]:1)定点转动总可以等效于绕过该定点某一轴线的定轴转动.2)刚体一般运动总可以分解为某点的运动和绕过该点某轴线的旋转.换言之,总可以将复杂的一般运动,分解成过一点的定轴转动(或由多个定轴转动合成)与该点的运动.第1点所谈到的内容,正是刚体运动欧拉定理.该定理指出,对于基点固定的刚体,其运动可以分解为绕某个或多个转轴的转动.根据欧拉运动定理,我们可以将之推广,即第2点,沙勒定理.该定理指出,刚体的最广义位移等价于一个平移和一次旋转.它们是本文的重点,在证明前,需要先通过代数的语言,合理描述刚体的运动,以便于后续的证明.第5期邵瀚雍:刚体一般运动的描述63 3 正交矩阵在线性代数理论中,正交矩阵A被定义为行向量、列向量皆正交且值为1的方阵[3],即满足如下的性质(E为单位阵):ATA=AAT=E(1)矩阵乘法等价于一次线性变换,换句话说,在数学里这种特殊的变换(正交变换)可以保持空间中任意两点的欧式距离不变.这意味着若将某向量v乘上正交矩阵A,得到的新向量长度不变,且空间的原点不变.我们通常将这种变换称为欧拉变换[4].此外,由于正交矩阵满足:ATA=A-1A=E(2)正交变换一定存在逆变换,而且该逆变换很容易写出:A-1=AT.正交矩阵的这些特殊性质在描述刚体运动时展现出极大的优越性,因此,我们常用它描述刚体运动.4 刚体运动的代数表达[2]从物理上讲,根据沙勒定理,刚体的运动可以分为两种:定点转动和点的运动.也就是第2节中提到的6个广义坐标.而上一节中提到的正交变换———欧氏距离不变的线性变换,恰好可以准确反映刚体的定点转动.换言之,刚体的定点旋转过程可以由一次欧拉变换来描述.容易得知,这种变换对应的正交矩阵R应是一个含时矩阵,即R(t).仅仅描述旋转过程是不够的,还需要描述点的运动.易知,描述该运动只需在旋转后添上一个简单的平移矢量p即可.从数学上讲,刚体的运动,可以反过来看作是坐标轴的运动.因此,假设两组正交基分别为[e1,e2,e3]和[e′1,e′2,e′3].在这两组基下,某向量v在这两组基下的值分别为[a1,a2,a3]T和[a′1,a′2,a′3]T.因此有|v|=[e1 e2 e3]a1a2a3=[e′1 e′2 e′3]a′1a′2a′3(3)于是,得到a1a2a3=eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3a′1a′2a′3(4)已知a=[a1,a2,a3]T,a′=[a′1,a′2,a′3]T且定义如下:eT1e′1 eT1e′2 eT1e′3eT2e′1 eT2e′2 eT2e′3eT3e′1 eT3e′2 eT3e′3R(5)则可以将上式写为a=Ra′(6)称R是旋转矩阵.可以看到,R矩阵是由两个标准正交基相乘而来,在线性代数中可以很容易证明,这样得到的矩阵R是正交矩阵,或者反过来说,任何正交矩阵都可以拆分为两个标准正交基的矩阵乘积.因此,旋转矩阵R恰好是正交矩阵,而正交矩阵对应的变换也恰好是两组基之间的旋转变换,也就是实验室系和本体系的欧拉变换;并且,任意实正交矩阵都能看作为一个旋转矩阵.值得一提的是,旋转矩阵的集合称之为特殊正交群:SO(n)={R∈瓗n×n|RRT=E,detR=1}这个正交群可以描述n维空间的旋转变换,在此只考虑n=3的情况.再考虑定点的运动,可以将刚体的运动在数学上表示为a′=RTa+p(7)数学的正交矩阵(变换),对应着欧式空间中距离不变的线性变换,而物理的旋转矩阵(旋转),对应着刚体运动时的任意两点保持相对距离不变的属性.这样,在本节和上一节中已经论证了刚体运动的代数表达,这种代数的表达方式是相当合适且严谨的.5 旋转变换的本征问题刚体的定点转动定理指出,对于基点固定的刚体,其一般运动都可以分解为绕某个或多个轴的转动.根据定理,假设转轴对应的空间列向量为p,由于转轴并不会因为刚体转动而发生任何变化(刚体本身就在绕轴转动),因此,当发生旋转变换时,p应当保持不变.这对应着数学中的不变子空间理论.请看定理[4]:设φ是线性空间V上的线性映射(变换),而总能找到V的子空间U,使得φ(U) U即子空间U的任意元素p在线性映射φ的像Imφ中依然是p本身,称U为φ的不变子空间.易得,φ总有两种特殊的不变子空间U,分别是零子空间和64 大 学 物 理 第40卷全空间V,并称之为平凡子空间.可以发现,在三维旋转映射R下,有一个我们最关注的非平凡不变子空间,这个子空间恰好就是转轴所处直线对应的子空间.上述内容也可以在拓扑理论中理解成映射的不动点原理(Brouwer’sFixed-pointTheorem).从物理上讲,这是一类本征值问题.即在旋转后向量p不发生改变,也就是Rp=1p.这与数学物理方法和量子力学中的本征问题有着异曲同工之妙.将线性算符L^作用于某函数ψ,若有[5]L^ψ=λψ(8)则称函数ψ为线性算符L^的本征函数,λ为算符L^的本征值.例如,定态薛定谔方程H^ψ=Eψ.