化归思想方法

合集下载

化归与转化的思想方法

化归与转化的思想方法

化归与转化的思想方法随着教育事业的发展,数学教育改革的逐步深入,尤其是在数学新课程标准中十分注重培养学生的思想方法,培养学生应用数学解决问题的能力。

化归作为重要的数学思想方法,在数学教育中加强对化归思想的教育已成为十分重要的工作,这里,我仅就化归思想的核心及其在生活中的作用等问题作一些初步探讨。

一、历史背景化归与转化的思想简介匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的.有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气.再把壶放在煤气灶上.”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去.”但是更让人出乎意料的答案出现了。

数学家会回答:“把水倒掉,方法同上。

”一个有趣的笑话精辟的道出化归的方法的精髓。

二、化归与转化的含义在历史上曾经有不少数学家从各种不同的角度对化归方法作过论述。

例如,笛卡尔曾经提出如下的“万能方法”:①把任何问题都化归为数学问题;②把任何数学问题都化归为代数问题;③把任何代数问题都化归方程式的求解。

由于求解方程的问题被认为是已经能解决的(或者说,是比较容易解决的),因此笛卡尔认为利用这样的方法可解决各类型的问题。

显然他的这一结论并不正确,所谓的“万能方法”也根本不存在,笛卡尔所给出的这一模式毕竟可视为化归方法的一个具体运用,从而产生过具有重要意义的成果。

事实上,笛卡尔创立解析几何学,正是这种重要成果的生动体现。

化归法的一般模式,其形式如下图[4]:转换未知问题(复杂)已知问题(简单)已知理论、方法、技巧解答解答化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决。

化归思想方法在数学教学中的应用-2019年精选文档

化归思想方法在数学教学中的应用-2019年精选文档

化归思想方法在数学教学中的应用一、化归的基本内涵(一)化归思想方法概述所谓化归,就是在研究和解决有关数学问题时。

采用某种手段将问题转换。

进而达到解决问题的一种数学思想方法。

化归是一种分析问题、解决问题的基本思想方法。

在数学中通常的做法是:将一个非基本的问题通过分解、变形、代换或平移、旋转、伸缩等多种方式,化归成一个熟悉的基本问题,从而求出解答。

总之,化归的原则是以已知的、简单的、具体的、特殊的、基本的知识为基础,将未知的化为已知的;复杂的化为简单的;抽象的化为具体的;一般的化为特殊的;非基本的化为基本的,从而得出正确的解答。

(二)化归的核心思想和本质化归的核心思想和本质:对需要解决的问题进行适当的变形。

1. 对已知成分进行变形――条件变形2. 对未知成分进行变形――结论变形3. 对整个问题进行变形(三)化归的方法化归的主要特点是灵活性。

一个数学问题,我们可以视其为一个数学系统和数学结构,其各要素之间的相互依存和相互联系的形式是可变的,且其形变也并非唯一,而是多样的。

我们需要依靠问题所提供的信息,利用动态的思维去寻找有利于问题解决的途径并运用恰当的方法。

化归的方法主要包括:分割法、映射法、求变法。

二、数学教学中应用化归思想方法的必要性化归是一种重要的数学思想方法,从广义上来讲,数学题的求解都是应用已知条件,对问题进行一连串恰当的化归,进而达到解决问题的一个探索过程。

从宏观上看,化归的思想方法是数学问题解决中形成数学构想的方法论依据。

从微观上看,数学问题的解决过程就是不断地发现问题、分析问题,直至化归为一类已经能解决或比较容易解决的问题的过程。

在平时的数学教学中,教师如果经常地进行化归思想方法的教学,针对不同的问题,进行缜密的思考,及时总结各种“化归”方法。

学生的解题能力及灵活性就会逐步得到提高,这对培养学生的数学素养是十分重要的。

学生有了化归思想,就能从更深的层次揭示知识的内部联系,提高分析问题和解决问题的能力,这将有利于创新精神的培养。

例谈转化与化归的思想方法

例谈转化与化归的思想方法

例谈转化与化归的思想方法
例谈转化与化归的思想方法是一种理论,旨在将事物归结为不同
的元素,并以此来理解它们之间的关系和内在联系。

其中,例谈转化
是指从一般的概念出发而不断深入讨论的过程,以达到更广泛的认识。

而化归则是从一般到特殊、从特殊到一般的一种思考方法。

首先,例谈转化以具体例子入手,比如数学中的实例,可以以此
作为我们学习概念的基础,进一步深入探讨,由具体到抽象,最终把
它提升到一般的概念,从而得到更加宏观的认识。

