仰角、俯角和方位角(五).共32页

合集下载

九年级下册数学仰角和俯角知识点

九年级下册数学仰角和俯角知识点

九年级下册数学仰角和俯角知识点九年级下册数学知识点: 仰角和俯角在九年级的数学学习中,仰角和俯角是两个重要的概念。

仰角和俯角是与水平线之间的夹角,用于描述物体在垂直方向上的视角。

在日常生活中,我们经常会用到仰角和俯角的概念,比如测量高楼的高度、确定飞机的飞行高度等等。

接下来,让我们深入了解仰角和俯角吧。

一、仰角和俯角的定义仰角和俯角是与水平线之间的夹角,用来描述物体在垂直方向上的视角。

仰角是指从水平线向上看时,视线与水平线之间的夹角;俯角则相反,是指从水平线向下看时,视线与水平线之间的夹角。

例如,当我们仰望一棵树时,我们所看到的视线与水平线之间的夹角就是仰角;而当我们低头俯视地面时,视线与水平线之间的夹角就是俯角。

二、仰角和俯角的计算方法我们可以通过三角函数来计算仰角和俯角的数值。

一般来说,我们会用正切函数来求取夹角的数值。

例如,假设一架飞机在空中低飞,飞机和地面之间的夹角为35度。

我们可以通过计算正切函数来求得仰角(从地面向上看时的夹角)和俯角(从飞机向下看时的夹角)的数值。

正切函数的公式为:tanθ = 对边 ÷邻边在这个例子中,飞机和地面之间的夹角为35度,我们可以假设对边(飞机在地面上的高度)为x,邻边(飞机离开地面的水平距离)为1。

代入公式,我们就可以求得正切值。

通过反函数,我们可以得到对应夹角的数值,也就是仰角和俯角。

三、仰角和俯角的应用仰角和俯角的应用非常广泛。

比如在航空领域,飞行员需要准确测量飞机与地面之间的仰角或俯角来确保飞行的安全。

而在建筑领域,工程师需要计算仰角和俯角来确定大楼的高度和斜坡的陡峭程度。

此外,仰角和俯角也在数学的几何和三角学中有着重要的应用。

它们是理解和计算立体图形、三角形、锥体等形状的关键概念之一。

四、总结仰角和俯角是九年级下册数学中的重要知识点。

通过了解仰角和俯角的定义、计算方法和应用,我们可以更好地理解和运用这一概念。

无论是在生活中还是学习中,仰角和俯角都有着广泛的应用价值。

《 仰角、俯角问题》完整版教学课件PPT

《 仰角、俯角问题》完整版教学课件PPT
A
D′
C′
B′
D
C
B
解:如图,由题意可知,∠AD′B′=30°,
∠AC′B′=60°,
D′C′=50m
∴ ∠D′AB′=60°,∠C′AB′=30°,D′C′=50m ,
设tanD' AB' D' B' ,tanC' AB' C' B' ,
ABD′=B m
x
x tan60,CB
x
tan30,
x
C
解:如图,a = 30°,β= 60°, AD=120.
tan a BD , tan CD .
AD
AD
BD AD tan a 120 tan 30 120 3 40 3(m). 3
CD AD tan 120 tan 60 A
120 3 120 3(m).
B
αD β
BC BD CD 40 3 120 3
45° 37° B 400米 A
解:作O⊥AB交AB的延长线于O
设O=米,
在Rt△OB中,∠BO=45°,
OB=O= 米
在Rt△OA中,∠AB=37°,
tan∠PAB PO 0.75 , OA
O

x x 400
0.75 ,解得=1200
故飞机的高度为1200米
45° 37° B 400米 A
当堂练习
1 如图①,在高出海平面100米的悬崖顶A处,观测海平 面上一艘小船B,并测得它的俯角为45°,则船与观 测者之间的水平距离BC=_____1_0_0__米 2 如图②,两建筑物0°,测得C点的俯角为60°,则 建筑物CD的高为__2_0__米3
x tan 60 x tan 30 50,

九下数学课件仰角、俯角和方向角有关的问题(课件)

九下数学课件仰角、俯角和方向角有关的问题(课件)
坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为( D)
(参考数据:sin 43°≈0.68,cos 43°≈0.73,tan 43°≈0.93) A.23米 B.24米 C.24.5米 D.25米
题型一 仰角、俯角问题
解:过点E作EF⊥CD于点F,过点E作EM⊥AC于点M,如图. ∵斜坡DE的坡度(或坡比)i=1:2.4,∴设EF=x米,则DF=2.4x米. 在Rt△DEF中,DE=78米,∵EF2+DF2=DE2,∴x2+(2.4x)2=782, 解得x=30(负值舍去),∴EF=30米,DF=72米.∴CF=DF+DC=72+78=150(米). ∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形.∴EM=CF=150米, CM=EF=30米.在Rt△AEM中,∵∠AEM=43°, ∴AM=EM·tan 43°≈150×0.93=139.5(米), ∴AC=AM+CM≈139.5+30=169.5(米). ∴AB=AC-BC≈169.5-144.5=25(米). 故选D.
为50°,则建筑物AB的高度约为( D )
(参考数据:sin 50°≈0.77;cos 50°≈0.64;tan 50°≈1.19) A.69.2米 B.73.1米 C.80.0米 D.85.7米
题型一 仰角、俯角问题
【变式2】如图,小明想要测量学校操场上旗杆AB的高度,他做了如下操
作:
①在点C处放置测角仪,测得旗杆顶部的仰角∠ACE=α; ②量得测角仪的高度CD=a;
题型一 仰角、俯角问题
【变式4】如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的
俯角为60°,已知楼高AB为30米,则荷塘的宽CD为__________米(结果保留根