因此,由Rp=1p,得知p为旋转变换φ的本征函数,λ为变换φ的本征值,这恰好就是线性代数中熟知的矩阵特征值问题:Ap=λp(9)所以若要证明欧拉定理,可以将定理的证明等价于证明旋转矩阵R的特征值组中必然有一特征值λ1=1.本征值与本征函数对刻画线性系统的普遍性质和演化规律有着重要意义.它是所有线性体系中最根本的特点.如果能得到线性体系对应的本征值与本征函数,就可以通过线性组合的方法描述或解释这一体系更为普遍的规律.6 欧拉运动定理的证明和推论欧拉运动定理的论证过程在H.Goldstein所著的ClassicalMechanics[6]和BeattyM.F.所著的Prin ciplesofEngineeringMechanics:Kinematics中都有着详细的描述.两本书巧妙利用矩阵和线性代数理论证明了欧拉定理,而我们的证明过程也借鉴了其中的思想.设旋转矩阵为R,欧拉定理中所描述的轴线为p,则有:Rp=p.根据上一节中内容,若需要证明旋转过程中存在始终不变的轴线p,则等价于证明矩阵R具有特征值λ1=+1.容易证明旋转矩阵R为正交矩阵,所以由RTR=RRT=E,可得:(R-E)RT=E-RT(10)|R-E||RT|=|E-RT|(11)设旋转前后两组正交基的基点重合于刚体的定点,且初始基为标准正交基.则可以得出初始旋转矩阵为三阶单位阵E.因此,根据矩阵乘法,后续的旋转矩阵的行列式的值|R|和|RT|仍为+1.由式(11)可得|R-E|=|E-RT|=|E-RT|T=|E-R|(12)因此,有|R-E|=|E-R|=|-1(R-E)|(13)而|-1(R-E)|=(-1)n|R-E|(14)其中n为矩阵维数,也是空间维数.所以得到|R-E|=(-1)n|R-E|(15)刚体所处为三维空间,n=3,所以|R-E|=-|R-E|=0(16)最终得出|R-E|=0,即矩阵R至少有一个特征值λ1=+1,欧拉运动定理得证.需要多谈两个问题:其一[1],如果刚体所处空间不为奇数维度,而是偶数维度,则得不到|R-E|=0的结论,也就是说欧拉运动定理在二维、四维等偶数维空间失效.所以,平面内不存在欧拉定理,因为当坐标系转动时,任何位于平面内的矢量均会发生改变,唯有沿转轴方向的矢量不发生改变,但此时它与平面垂直,并不在平面内.这是一个相当有意思的推论,这意味着我们所处的三维空间并不是随便确定的.其二,是旋转矩阵R是否还存在别的特征值?答案是肯定的.利用矩阵的久期方程:|R-λE|=0(17)可以发现,这是一个关于λ的三次方程.高斯的代数基本定理指出,该一元三次方程在复数域C 中必然存在三个根.在文献[7]中,我们可以根据矩阵的迹tr(R)求得另外两个特征值分别为λ2,3=e±iΩ(18)也就是说,旋转矩阵的另外两个复特征值的辐角,恰好为欧拉定理中绕固定轴线p的旋转角Ω.这里给出两个特殊情况:1)λ1,2,3=+1:此时Ω=0,意味着刚体保持了初始时刻的状态,为平凡解.2)λ1=+1;λ2,3=-1:此时Ω=π,意味着刚体绕轴转过了180°,刚体任意两点之间的矢量p′都做了关于p的空间坐标反演操作.而沙勒定理是欧拉定理的一个直接推论.该定理的证明如下.刚体的一般运动可以分解为刚体中某一点的运第5期 邵瀚雍:刚体一般运动的描述65 动并叠加上刚体对该点的定点运动.而根据欧拉运动定理,后一运动可以认为是绕过该点的某一轴线的转动.因此,刚体的一般运动可以分解为某点的运动和绕过该点某轴线的旋转.沙勒定理得证.至此,我们完成了刚体一般运动中沙勒定理的证明,论证了刚体的任意运动都可以分解为某点运动和定轴转动.矩阵语言虽然简练,但不能直观反映物理实质.这里需要寻找一种物理的描述办法刻画刚体的运动,这就是所谓的欧拉角,也是前面所述的3个广义坐标φ、θ、ψ.7 欧拉角在天体和力学领域里,为了完备、清晰地刻画刚体运动,分别用了章动角θ、进动角φ和自转角ψ来描述.这些称呼来自陀螺的定点运动,如图1所示.图1 陀螺定点运动示意图为了便于描述欧拉角的具体意义,可将刚体的定点转动通过坐标轴的旋转,依次分成3个步骤,如图2—图4,这里在每个步骤后面都写上了对应的旋转矩阵R.每一次的旋转并不是任意的,它们都可以在图1的陀螺运动中找到对应,转动顺序是进动、章动、自转,如下所示.1)绕Oz0轴进动φ:图2(a)→(b)图2 进动示意图从Ox0y0z0到Ox′y′z′的旋转矩阵为Rφ=cosφ-sinφ0sinφcosφ0001(19)2)绕Ox′轴(节线ON)章动θ:图3(a)→(b)图3 章动示意图从Ox′y′z′到Ox″y″z″的旋转矩阵为Rθ=1000cosθ-sinθ0sinθcosθ(20)3)绕Oz″轴自转ψ:图4(a)→(b)图4 自动示意图从Ox″y″z″到Oxyz的旋转矩阵为Rψ=cosψ-sinψ0sinψcosψ0001(21)经过上面的三次旋转变换,可以得到描述刚体的任意旋转的总变换矩阵:R =RψRθRφ(22)由前面的结论可知,所有的变换矩阵都是正交矩阵,均由变换前后的两组基底相乘而来(此处为一组基的转置和另一组基之间的矩阵乘法).