其次,化归的方法也可以帮助我们理解事物,从而使我们对复杂
的概念有更清晰的认识。

化归可以划分为从一般到特殊和从特殊到一
般的思考方法。

从一般到特殊的方法我们可以通过聚焦特定领域,把
抽象的概念引入具体的实例,以便更深入地理解。

而从特殊到一般的
思考方法则与前者相反,在这种方法中,我们可以根据特定的实例,
把具体的概念引入抽象的概念,从而掌握概念的宏观结构。

例谈转化与化归的思想方法在各种学科和领域都有应用,可以帮
助我们理解事物,从而更好地推动知识的发展。

首先,例谈转化可以
帮助我们理解抽象的概念,从实例出发,深入探讨,归纳出更宏观的
概念。

而化归则可以帮助我们理解复杂的概念,从一般到特殊,从特
殊到一般,把具体的概念理解为抽象的概念,从而更好地掌握它们之
间的联系。

转化与化归思想方法

转化与化归思想方法

转化与化归思想方法,就就是在研究与解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决得一种方法、一般总就是将复杂得问题通过变换转化为简单得问题,将难解得问题通过变换转化为容易求解得问题,将未解决得问题通过变换转化为已解决得问题、转化与化归思想在高考中占有十分重要得地位,数学问题得解决,总离不开转化与化归,如未知向已知得转化、新知识向旧知识得转化、复杂问题向简单问题得转化、不同数学问题之间得互相转化、实际问题向数学问题转化等、各种变换、具体解题方法都就是转化得手段,转化得思想方法渗透到所有得数学教学内容与解题过程中、1、转化与化归得原则(1)熟悉化原则:将陌生得问题转化为熟悉得问题,以利于我们运用熟知得知识、经验来解决、(2)简单化原则:将复杂问题化归为简单问题, 通过对简单问题得解决,达到解决复杂问题得目得,或获得某种解题得启示与依据、(3)直观化原则:将比较抽象得问题化为比较直观得问题来解决、(4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题得反面,设法从问题得反面去探讨,使问题获解、2、常见得转化与化归得方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就就是转化到另一种情境使问题得到解决,这种转化就是解决问题得有效策略,同时也就是成功得思维方式、常见得转化方法有:(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题、(2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂得函数、方程、不等式问题转化为易于解决得基本问题、(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径、(4)等价转化法:把原问题转化为一个易于解决得等价命题,达到化归得目得、(5)特殊化方法:把原问题得形式向特殊化形式转化,并证明特殊化后得问题、结论适合原问题、随着国家经济得发展,科技得发达,人才得需求,中国教育得改革,数学新课标得出现,在对学生得知识与技能,数学思想及情感与态度等方面得要求,学生在数学得学习方法也应该要相应改变了,要满足社会得需要、化归与转化思想得实质就是揭示联系,实现转化、除极简单得数学问题外,每个数学问题得解决都就是通过转化为已知得问题实现得、从这个意义上讲,解决数学问题就就是从未知向已知转化得过程,同时在生活中许许多多得事情也需要往已知得方面转化,把事情简单化,这对以后学生得能力与德育方面有很大得帮助、化归与转化得思想就是解决数学问题得根本思想,解题得过程实际上就就是一步步转化得过程、数学中得转化比比皆就是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识得转化,命题之间得转化,数与形得转化,空间向平面得转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式得转化,函数与方程得转化等,都就是转化思想得体现、新得教学体制得出现, 化归与转化得思想将就是贯穿整个中学教学得一种主要得思想,所以在教学过程中要把这种思想溶入进去,让学生体会个中得精髓、关健词化归;转化;分析;联想1、化归与转化解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当得数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉得问题),通过新问题得求解,达到解决原问题得目得,这一思想方法我们称之为“化归与转化得思想方法”、化归与转化思想得核心,就是以可变得观点对所要解决得问题进行变形,就就是在解决数学问题时,不就是对问题进行直接进攻,而就是采取迂回得战术,通过变形把要解决得问题,化归为某个已经解决得问题、从而求得原问题得解决、它得基本形式有:化未知为已知,化难为易,化繁为简,化曲为直等等、化归与转化得思想也不就是随时能用,或随便用得,它需要遵循一定得原则,从而达到转化得正确性,实现这种思想得作用、下面我就来谈谈我对这种方法得理解、2.化归与转化得原则化归与转化思想得实质就是揭示联系,实现转化、转化有等价转化与非等价转化,等价转化得作用就不用说,而不等价转换,如果没明确得附加条件,那就失去它得价值了、所以化归与转化就需要遵循一定得原则:2、1熟悉化原则:将陌生得问题转化为熟悉得问题,以利于我们运用熟知得知识、经验与问题来解决、除了及少数得原始知识外,整个中学得数学知识得学习就就是在实现转化为旧得知识而得到得、例如:学二元一次方程就用化元法转化为一元一次方程;学一元二次方程用降幂法转化为一元一次方程;函数与方程之间得转化等等、2、2简单化原则:将复杂得问题化归为简单问题,通过对简单问题得解决,达到解决复杂问题得目得,或获得某种解题得启示与依据、这个原则大部分学生都知道,她们都会想把问题简单化,达到求解得过程、这个原则可以在无以记数得数学简便方法中体现出来、2、3与谐化原则:化归问题得条件或结论,使其表现形式更符合数与形内部所表示得与谐得形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们得思维规律、也就就是说整个转化得过程中,要符合思维规律,虽然思维可以多样化,可以无以为边得想象,但也要能被人接受并能理解、体现出现在国家倡导得与谐社会、2、4直观化原则:将比较抽象得问题转化为比较直观得问题来解决、这个主要在函数与图象得联系中体现出来、把某些枯燥乏味得代数问题转化为图形来解决,能直观得解决问题、2、5正难则反原则:当问题正面讨论遇到困难时,可考虑问题得反面,设法从问题得反面去探求,使问题获解、反证法得应用把这个原则表现得淋漓尽致,学生能理解到其中得精髓可就是可以受用无穷得,包括在生活中得应用、2、6 现实化原则:所学所用所理解得道理要用于社会实践,同时要满足社会人才得需求、3.化归与转化得方法化归与转化得方法,在千变万化得题目中,方法也各不相同,也无以统计,这里就只讲解几中常用,学生也容易理解得、3、1 直接转化法:直接把新得知识转化为前续知识、这个在讲解新课得时候,尽量让学生去体会,让她们能自己解决新得问题,获取新得知识,接着把新得知识吸收,继续解决新得问题、3、2 构造法:这个就是个重要得方法,有不少题目,不能直接解决与转化,缺少了媒介,让不少学生无从下手,这时就需要构造一个数学情境,建立一个数学模型,把问题溶入进去,使问题简单化,直观化,从而达到求解得过程、3、3 数与形得转化:这个主要用于函数问题得解答与某些图型中得某些量得关系、数形结合就是数学学习得一种重要得思想、3、4换元法:这个重要就是把一些繁杂得,但又有重复性得题目简单化,更直观、这个主要用于方程得解答、3、5 相等与不相等之间得转化:这个主要用与不等式得证明与函数区间、3、6实际问题与数学理论得转化:理论联系实际得一种方法、也就是学生情感方面得培养、3、7 特殊与一般之间得转化:公式法解一元二次方程就就是把特殊得一般化了、同时也可以说把具体得抽象化了、3、8 数学各分支之间得转化:数学本来就就是一个连贯得整体,把各分支有机得联系起来,让人感到它得魄力、同时也能解决数学以外得我问题、5总结提炼数学新课标要求学生不仅要学会知识,还要能用所学得知识解决新问题,并能总结归纳,化为新得知识并接受,这样才能满足社会人才得需求、化归与转化就就是将待解决或未解决得问题,通过转化归结为一个已经能解决得问题,或者归结为一个比较容易解决得问题,或者归结为一个已为人们所熟知得具有既定解决方法与程序得问题,最终求得原问题得解决、懂得化归与转化得基本方向就是简单化、熟悉化、与谐化、化归与转化需要广泛与灵活得联想,联想得基础就是扎实得基础知识、基本技能与基本方法、熟练、扎实地掌握基础知识、基本技能与基本方法就是转化得基础;丰富得联想、机敏细微得观察、比较、类比就是实现转化得桥梁;培养训练自己自觉得化归与转化意识需要对定理、公式、法则有本质上得深刻理解与对典型习题得总结与提炼,要积极主动有意识地去发现事物之间得本质联系、为了实施有效得化归,既可以变更问题得条件,也可以变更问题得结论,既可以变换问题得内部结构,又可以变换问题得外部形式,既可以从代数得角度去认识问题,又可以从几何得角度去解决问题、。

化归思想──小学数学思想方法的梳理

化归思想──小学数学思想方法的梳理

化归思想──小学数学思想方法的梳理二、化归思想1.化归思想的概念。

人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。

从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。

因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。

2.化归所遵循的原则。

化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。

因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。

数学来源于生活,应用于生活。

学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。

因此,数学化原则是一般化的普遍的原则之一。

(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。

人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。

从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。

因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。

(3)简单化原则,即把复杂的问题转化为简单的问题。

对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。

因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。

转化与化归的思想方法

转化与化归的思想方法

专题四:转化与化归的思想方法化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题,将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。

事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化归。

例如,对于立体几何问题,通常要转化为平面几何问题,对于多元问题,要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等等。

化归灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。

在高考中,对化归思想的考查,总是结合对演绎证明,运算推理,模式构建等理性思维能力的考查进行,因此可以说高考中的每一道试题,都在考查化归意识和转化能力。

高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。

1. 转化运算.例1.已知函数()2x f x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅= .分析:题目中的已知条件很容易求得246810a a a a a ++++,而所求的为212310l o g [()()()()]f a f a f a f a ⋅⋅⋅ 可以转化为等差数列{}x a 的前10项之和,根据公差,可以把前10项之和转化为用246810a a a a a ++++表示出来,从而求得。

解:由()2x f x =和246810()4f a a a a a ++++=知2468102a a a a a ++++=,2123102122210log [()()()()]log ()log ()log ()f a f a f a f a f a f a f a ⋅⋅⋅=+++ =()123102468102526a a a a a a a a a ++++=++++-⨯=-评注:仔细分析题目,把运算进行转化,可以大大地节省时间,提高做题的效率。

化归思想与化归方法在小学数学教学中的应用

化归思想与化归方法在小学数学教学中的应用

化归思想与化归方法在小学数学教学中的应用【摘要】化归思想与化归方法是数学中重要的思维方式和解题方法,它们在小学数学教学中起着至关重要的作用。

化归思想通过将复杂的问题化简为简单的问题,帮助学生理清思路,解决难题;而化归方法则通过逐步分解和归纳问题,引导学生找到解题的规律和方法。

在小学数学教学中,教师可以通过引导学生运用化归思想和方法解决实际问题,培养学生的逻辑思维能力和解决问题的能力。

化归思想和方法的应用不仅提高了学生的学习兴趣,还有助于学生建立数学知识之间的联系和提高数学解题的效率。

在小学数学教学中,应该重视化归思想与化归方法的引导和培养,以促进学生数学思维的发展和数学技能的提升。

【关键词】化归思想、化归方法、小学数学教学、应用、引言、结论1. 引言1.1 引言在小学数学教学中,化归思想和化归方法是非常重要的教学内容。

化归思想是指把一个复杂的问题转化为一个简单的问题,通过逐步分解、优选策略等方法,最终解决问题的思维方式。

而化归方法则是指具体如何将化归思想运用到具体的数学问题中,通过具体的步骤和方法,逐步进行问题的分析和求解。

在小学数学教学中,化归思想和化归方法可以帮助学生更好地理解和掌握数学的知识点,提高他们的问题解决能力和数学思维能力。

通过引导学生运用化归思想和化归方法去解决实际或抽象的数学问题,可以培养学生的逻辑思维能力、分析能力和创新能力,同时也可以提升他们的学习兴趣和学习效果。

本文将重点探讨化归思想和化归方法在小学数学教学中的应用,分析其在教学中的重要性和实际应用情况,并结合具体的案例和实例,说明化归思想和化归方法在小学数学教学中的具体操作方法和教学效果。

希望通过本文的研究和讨论,可以更好地推动小学数学教学的发展,帮助学生更好地学习和掌握数学知识,提高他们的学习成绩和学习兴趣。

2. 正文2.1 化归思想在小学数学教学中的应用1. 帮助学生建立整体与部分的关系。

化归思想强调将一个问题分解成若干个更小的部分,从整体和部分的关系中逐步推导出问题的解决方法。

专题五 转化与化归的思想方法

专题五  转化与化归的思想方法

转化与化归的思想方法 考题剖析
2.(2007·云南昆明市质检题)若 (x + 3) 2 + ( y −1) 2-|x-y+3|=0, 则点M(x,y)的轨迹是( A. 圆 B. 椭圆 ) C. 双曲线 D.抛物线
[解析]由原式可以变形为
( x + 3) 2 + ( y − 1) 2 = , 2 | x − y +3| 2
转化与化归的思想方法 考题剖析
[解析]每月的利润组成一个等差数列{an},且公差d>0,每月的投资额组成 一个等比数列{bn},且公比q>1.a1=b1,且a12=b12,比较S12与T12的大小.若直接求和, 很难比较出其大小,但注意到等差数列的通项公式an=a1+(n-1)d是关于n的一 次函数,其图象是一条直线上的一些点列.等比数列的通项公式bn=a1qn-1是关于n的 指 数 函 数 , 其 图 象 是 指 数 函 数 上 的 一 些 点 列 . 在同一坐标系中画出图象,直观地可以看出ai≥bi 则S12>T12,即m>N. 故选A.
转化与化归的思想方法 考题剖析
思路2:利用二项式定理把三项式乘幂转化为二项式定理再 进行计算: ∵x2+3x+2=x2+(3x+2)=(x2+2)+3x=(x2+3x)+2 =(x+1)(x+ 2)=(1+x)(2+x), ∴这条思路下又有四种不同的化归与转化方法.①如利用x2+3x+ 2=x2+(3x+2)转化,可以发现只有C 5 (3x+2)5中会有x项,即 5 4 (3x)·24=240x,故选B;②如利用x2+3x+2= (x2+2)+3x进 C 5 行转化,则只C 1 (x2+2) 4·3x中含有x一次项,即 5 4 C 1 ·3x·C 4 ·24=240x;③如利用x2+3x+2=(x2+3x)+2进行转 5 4 化,就只有C 5 ·(x2+3x)·24中会有x项,即240x;