在前文中,我们提到过刚体的定点运动可以由一个旋转矩阵R来描述,矩阵的特征值λ2,3=e±iΩ,其中Ω为绕该轴的转角.那么,我们现在找到了一66 大 学 物 理 第40卷种物理的语言,可以将Ω对应的总角速度ω分解为刚体的章动、进动和自转.根据图2—图4中的转动过程,三个欧拉角的角速度方向分别为:φ 沿实验室系z0轴,θ 沿节线ON,ψ 沿本体系z轴,分解如下式:ω=φ k0+θ i′+ψ k(23)将不同的角速度对应的基矢利用旋转矩阵得到的函数关系展开化简,可以得到如下的结论:ω在实验室系的坐标轴投影为ω0x=ψ sinθsinφ+θcosφω0y=ψ sinθcosφ+θsinφω0z=ψcosθ+φ(24)ω在本体系的坐标轴投影为ωx=φ sinθsinψ+θ cosψωy=φ sinθcosψ-θ sinψωz=ψ+φ cosθ(25)这样,我们得到了刚体定点转动中绕某一轴线旋转的角速度ω的实际物理意义,即可以把这一定轴转动对应的转角Ω分解到3个有意义的欧拉角(也就是φ、θ、ψ)上去.不过,需要强调的是,在导出欧拉角的时候,所经历的三次连续旋转的转轴的选取顺序其实存在着随意性.只要每次选定的旋转轴不与上一次相同,便可以任意选取.因此,在右手系中我们有3×2×2=12种不同的旋转方法,这称为欧拉角的顺规.大多数的理论力学教材所采用的是x顺规,即第二次旋转绕x轴(前文中的节线ON),而多数的量子物理、核物理的教材所采用的是y顺规,即第二次旋转绕y轴.在工程中,为了弥补前两种顺规在变换前后的坐标系区分程度低的缺点,常采用第三种常见顺规:xyz顺规[2],这样得到的3个角就分别是飞机的偏航角(Yaw)、俯仰角(Pitch)和滚动角(Roll).8 总结在本文中,我们介绍了正交矩阵在描述刚体运动的优越性,并将之应用到刚体的旋转运动中,随后利用旋转矩阵证明了刚体运动的沙勒定理,这意味着复杂的刚体一般运动可以由定轴转动和点的运动来描述.之后,我们从物理给出了刚体定点运动的图像,并用欧拉角来描述这样的运动.刚体的运动学在数学上和物理上都全部得以描述.参考文献:[1] 秦敢,向守平.力学与理论力学(下册)[M].北京:科学出版社,2017:134 135.[2] BeattyJrMF.PrinciplesofEngineeringMechanics:Kinematics—TheGeometryofMotion[M].SpringerScience&BusinessMedia,2013.[3] 同济大学数学系.工程数学线性代数[M].北京:高等教育出版社,2014:118 119.[4] 姚慕生,吴泉水,谢启鸿.高等代数学[M].上海:复旦大学出版社,2003:202.[5] 杨福家.原子物理学[M].北京:高等教育出版社,2008:125 126.[6] GoldsteinH,PooleC,SafkoJ.ClassicalMechanics[M].2002.[7] 毛文炜.刚体定点转动的欧拉定理[J].大学物理,1988,1(4):15.Descriptionoftherigidbodies generalmotionSHAOHan yong(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Thegeneralmotionofarigidbodyisthemostcomplicatedtypeofmotioninrigidbodykinematics,anditssolutionusuallyrequirestheaidofEuler'stheoremorChasles theorem.Throughthesetwotheorems,wecandecomposethegeneralmotionofarigidbodyintosimplerfixed-axisrotationandtranslation.Thispapermainlyusestheorthogonalmatrixinthealgebratheorytodescribethemotionofarigidbody,andanalyzestheeigenprob lemsoffixed-pointrotation,andprovesEuler stheorem.Thenitdecomposesthefixed-pointrotationofarigidbody.Physicalimagesandderivationconclusionsaregiven,andasimpledescriptionofthecomplexgeneralmotionofrigidbodiesiscompleted.Keywords:rigidbodiesgeneralmotion;orthogonalmatrix;Chasles theorem;EulerAngles。