转化与化归思想方法

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中.1.转化与化归的原则1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决.2简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.3直观化原则:将比较抽象的问题化为比较直观的问题来解决.4正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解.2.常见的转化与化归的方法转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是成功的思维方式.常见的转化方法有:1直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3数形结合法:研究原问题中数量关系解析式与空间形式图形关系,通过互相变换获得转化途径.4等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的.5特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题.随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化,这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现.新的教学体制的出现,化归与转化的思想将是贯穿整个中学教学的一种主要的思想,所以在教学过程中要把这种思想溶入进去,让学生体会个中的精髓.关健词化归;转化;分析;联想1.化归与转化解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题相对来说,对自己较熟悉的问题,通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”.化归与转化思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题.从而求得原问题的解决.它的基本形式有:化未知为已知,化难为易,化繁为简,化曲为直等等.化归与转化的思想也不是随时能用,或随便用的,它需要遵循一定的原则,从而达到转化的正确性,实现这种思想的作用.下面我就来谈谈我对这种方法的理解.2.化归与转化的原则化归与转化思想的实质是揭示联系,实现转化.转化有等价转化和非等价转化,等价转化的作用就不用说,而不等价转换,如果没明确的附加条件,那就失去它的价值了.所以化归与转化就需要遵循一定的原则:2.1熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决.除了及少数的原始知识外,整个中学的数学知识的学习就是在实现转化为旧的知识而得到的.例如:学二元一次方程就用化元法转化为一元一次方程;学一元二次方程用降幂法转化为一元一次方程;函数与方程之间的转化等等.2.2简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据.这个原则大部分学生都知道,他们都会想把问题简单化,达到求解的过程.这个原则可以在无以记数的数学简便方法中体现出来.2.3和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律.也就是说整个转化的过程中,要符合思维规律,虽然思维可以多样化,可以无以为边的想象,但也要能被人接受并能理解.体现出现在国家倡导的和谐社会.2.4直观化原则:将比较抽象的问题转化为比较直观的问题来解决.这个主要在函数与图象的联系中体现出来.把某些枯燥乏味的代数问题转化为图形来解决,能直观的解决问题.2.5正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.反证法的应用把这个原则表现的淋漓尽致,学生能理解到其中的精髓可是可以受用无穷的,包括在生活中的应用.2.6 现实化原则:所学所用所理解的道理要用于社会实践,同时要满足社会人才的需求.3.化归与转化的方法化归与转化的方法,在千变万化的题目中,方法也各不相同,也无以统计,这里就只讲解几中常用,学生也容易理解的.3.1 直接转化法:直接把新的知识转化为前续知识.这个在讲解新课的时候,尽量让学生去体会,让他们能自己解决新的问题,获取新的知识,接着把新的知识吸收,继续解决新的问题.3.2 构造法:这个是个重要的方法,有不少题目,不能直接解决和转化,缺少了媒介,让不少学生无从下手,这时就需要构造一个数学情境,建立一个数学模型,把问题溶入进去,使问题简单化,直观化,从而达到求解的过程.3.3 数与形的转化:这个主要用于函数问题的解答和某些图型中的某些量的关系.数形结合是数学学习的一种重要的思想.3.4 换元法:这个重要是把一些繁杂的,但又有重复性的题目简单化,更直观.这个主要用于方程的解答.3.5 相等与不相等之间的转化:这个主要用与不等式的证明和函数区间.3.6 实际问题与数学理论的转化:理论联系实际的一种方法.也是学生情感方面的培养.3.7 特殊与一般之间的转化:公式法解一元二次方程就是把特殊的一般化了.同时也可以说把具体的抽象化了.3.8 数学各分支之间的转化:数学本来就是一个连贯的整体,把各分支有机的联系起来,让人感到它的魄力.同时也能解决数学以外的我问题.5 总结提炼数学新课标要求学生不仅要学会知识,还要能用所学的知识解决新问题,并能总结归纳,化为新的知识并接受,这样才能满足社会人才的需求.化归与转化就是将待解决或未解决的问题,通过转化归结为一个已经能解决的问题,或者归结为一个比较容易解决的问题,或者归结为一个已为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.懂得化归和转化的基本方向是简单化、熟悉化、和谐化.化归和转化需要广泛和灵活的联想,联想的基础是扎实的基础知识、基本技能和基本方法.熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏细微的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系.为了实施有效的化归,既可以变更问题的条件,也可以变更问题的结论,既可以变换问题的内部结构,又可以变换问题的外部形式,既可以从代数的角度去认识问题,又可以从几何的角度去解决问题.。

化归思想

化归思想

化归思想化归思想是初中数学中常见的一种思想方法。

“化归”是转化和归结的简称。

我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。

正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。

在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。

具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。

化归思想无处不在,它是分析问题解决问题的有效途径。

在初中数学学习中运用这种化归的思维方法解决问题的例子非常多。

例如,在代数方程求解时大多采用“化归”的思路,它是解决方程(组)问题的最基本的思想。

即将复杂的方程(组)通过各种途径转化为简单的方程(组),最后归结为一元一次方程或一元二次方程。

这种化归过程可以概括为“高次方程低次化,无理方程有理化,分式方程整式化,多元方程组一元化”。

这里化归的主要途径是降次和消元。

虽然各类方程(组)具体的解法不尽相同,然而万变不离其宗,化归是方程求解的金钥匙。

平面几何的学习中亦是如此。

例如,研究四边形、多边形问题时通过分割图形,把四边形、多边形知识转化为三角形知识来研究;解斜三角形的问题,通过作三角形一边上的高,转化为解直角三角形问题;我们熟悉的梯形问题,常通过作腰的平行线或作两条高等常用辅助线,把梯形问题转化为平行四边形与三角形问题。

又如,圆中有关弦心距、半径、弦长的计算亦能通过连结半径或作弦心距把问题转化为直角三角形的求解。

还有,解正多边形的问题,通过添半径和边心距,转化为解直角三角形问题等等。

化归思想贯穿整个初中数学,在学习的过程中要有意识的体会这种科学的思维方法,有利于我们在解决问题的过程中思维通畅、方法得当,从而达到事半功倍的效果。

小学数学化归思想方法的教学策略分析

小学数学化归思想方法的教学策略分析

小学数学化归思想方法的教学策略分析1. 引言1.1 介绍化归思想在小学数学教学中的重要性化归思想在小学数学教学中扮演着至关重要的角色。

化归思想是一种将复杂问题简化为简单问题进行解决的方法,能够帮助学生在面对复杂数学题目时进行系统化的解题思路,提高问题解决的效率和准确性。

在小学数学教学中,化归思想能够帮助学生更好地理解数学概念,培养学生抽象思维能力和逻辑思维能力,提高他们的数学解题能力。

在小学数学教学中,引导学生掌握化归思想方法,培养其解决问题的能力,对于提高学生数学学习的效果和质量具有重要意义。

通过适当的教学策略和实例分析,可以帮助学生更好地运用化归思想解决数学问题,提高他们的学习兴趣和学习效果。

【内容结束】2. 正文2.1 理解化归思想的概念化归思想是数学中一种重要的思维方法,指的是将一个复杂的问题或表达式化简成更为简单的形式,从而更好地理解和解决问题。

在小学数学教学中,化归思想的重要性不言而喻,它不仅可以帮助学生提高解题效率,还可以培养学生的逻辑思维能力。

理解化归思想的概念是教学的基础。

学生需要明白化归思想的核心思想是将复杂问题简化,找到问题的本质。

通过实际生活中的例子,如分糖果或分苹果等,帮助学生理解化归思想的实际应用。

学生需要掌握化归思想的方法。

这包括将问题归纳成一般性规律,利用数学符号和表达式表示问题,以及将问题分解成更小的子问题等。

教师可以通过丰富多彩的教学方法,如游戏、实验等,帮助学生掌握化归思想的方法。

教师还应设计符合小学生接受能力的教学策略。

这包括灵活运用多媒体教学手段,设计趣味性强的教学活动,激发学生的学习兴趣和主动性。

教师还应引导学生在实际问题中运用化归思想解决问题,通过多次实践提高学生的化归思维能力。

理解化归思想的概念是学生掌握化归思想的基础,同时教师也需要设计符合学生接受能力的教学策略,引导学生在实际问题中灵活运用化归思想。

这样,在小学数学教学中,化归思想才能真正发挥其重要作用。

第四讲 转化与化归思想

第四讲 转化与化归思想

第四讲 转化与化归思想1.转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法.一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.2.转化与化归思想是实现具有相互关联的两个知识板块进行相互转化的重要依据,如函数与不等式、函数与方程、数与形、式与数、角与边、空间与平面、实际问题与数学问题的互化等,消去法、换元法、数形结合法等都体现了等价转化思想,我们也经常在函数、方程、不等式之间进行等价转化,在复习过程中应注意相近主干知识之间的互化,注重知识的综合性. 3.转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知的问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题转化为二维平面问题,通过简单问题的解决思路和方法,获得对复杂问题的解答启示和思路以达到解决复杂问题的目的.(3)具体化原则:化归方向应由抽象到具体.(4)和谐统一原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律. (5)正难则反原则:当问题正面讨论遇到困难时,应想到问题的反面;或问题的正面较复杂时,其反面一般是简单的;设法从问题的反面去探求,使问题获得解决.1. (2012·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________.答案 1解析 设出等差数列的公差,列方程求解. 设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d ,又a 1=12,所以d =12,故a 2=a 1+d =1.2. (2013·重庆)4cos 50°-tan 40°等于( )A. 2B.2+32C. 3 D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.3. (2012·重庆)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c答案 B解析 ∵a =log 23+log 23=log 233, b =log 29-log 23=log 233, ∴a =b .又∵函数y =log a x (a >1)为增函数,∴a =log 233>log 22=1,c =log 32<log 33=1,∴a =b >c .4. (2011·天津)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]答案 B解析 依题意可得f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2,作出其示意图如图所示.由数形结合知,实数c 需有1<c ≤2或-2<c ≤-1,故选B.5. (2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1C.94D .3答案 B解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝⎛⎭⎫1y -12+1≤1.题型一 特殊与一般的转化例1 (1)e 416,e 525,e 636(其中e 为自然常数)的大小关系是( )A.e 416<e 525<e 636 B.e 636<e 525<e 416 C.e 525<e 416<e 636D.e 636<e 416<e 525(2)在定圆C :x 2+y 2=4内过点P (-1,1)作两条互相垂直的直线与C 分别交于A ,B 和M ,N ,则|AB ||MN |+|MN ||AB |的范围是________.审题破题 (1)观察几个数的共同特征,可以构造函数,利用函数的单调性比较数的大小;(2)由于题目条件中过点P (-1,1)可作无数对互相垂直的直线,因此可取特殊位置的两条直线来解决问题.答案 (1)A (2)⎣⎡⎦⎤2,322 解析 (1)由于e 416=e 442,e 525=e 552,e 636=e 662,故可构造函数f (x )=e x x 2,于是f (4)=e 416,f (5)=e 525,f (6)=e 636.而f ′(x )=⎝⎛⎭⎫e x x 2′=e x ·x 2-e x ·2x x 4=e x (x 2-2x )x 4,令f ′(x )>0得x <0或x >2,即函数f (x )在(2,+∞)上单调递增,因此有f (4)<f (5)<f (6),即e 416<e 525<e 636.(2)设|AB ||MN |=t ,考虑特殊情况:当AB 垂直OP 时,MN 过点O ,|AB |最小,|MN |最大,所以t 最小=22,t 最大= 2.所以t ∈⎣⎡⎦⎤22,2.又因为t +1t ≥2 t ·1t =2,所以t +1t ∈⎣⎡⎦⎤2,322.反思归纳 当问题难以入手时,应先对特殊情况或简单情形进行观察、分析,发现问题中特殊的数量或关系结构或部分元素,然后推广到一般情形,以完成从特殊情形的研究到一般问题的解答的过渡,这就是特殊化的化归策略.数学题目有的具有一般性,有的具有特殊性,解题时,有时需要把一般问题化归为特殊问题,有时需要把特殊问题化归为一般问题.变式训练1 已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.答案1316解析 由题意知,只要满足a 1、a 3、a 9成等比数列的条件,{a n }取何种等差数列与所求代数式的值是没有关系的.因此,可把抽象数列化归为具体数列.比如,可选取数列a n =n (n ∈N *),则a 1+a 3+a 9a 2+a 4+a 10=1+3+92+4+10=1316.题型二 正难则反转化例2 若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是__________.审题破题 函数总不为单调函数不易求解,可考虑其反面情况:g (x )在区间(t,3)上为单调函数.答案 -373<m <-5解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,∴m +4≥2t -3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.∴函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.反思归纳 正难则反,利用补集求得其解,这就是补集思想.一般有两种情形:正面解决比较困难,正面出现多种情形,可考虑从反面解决,体现了对立统一,相互转化的思想.变式训练2 (2012·北京)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若∀x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是________. 答案 (-4,0)解析 将问题转化为g (x )<0的解集的补集是f (x )<0的解集的子集求解. ∵g (x )=2x -2<0,∴x <1. 又∀x ∈R ,f (x )<0或g (x )<0, ∴[1,+∞)是f (x )<0的解集的子集.又由f (x )=m (x -2m )(x +m +3)<0知m 不可能大于等于0,因此m <0. 当m <0时,f (x )<0,即(x -2m )(x +m +3)>0,若2m =-m -3,即m =-1,此时f (x )<0的解集为{x |x ≠-2},满足题意;若2m >-m -3,即-1<m <0,此时f (x )<0的解集为{x |x >2m 或x <-m -3},依题意2m <1,即-1<m <0;若2m <-m -3,即m <-1,此时f (x )<0的解集为{x |x <2m 或x >-m -3},依题意-m -3<1,∴m >-4,∴-4<m <-1.综上可知,满足条件的m 的取值范围是-4<m <0. 题型三 函数、方程、不等式之间的转化例3 设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1.(1)讨论f (x )的单调性;(2)若当x ≥0时,f (x )>0恒成立,求a 的取值范围.审题破题 (1)求f ′(x )=0的根,比较两根的大小、确定区间,讨论f (x )的单调性;(2)将f (x )>0恒成立转化为f (x )的最小值大于0. 解 (1)f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ). 由已知a >1,∴2a >2,∴令f ′(x )>0,解得x >2a 或x <2,∴当x ∈(-∞,2)和x ∈(2a ,+∞)时,f (x )单调递增, 当x ∈(2,2a )时,f (x )单调递减.综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上是增函数,在区间(2,2a )上是减函数.(2)由(1)知,当x ≥0时,f (x )在x =2a 或x =0处取得最小值.f (2a )=13(2a )3-(1+a )(2a )2+4a ·2a +24a=-43a 3+4a 2+24a =-43a (a -6)(a +3),f (0)=24a .由题设知⎩⎪⎨⎪⎧a >1,f (2a )>0,f (0)>0,即⎩⎪⎨⎪⎧a >1,-43a (a +3)(a -6)>0,24a >0,解得1<a <6.故a 的取值范围是(1,6).反思归纳 函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.变式训练3 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……)(1)求函数g (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).(1)解 ∵g (x )=1ef (x )-(x +1)=ln x -(x +1),∴g ′(x )=1x -1(x >0).令g ′(x )>0,解得0<x <1; 令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1),取t =1n(n ∈N *),则1n >ln ⎝⎛⎭⎫1+1n =ln ⎝⎛⎭⎫n +1n ,∴1>ln 2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎫n +1n ,叠加得1+12+13+…+1n >ln(2·32·43·…·n +1n)=ln(n +1).典例 (12分)已知函数f (x )=13x 3+⎝⎛⎭⎫a 2-43x 2+⎝⎛⎭⎫43-23a x (a 是小于1的正实数,x ∈R ).若对于任意的三个实数x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,求实数a 的取值范围. 规范解答解 因为f ′(x )=x 2+⎝⎛⎭⎫a -83x +⎝⎛⎭⎫43-23a =⎝⎛⎭⎫x -23(x +a -2),所以令f ′(x )=0,解得x 1=23,x 2=2-a .[2分] 由0<a <1,知1<2-a <2.[3分]所以令f ′(x )>0,得x <23,或x >2-a ;令f ′(x )<0,得23<x <2-a ,所以函数f (x )在(1,2-a )上单调递减,在(2-a,2)上单调递增. [5分]所以函数f (x )在[1,2]上的最小值为f (2-a )=a6(2-a )2,最大值为max{f (1),f (2)}=max ⎩⎨⎧⎭⎬⎫13-a 6,23a .