运动学(刚体简单运动)

运动学(刚体简单运动)
刚体的简单运动刚体的定轴转动三定轴转动刚体上点的加速度刚体定轴转动时各点均作圆周运动由自然法知转动刚体内一点的切向加速度大小等于刚体的角加速度与该点到轴线的垂直距离的乘积方向沿圆周的切线方向指向由角加速度决定
刚体的简单运动
§1 刚体的平行移动 §2 刚体的定轴转动 结论与讨论
习题
刚体的平行移动
刚体的简单运动
一、刚体平动的定义
在刚体上任取一条直线,若在运动过程中这 条直线始终与其初始的空间位置平行,则该 运动称为刚体的平行移动,简称平动。
刚体的平行移动
刚体的简单运动
二、刚体平动的运动分析
rA rB rBA rA rB rBA v A vB a A aB
刚体平移可归结为刚体内任一点(通常是质心)的运动。
2 O1 950 99.48rad/s 60
O
2
Z1 20 O1 99.48 39.79rad/s Z2 50
vC O2 AO2 0.25 39.79 9.95m/s
刚体的定轴转动
刚体的简单运动
例三 曲柄滑杆机构中,滑杆上有一圆弧滑道,其半径R=100mm, 圆心O1在导杆BC上.曲柄OA=100mm,以等角速度 4 rad 绕 s O轴转动.求导杆BC的运动规律以及当曲柄与水平线间的交角为 30时,导杆BC的速度和加速度。
刚体的简单运动
例六 图示一减速箱,由四个齿轮组成,其齿数分别为Z1=10, Z2=60 , Z3=12 , Z4=70 。(1)求减速箱的总传动比i13(2) 如果n1=3000rpm,求n3 。
n1 n1 n2 Z 2 Z 3 i13 i12 i23 34.8 n3 n2 n3 Z1 Z 2

(完整版)第五章-点的运动学

(完整版)第五章-点的运动学

解: 炸弹的运动方程
x vt cos45
y vt sin 45 gt2 / 2
炸弹的初速度
求炸弹落到地面的时间,由 1800 277.8t sin 45 gt2 / 2
得 t 7.688s
可求出炸弹与目标的水平距离,
40
45 40 5
得: 又: 比较两式得:
速度在各坐标轴上的投影等于动点的各对应坐标对时间的一阶导数。
Part two 运动学
运动学是研究 物体运动的几何性质的学科。
研究一个物体的机械运动,必须选取另一个物体作为 参考,这个参考的物体称为参考体。
运动学研究 点和刚体的运动。
点的运动学 是研究一般物体运动的基础,又 具有独立的应用意义.
研究点的简单运动,研究点相对某一个参考系的 几何位置随时间变动的规律。
(4)求点M速度矢、加速度矢的大小、方向。
x=asin=asinωt 轨迹方程: y=bcos=bcosωt
大小、方向均可求
例:如图,物体M自O点以速度v0 与水平成 角抛出,求M 点的运动规律及轨迹。
解:依题意,建坐标,有:
当t=0时: 得:
所以,有: V0 cos0t C3
V0 sin0t gt2 2 C4
连接各矢量端点构成矢量端点的连续曲线,称为速度
矢端曲线。
见flash
动点的加速度矢a 的方向与速度矢端曲线在相应点的切线相平行。
r1 r2 r3
v1 a
v2 v3
v1
v2
v v3
a
§5-2 直角坐标法
动点M的位置可以用r表示,也可 用坐标x、y、z来表示,如图所示。
矢径原点与坐标原点重合时,有:
当t=0时,有: x 0, y 0 得 C3 C4 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
ax a y 4R
2 2
2 2
2
a 4 x i 4 y j 4 ( x i y j ) 4 r
2 2
例7 半径为R 的轮子沿直线轨道纯滚动(无滑动地滚动)。 设轮子保持在同一竖直平面内运动, t,试分析轮 子边缘一点M的运动。
o M