因为当0<a ≤25时,13-a 6≥23a ;当25<a <1时,23a >13-a 6, 由对任意x 1,x 2,x 3∈[1,2],都有f (x 1)+f (x 2)>f (x 3)恒成立,得2[f (x )]min >[f (x )]max (x ∈[1,2]).[7分]所以当0<a ≤25时,必有2×a 6(2-a )2>13-a 6,结合0<a ≤25可解得1-22<a ≤25;[9分]当25<a <1时,必有2×a 6(2-a )2>23a ,结合25<a <1可解得25<a <2- 2.[11分] 综上,知所求实数a 的取值范围是1-22<a <2- 2. [12分]评分细则 (1)求出f ′(x )给1分;(2)讨论时将a 的范围分为0<a <25和25≤a <1一样给分;讨论时a 的值有重、漏情况扣1分;(3)“综上……”结论不写扣1分.阅卷老师提醒 将已知不等式恒成立准确转化为关于函数f (x )在[1,2]上的最大值和最小值问题是解决本题的一个突破口.此外,要注意函数f (x )在[1,2]上的最大值不能直接由函数的图象得到,而必须讨论f (1)与f (2)的大小关系.1. 设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为⎣⎡⎦⎤0,π4, 则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12 B .[-1,0] C .[0,1]D.⎣⎡⎦⎤12,1答案 A解析 设P (x 0,y 0),倾斜角为α,0≤tan α≤1,f (x )=x 2+2x +3,f ′(x )=2x +2,0≤2x 0+2≤1,-1≤x 0≤-12,故选A.2. 设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =32,则a ,b ,c 的大小关系是( )A .c <a <bB .a <c <bC .b <a <cD .c <b <a答案 A 解析 a =2×22sin(17°+45°)=sin 62°, b =cos 26°=sin 64°,c =sin 60°,∴c <a <b . 3. 方程sin 2x +cos x +k =0有解,则k 的取值范围是( )A .-1≤k ≤54B .-54≤k ≤0C .0≤k ≤54D .-54≤k ≤1答案 D解析 求k =-sin 2x -cos x 的值域.k =cos 2x -cos x -1=(cos x -12)2-54.当cos x =12时,k min =-54,当cos x =-1时,k max =1, ∴-54≤k ≤1,故选D.4. 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________. 答案 (-13,13)解析 由题设得,若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d 满足0≤d <1.∵d =|c |122+52=|c |13,∴0≤|c |<13,即c ∈(-13,13).5. 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.答案 2105解析 ∵4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝⎛⎭⎫2x +y 22+1,∴(2x +y )2≤85,(2x +y )max =2105.6. 已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N +,若数列{c n }满足c n =b a n ,则c 2 013=________. 答案 36 039解析 由已知a n =3n ,b n =3n , ∴c 2 013=b 3×2 013=33×2 013=36 039.专题限时规范训练一、选择题1. 在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C2的值为( )A.15B.14C.12D.23答案 C解析 取边长a ,b ,c 分别为4,3,5的直角三角形,易求tan A 2=12,tan C2=1,所以tanA 2·tan C 2=12. 2. 等差数列{a n }中,已知a 1=-12,S 13=0,使得a n >0的最小正整数n 为( ) A .7B .8C .9D .10答案 B解析 ∵{a n }为等差数列,S 13=0, ∴a 1+a 13=2a 7=0,又a 1=-12<0,∴显然{a n }为递增数列.a n >0的最小正整数n 为8.3. AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的纵坐标为( )A .-1B .-4C .-14D .-116答案 A解析 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).4. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285C .5D .6 答案 C解析 ∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15(3x +4y )⎝⎛⎭⎫1y +3x =15⎝⎛⎫3xy+4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×2 3x y ·12yx =5(当且仅当x =2y 时取等号), ∴3x +4y 的最小值为5.5. 棱长为a 的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为( )A.a 33B.a 34C.a 36D.a 312答案 C解析 所得图形为一个正八面体,可将它分割为两个四棱锥,棱锥的底面为正方形且边长为22a ,高为正方体边长的一半,∴V =2×13⎝⎛⎭⎫22a 2·a 2=a 36.6. 设F 1,F 2分别是双曲线x 2a 2-y2b2=1(a >0,b >0)的左,右焦点,若双曲线右支上存在一点P ,使(OP →+OF 2→)·F 2P →=0,O 为坐标原点,且|PF 1→|=3|PF 2→|,则该双曲线的离心率为( )A.3+1B.3+12C.6+ 2D.6+22答案 A解析 如图,取F2P 的中点M ,则OP →+OF 2→=2OM →.又由已知得OM →·F 2P →=0, ∴OM →⊥F 2P →.又OM 为△F 2F 1P 的中位线,∴F 1P →⊥PF 2→.在△PF 1F 2中,2a =|PF 1→|-|PF 2→|=(3-1)|PF 2→|,2c =2|PF 2→|.∴e =23-1=3+1.7. P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9 答案 D解析 设双曲线的左、右焦点分别为F 1、F 2, 则其分别为已知两圆的圆心, 由已知|PF 1|-|PF 2|=2×3=6.要使|PM |-|PN |最大,需PM ,PN 分别过F 1、F 2点即可. ∴(|PM |-|PN |)max =(|PF 1|+2)-(|PF 2|-1)=|PF 1|-|PF 2|+3=9.8. 已知函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0132 013,g (x )=1-x +x 22-x 33+x 44-…-x 2 0132 013,设F (x )=f (x +4)·g (x -4),且函数F (x )的零点在区间[a -1,a ]或[b -1,b ](a <b ,a ,b ∈Z )内,则a +b 的值为( )A .-1B .0C .1D .2答案 D解析 由F (x )=f (x +4)·g (x -4)可知,函数F (x )的零点即为f (x +4)的零点或g (x -4)的零点,f ′(x )=1-x +x 2-x 3+…+x 2 012. 当x ≠-1时,f ′(x )=1+x 2 0131+x >0,x =-1时,f ′(x )=2 013>0. ∴f (x )在R 上单调递增.又f (0)=1,f (-1)=(1-1)+⎝⎛⎭⎫-12-13+…+⎝⎛⎭⎫-12 012-12 013<0, ∴f (x )在[-1,0]内有唯一零点, 故f (x +4)的唯一零点在[-5,-4]内. 同理g (x -4)的唯一零点在[5,6]内, 因此,b =6,a =-4,∴a +b =2.二、填空题9. 设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为__________.答案 x ≤-1或x ≥0解析 ∵f (x )在R 上是增函数,∴由f (1-ax -x 2)≤f (2-a )可得1-ax -x 2≤2-a ,a ∈[-1,1].∴a (x -1)+x 2+1≥0,对a ∈[-1,1]恒成立.令g (a )=(x -1)a +x 2+1.则当且仅当g (-1)=x 2-x +2≥0,g (1)=x 2+x ≥0,解之,得x ≥0或x ≤-1.故实数x 的取值范围为x ≤-1或x ≥0.10.在Rt △ABC 中,C =π2,a ,b ,c 分别为角A ,B ,C 所对的边,r ,S 分别表示它的内切圆半径和面积,则cr S的取值范围是__________. 答案 [22-2,1)解析 由题意,得S =12ab =12c 2sin A sin B , r =12(a +b -c )=12c (sin A +sin B -1), 从而cr S =sin A +sin B -1sin A sin B,设sin A +sin B =t , 则sin A sin B =12(t 2-1),cr S =2(t -1)t 2-1=2t +1, 因为A +B =π2, 所以t =sin A +sin B =2sin ⎝⎛⎭⎫A +π4∈(1,2]. 所以cr S的取值范围是[22-2,1). 11. 如果函数f (x )=x 2-ax +2在区间[0,1]上至少有一个零点,则实数a 的取值范围是_______.答案 a ≥3解析 由题意,知关于x 的方程x 2-ax +2=0在[0,1]上有实数解.又易知x =0不是方程x 2-ax +2=0的解,所以根据0<x ≤1可将方程x 2-ax +2=0变形 为a =x 2+2x =x +2x .从而问题转化为求函数g (x )=x +2x(0<x ≤1)的值域. 易知函数g (x )在(0,1]上单调递减.所以g (x )∈[3,+∞).故所求实数a 的取值范围是a ≥3.故填a ≥3.12.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________.答案 2解析 ∵关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},方程m (x -1)=x 2-x 即x 2-(m +1)x +m =0的两根为1,2,∴⎩⎪⎨⎪⎧1+m =3m =1×2,解得m =2. 三、解答题13.(2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B 2cos B - sin(A -B )sin B +cos(A +C )=-35. (1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得 [cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35, 即cos(A -B )cos B -sin(A -B )sin B =-35. 则cos(A -B +B )=-35,即cos A =-35. (2)由cos A =-35,0<A <π,得sin A =45, 由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22. 由题知a >b ,则A >B ,故B =π4, 根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22. 14.(2013·江西)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n .n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.∴a n =2n .(2)证明 由a n =2n 得b n =n +1(n +2)2a 2n=n +14n 2(n +2)2=116⎣⎡⎦⎤1n 2-1(n +2)2, T n =116⎣⎡ ⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+…⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564.。