R
M
y
o
M

R
x C 解:取坐标系Axy如图所示,并设M 点所在的一个最低位置为 原点A,则当轮子转过一个角度后,M点坐标为
x AC OM sin R ( sin )
y OC OM cos R (1 cos )
A
这是旋轮线的参数方程。
M点的速度为:
二、点的速度 M A r(t) O 点的速度是矢量。
v
M' r(t+Δt)
Δr
动点的速度矢等于它的矢径r对 v* 时间的一阶导数,即 B
v dr dt r
动点的速度矢沿着矢径r的矢端曲线的切线,即沿动点轨
迹的切线,并与点的运动方向一致。 在国际单位制中,速度的单位为 m/s。
三、点的加速度 点的加速度也是矢量。 动点的加速度矢等于该点速度矢对时间的一阶导数, 或等于矢径对时间的二阶导数,即
v vτ ds dt τ
四、点的加速度
a
dv dt

dv dt
τ v
dτ dt
(1)反映速度大小变化的加速度at a t vτ 显然at是一个沿轨迹切线的矢量,因此称为切 向加速度(tangential acceleration)。 如 v 0 at指向轨迹的正向;如 v 0 at指向轨迹的负向。
vz dz dt
可见,速度在各坐标轴上的投影等于动点的各对应坐标对 时间的一阶导数。
三、点的加速度
a dv dt
dvx dt i dv y dt j dvz dt k
设动点的加速度矢a在直角坐标轴上的投影为ax、ay、az,即 则有
ax dvx dt
d x dt
2 2
a axi ay j azk
a dv dt
d r dt
2 2
r v
在国际单位制中,加速度的单位为 m/s2。
加速度的方向确定 如在空间任意取一点O,把动点M在连续不同瞬时
的速度矢v0,v1,v2 ,…等都平行地移到点O,连接各矢
量的端点M1,M2,M3,…,就构成了矢量v端点的连 续曲线,称为速度矢端曲线,如图所示。
v y y ( l a ) cos t
故点M的速度大小为
v vx vy
2 2
( l a ) sin t ( l a ) cos t
2 2 2 2 2 2

l a 2 al cos 2 t
2 2
其方向余弦为
cos( v , i ) vx v
任何瞬时点的法向加速度始终为零。
例:曲柄摇杆机构,曲柄长 OA=10cm,绕O轴转动,角

4 t (rad)(时间t的单位为s),摇杆O1B=24cm,距离
O1O=10cm。求B点的运动方程、速度及加速度。
v
a
解:B点的运动轨迹是以O1B为半 径的圆弧,t=0时,B点在B0处。取B0 为弧坐标原点。则B点的弧坐标
3 . 7 cm/s
2
其方向如图。可见,B点作匀速圆周运动。
例6 杆AB绕A点转动时,带动套在半径为R的固定大圆环上的 小护环M 运动,已知φ=ωt (ω为常数)。求小环M 的运动方程、 速度和加速度。 y 解:建立如图所示的直角坐标系。则 B
x R sin 2 = R sin 2 t

s a t v
at是一个代数量,是加速度a沿轨迹切向的投影。 由此可得结论:切向加速度反映点的速度值对时间的 变化率,它的代数值等于速度的代数值对时间的一阶导数, 或弧坐标对时间的二阶导数,它的方向沿轨迹切线。
(2)反映速度方向变化的加速度an
an v dτ dt
它反映速度方向τ的变化。上式可改写为
不断增加,点作加速运动;当速度v与切向加速度at指向
相反时,速度的绝对值不断减小,点作减速运动。
a a t an atτ an n
式中
at
dv dt
an
v
2

由于at,an均在密切面内,因此全加速度a也必在密切面 内。这表明加速度沿副法线上的分量为零,即
ab 0
全加速度的大小可由下式求出
s O1 B
由于Δ OAO1是等腰的,则φ=2θ,故
s O1 B