化归思想方法在初中数学教学中的应用

化归思想方法在初中数学教学中的应用

化归思想方法在初中数学教学中的应用化归思想方法是数学课程中解题的一种重要的方法,它属于数学思想的一种。

数学思想是数学课程的灵魂,支撑了整个数学课程体系。

中学数学教学和学习并不是教师机械式的讲解和知识的传授,也不是学生死记硬背就可以领悟和掌握的。

传统的数学教学通常是以教师讲解为主,学生则是被动地听授,教师始终把控着课堂,这种教学方式不利于调动学生们学习的积极性和主动性,严重会影响到教学的质量和效果。

当前许多数学教材并不能够将所有的知识都完整地表达出来,化归思想只是一带而过,这就需要教师将隐含在其中的化归思想明晰地向学生们展示出来,这样更有利于学生对其加深理解和掌握。

一、化归思想方法在中学数学教学中应用需要注意的几点事项数学是一门发散性思维比较强的学科,课堂教学活动中单纯一味地知识灌输是不可能取得很好的教学效果的。

化归思想是解决数学问题最常用的数学思想,其在中学数学教学中应用需要注意几点事项。

1.复杂问题简单化数学问题是由规律可循的,都是有相关的数学原理、概念、公式等组合而成的。

对这些问题的解答需要综合分析其组合原理和构成,就需要将其负责的问题和原理进行分解,使其分解成不同的部分,这就是化归思想需要遵循的简单化原则。

除此之外,采用化归思想也可以从相关知识点和原理出发,将原理通过分解为不同知识点的方式,进而展现出屋面熟悉的画面。

2.复杂问题明了化复杂的数学问题经常使我们产生误解,对其感觉陌生,不知道从哪里入手。

但是我们需要明白不管多么复杂的数学问题都是有简单的概念、原理等所构成,要想真正能够解决这些问题,就需要采用化归的方法将其转化为我们比较熟悉的内容。

复杂的数学问题归化并不是盲目的,一定要遵循明晰化的原则,只有这样才能够用正常的数学思想和规律来解决相关的问题。

3.复杂问题具体化运用归化方法另一个需要注意的事项就是将负责的问题具体化,也就是说复杂问题乍一看是比较陌生的,但是要通过归化的方式将其转化为具体的问题,通常需从抽象转为具体,就是当分析、解决问题的时候,需注重把抽象的问题转向具体化,这样更加容易掌握问题中数量之间的关系,需尽量将抽象关系以及抽象化的语言表达采用具体算式或图形进行表现,这样更利于理解和分析,进而寻找到解题思路。

小学数学思想方法的梳理(二化归(转化)思想。)

小学数学思想方法的梳理(二化归(转化)思想。)

小学数学思想方法的梳理(二)课程教材研究所王永春二、化归思想1. 化归思想的概念。

人们在面对数学问题,如果直接应用已有知识不能或不易解决该问题时,往往将需要解决的问题不断转化形式,把它归结为能够解决或比较容易解决的问题,最终使原问题得到解决,把这种思想方法称为化归(转化)思想。

从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。

因此,化归既是一般化的数学思想方法,具有普遍的意义;同时,化归思想也是攻克各种复杂问题的法宝之一,具有重要的意义和作用。

2. 化归所遵循的原则。

化归思想的实质就是在已有的简单的、具体的、基本的知识的基础上,把未知化为已知、把复杂化为简单、把一般化为特殊、把抽象化为具体、把非常规化为常规,从而解决各种问题。