24

t 3 t cm
2
8
这就是B点的运动方程。 于是B点的速度及加速度为
v ds dt
3 9 . 42 cm/s
at
d s dt
2
2
0
a an
v
2


( 3 ) 24
2
ay dv y dt d y dt
2 2
az
dvz dt

d z dt
2
2
因此,加速度在直角坐标轴上的投影等于动点的各对应坐 标对时间的二阶导数。
例:椭圆规的曲柄OC可绕轴O转动,其端点C与规尺AB的 中点以铰链相连接,而规尺A,B两端分别在相互垂直的 滑槽中运动。已知:OC=AC=BC=l,MC= a ,φ=ωt。求 规尺上点M的运动方程、轨迹方程、速度和加速度。
'
v lim
r t
t 0
lim
s t
t 0

ds dt
可见:速度的大小等于动点的弧坐 标对时间的一阶导数的绝对值。 弧坐标对时间的导数是一个代数量,以v表示
v ds dt s
s 绝对值表示速度的大小,正负表示点沿轨迹运动的方向。
由于τ是切线轴的单位矢量,因此点的速度矢可写为
y R co s 2 R cos 2 t
M
2
即为小环M 的运动方程。
O
x
v x x 2 R cos 2 t
A
v y y 2 R sin 2 t
故M点的速度大小为
v
v v
2 x
2 y
2R
其方向余弦为
co s( v , i ) vx v co s 2
速度矢端曲线
动点的加速度矢a的
M1
方向与速度矢端曲线在相应点
v
M2 v1 O v2
a
M3
M的切线相平行。
一、点的运动方程
由于矢径的原点与直角坐标系的 原点重合,因此有 其中
r xi yj zk
x f1 (t )
y f 2 (t )
z f 3 (t )
这些方程称为以直角坐标表示的点的 运动方程。 也是点的轨迹的参数方程。 如求点的轨迹方程,可将运动方程中 的时间t消去。 如点在某平面内运动,取该平面为坐标平面Oxy,则 点的运动方程为: x f 1 (t ) y f 2 (t ) 从上式中消去时间t,即得轨迹方程
v x i y j R (1 cos ) i ( R sin ) j
2 a i r sin ti x yj 2 r co s tj
解:取坐标系Oxy,点M的运动方程为
x ( OC CM ) cos ( l a ) cos t
y AM sin ( l a ) sin t
消去时间t,得轨迹方程
x
2 2
(l a )ຫໍສະໝຸດ y2 2(l a )
1
求点M的速度
v x x ( l a ) sin t
a at an
2 2
它与法线间的夹角的正切为
tan at an
几种特殊情况: 匀变速曲线运动
v v0 a tt
at=常量
1 2 a tt
2
s s0 v0t
v v0 2a t (s s0 )
2 2
匀速曲线运动 v=常量 直线运动 曲率半径

s s 0 vt

()t
2)刚体
( )t t 2 t 1
力学模型 运动分类
1)点

1)点的运动
2)刚体的运动
第五章 点的运动学描述和刚体的 简单运动
§5-1 点的运动学描述 §5-2 刚体的平移 §5-3 刚体的定轴转动 §5-4 轮系的传动比 §5-5 以矢量表示角速度和角加速度.以矢 积表示点的速度和加速度

s
M'

lim
S
s 0

d dS
t'
两个相关的计算结果
τ 2 τ sin 2
t
M O
1
△ △s
M'
△t
t'
dτ ds
lim
τ s
s 0
lim
s
t"
s 0
n

n
三、点的速度 点沿轨迹由M到M',经过Δt 时间,其矢径有增量Δr。 当Δt→0时, r MM s 故有
动点M在轨迹上的位置由弧长s确定,弧长s 为代数量,
二、自然轴系
b τn
以点M为原点,以切线、主法线和副法线为坐标轴 组成的正交坐标轴称为曲线在点M的自然坐标系,这三 个轴称为自然轴。
相关文档
最新文档