因此,应用化归思想时要遵循以下几个基本原则:(1)数学化原则,即把生活中的问题转化为数学问题,建立数学模型,从而应用数学知识找到解决问题的方法。

数学来源于生活,应用于生活。

学习数学的目的之一就是要利用数学知识解决生活中的各种问题,课程标准特别强调的目标之一就是培养实践能力。

因此,数学化原则是一般化的普遍的原则之一。

(2)熟悉化原则,即把陌生的问题转化为熟悉的问题。

人们学习数学的过程,就是一个不断面对新知识的过程;解决疑难问题的过程,也是一个面对陌生问题的过程。

从某种程度上说,这种转化过程对学生来说既是一个探索的过程,又是一个创新的过程;与课程标准提倡培养学生的探索能力和创新精神是一致的。

因此,学会把陌生的问题转化为熟悉的问题,是一个比较重要的原则。

(3)简单化原则,即把复杂的问题转化为简单的问题。

对解决问题者而言,复杂的问题未必都不会解决,但解决的过程可能比较复杂。

因此,把复杂的问题转化为简单的问题,寻求一些技巧和捷径,也不失为一种上策。

化归法推导圆面积公式

化归法推导圆面积公式

化归法推导圆面积公式一、圆面积公式推导中的化归法。

(一)化归思想简介。

化归法是一种重要的数学思想方法,它的核心是将一个复杂的、未知的问题转化为一个简单的、已知的问题来解决。

在推导圆的面积公式时,我们就巧妙地运用了化归法。

(二)圆面积公式推导过程。

1. 分割圆。

把一个圆平均分成若干个相等的小扇形。

例如,我们可以把圆平均分成4个、8个、16个、32个……小扇形。

当分的份数越多时,这些小扇形就越接近三角形。

2. 组合近似图形。

将这些小扇形重新组合,可以拼成一个近似的图形。

当把圆平均分成足够多的小扇形时,这个近似图形就无限接近于长方形。

3. 分析近似长方形与圆的关系。

- 近似长方形的长:这个近似长方形的长相当于圆周长的一半。

因为圆的周长公式是C = 2π r,所以圆周长的一半就是(1)/(2)×2π r=π r。

- 近似长方形的宽:近似长方形的宽就相当于圆的半径r。

4. 推导圆面积公式。

因为长方形的面积 = 长×宽,而这个近似长方形的长是π r,宽是r,所以圆的面积S=π r× r=π r^2。

二、相关练习。

(一)基础练习。

1. 已知一个圆的半径为3厘米,求这个圆的面积。

- 解:根据圆面积公式S = π r^2,这里r = 3厘米,π取3.14,则S=3.14×3^2=3.14×9 = 28.26(平方厘米)。

2. 一个圆的直径是8分米,求其面积。

- 解:先求出半径r=(d)/(2)=(8)/(2) = 4分米,再根据面积公式S=π r^2,π取3.14,则S = 3.14×4^2=3.14×16 = 50.24(平方分米)。

(二)拓展练习。

1. 有一个圆形花坛,它的周长是31.4米,求这个花坛的面积。

- 解:首先根据圆的周长公式C = 2π r求出半径r。

- 已知C = 31.4米,C = 2π r,则r=(C)/(2π)=(31.4)/(2×3.14)=5米。

化归思想方法应用

化归思想方法应用

化归思想方法的应用摘要:问题是数学的心脏,解决问题是学习数学的目标,而通过问题的转化来解决问题的方法就是化归。

其实质就是将新的问题化归转化为已经解决过的老问题,将复杂问题化归转化为一个或几个简单的问题,最终将不可接问题化归转化为可解的问题。

关键词:化归化归思想化归方法一什么是化归方法从字面上看,所谓“化归”,可以理解为转化和归结的意思。

数学方法论中所论及的“化归方法”,是指数学家们把待决或未解决的问题,通过某种转化过程,归结到一类已经能或者比较容易解决的问题中去,最终求得原问题的解答的一种手段和方法。

化归方法也称为化归原则。

化归后所得的新问题必须是较为简单的,或者是已经解决了的,否则,化归就失去了意义。

二化归思想的途径关于化归的途径,数学家笛卡儿很早就从“方程问题”提出了化归的途径:第一,把任何问题转化为数学问题;第二,把任何数学问题化为代数问题;第三,把任何代数问题化为方程问题。

这种化归模式被数学家波利亚称为“笛卡儿模式”。

明确体现了三步:其一,指化归对象,即对什么进行化归;其二,指化归目标,即化成什么;其三,指化归手段方法,即如何化归。

随着数学学科的不断完善,波利亚提出了化归的一般思维模式如图所示:从其基本思想而言,容易看出,化归原则与波利亚关于在解题过程中应充分利用“辅助问题”的思想是十分一致的。

波利亚这样写道:“去设计并解出一个合适的辅助问题,从而用它求得一条通向表面上看来很难接近的问题的通道,这是最富有特色的一种智力活动。

”此处所谓的“辅助问题”为:等价问题、较强或较弱的辅助问题即间接问题。

由此可以看出,化归方法的主要特点就在于它具有更强的目的性,方向性和概括性。

我们在此就是希望通过由未知到已知,由难到易,由繁到简的化归来达到解决问题的目的,而且所有有关的解题过程又都可以统一地归结为上述的模式。

下面就高中数学中常用的化归途径对这种思维模式进行分析解剖。

1.特殊与一般的转化一般成立则特殊成立,利用特殊归纳一般,这种辨证思想为我们提供了转化的依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化归思想方法
马明
一位日本的数学教育家曾经提出:无论科技工作者,教育工作者,或是社会的其他人才,最重要的是要有数学的精神与思想方法,而数学知识则是第二位的。

这与我国古代教育家提出的“授之以鱼,不如授之以渔”的思想实质上是一致的。

在具体的数学思想方法中,“化归思想”又是世界数学家们都十分重视的数学思想方法,因为,在解决问题的过程中,数学家往往不是直接对问题展开攻击,而是对问题进行变形、转化,直至把它化归为某个已经解决的问题,或容易解决的问题。

匈牙利著名数学家P·罗莎曾用以下比喻十分生动地说明了化归思想的实质。

她写道:“假设在你面前有煤气灶、水龙头、水壶和火柴,现在的任务是要烧水,你应当怎样去做?”正确的回答是:“在水壶中放上水,点燃煤气,再把水壶放到煤气灶上。

”接着,罗莎又提出第二个问题:“假设所有的条件都不变,只是水壶中已有了足够的水,这时你应该怎样去做?”对此,人们往往回答说:“点燃煤气,再把壶放到煤气灶上。

”但罗莎却认为这并不是最好的回答,因为,“只有物理学家才会这样做,而数学家则会倒去壶中的水,并且声称我已经把后一问题化归成先前的问题了,而先前的问题
我已回答。


“把水倒掉”——这是多么简洁的回答呀!比喻有点夸张,但它的确表明了数学家思考与解决问题的一个特点,与其他应用科学家相比,他们更善于使用化归思想。

下面还是让我们用一些例题来说明。

例1 鸡兔同笼,笼中有头50,有足140,问鸡、兔各有几只?
分析化归的实质是不断变更问题,这里可以先对已知成分进行变形。

每只鸡有2只脚,每只兔有4只脚,这是问题中不言而喻的已知成分。

现在对问题中的已知成分进行变形:“一声令下”,要求每只鸡悬起一只脚,又要求每只兔悬起两只前脚。

那么,笼中仍有头50,而脚只剩下70只了,并且,这时鸡的头数与足数相等,而兔的足数与兔的头数不等——有一头兔,就多出一只脚,现在有头50,有足70,这就说明有兔20头,有鸡30头。

以上是从变更题设条件来寻找化归方法的。

下例则是从变更任务来实现化归目的。

例2 有18瓶牛奶分放在4×6=24个方格内,每格只能放一瓶,在数牛奶瓶时要求横数的瓶数为偶数,竖数的瓶数也为偶数,这件事能办到吗?
图1
[注] 这个问题是1984年国际数学教育与计算机教育会议上,一位英国朋友在小组讨论时提出的。

当时有两个不相容的答案:“这件事能办到”与“这件事不能办到”。

分析不妨试放一下
可能屡试不成——瓶太多了,很难照顾全面。

因此,能否用化归思想变更题目的任务:在4×6=24个方格内打上24-18=6个不放牛奶瓶的符号。

余下工作请读者自己完成,这时你的结论一定是:这件事不仅一定能办到,而且放置奶瓶的方法有多种,请你至少给出3种。

相关文档
最新文档