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

仰角、俯角和方位角(五)

仰角、俯角和方位角(五)
如图:点A在O的北偏东30° 点B在点O的南偏西45°(西南方向)

A
30°
西

O
45°
B

例1. 如图,一艘海轮位于灯塔P的北偏东45°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东30°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远?
45° A P
=300 30
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
3x
45° 60°
C 300米
D
xB
2、在山脚C处测得山顶A的仰角为450。问题如下:
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
P
X
A 4X5° C
60° B
157.73海里
为45°,求旗杆的高度(tan50°≈1.19精确到
0.1m)
A
B
45°50°
C
D
40米
4. 两座建筑AB及CD,其地面距离AC为50米,
从AB的顶点测得CD的顶部D的仰角β=300,
测得其底部C的俯角a=600, 求两座建筑物AB 及CD的高.
30° 60°
50米
(第 2 题)
方位角
指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角.
1.解直角三角形
在直角三角形中,除直角外,由已知两元素 (必有一边)
求其余未知元素的过程叫解直角三角形.
2.解直角三角形的依据

(1)三边之间的关系: a2+b2=c2(勾股定理); c

仰角和俯角的意思

仰角和俯角的意思

仰角和俯角的意思仰角和俯角是物理学中常用的概念,用于描述物体或光线与地平面的夹角。

在空间导航、航空航天、地理测量等领域中,仰角和俯角的应用非常广泛。

本文将详细介绍仰角和俯角的概念、计算方法及实际应用。

1. 仰角仰角是指物体或者观测点朝天空方向偏离地面的角度,通常用竖直线与视线的夹角来表示。

在天文学中,仰角通常用于描述天体在天空中的位置。

在观测卫星时,需要知道卫星的仰角,以便调整观测仪器的朝向和位置。

2. 俯角二、仰角和俯角的计算方法1. 计算方法(1)在地理测量中,仰角和俯角可以通过测量两点之间的水平距离和垂直距离来计算。

假设A点比B点高h米,则A点到B点的俯角为atan(h/d),其中d为A点到B点的水平距离。

如果B点比A点高,则仰角为90度减去俯角。

(2)在天文学中,仰角可以通过观测天体时测量天顶角(垂直于地面的角度)和天体高度角(天体与地平面的夹角)来计算。

仰角=90度-天体高度角。

俯角=天体高度角。

(3)在航空航天领域中,仰角和俯角需要通过仪器进行测量。

无人机上装有摄像头,可以通过调整仰角和俯角来改变拍摄视角。

2. 测量仪器(1)测距仪:可以测量两点之间的水平距离和垂直距离。

(2)全站仪:可测量目标物体的仰角、方位角和距离等参数。

三、仰角和俯角的实际应用1. 航空航天在航空航天中,仰角和俯角的应用非常广泛。

飞机、无人机等航空器需要根据目标物体的仰角和俯角来选择飞行高度,调整拍摄角度等。

在航天探测中,也需要测量行星、卫星等目标物体的仰角和俯角。

在地理测量中,仰角和俯角用于计算两点之间的高度差,确定地形高低等。

地面的地形特征对于城市规划、农业种植等方面有着重要的参考价值。

3. 天文观测在天文观测中,仰角和俯角通常用于描述恒星、行星等天体在天空中的位置。

天文观测对于了解宇宙的物理特性和演化历史具有重要的意义。

四、小结仰角和俯角是物理学中重要的概念,在导航、航空航天、地理测量等领域有着广泛的应用。

第02课时 仰角、俯角、方位角

第02课时 仰角、俯角、方位角

1.(5 分)如图,某地修建高速公路,要从 B 地向 C 地修一座隧道(B,
C 在同一水平面上),为了测量 B,C 两地之间的距离,某工程师乘坐热
气球从 C 地出发,垂直上升 100 m 到达 A 处,在 A 处观察 B 地俯角为
30°,则 B,C 两地之间的距离为( A )
A.100 3 m
B.50 2 m
一、选择题(每小题 6 分,共 12 分)
7.如图,从热气球 C 处测得地面 A,B 两点的俯角分别为 30°,45°,
如果此时热气球 C 处的高度 CD 为 100 米,点 A,D,B 在同一直线上,
则 A,B 两点的距离是( D )
A.200 米
B.200 3 米
C.220 3 米
D.100( 3+1)米
CED=60°,sin∠CED=CCDE ,∴CE= sinC6D0°= 2
3+1.5 3 =(4+
3)
2
≈5.7(米),答:拉线CE的长约为5.7米
11.(14分)(2014·黔东南州)黔东南州某校九年级某班开展数学活 动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得 旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为 30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身 高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,
三、解答题(共42分) 10.(14分)(2014·钦州)如图,在电线杆CD上的C处引拉线CE,CF 固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米 的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30 °,求拉线CE的长.(结果保留小数点后一位,参考数据: 2 ≈ 1.414, 3≈1.732)

三角函数之仰角俯角坡度

三角函数之仰角俯角坡度

仰角俯角坡度
⑴:使学生了解仰角、俯角的概念,
复习:(1)勾股定理:
(2)锐角之间的关系:
(3)边角之间的关系
仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水
平线下方的角叫做俯角.
、例题
例1热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?
例22003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)
例3如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?
二用三角函数有关知识解决方位角问题
坡度与坡角
坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),
一般用i表示。

即i=,常写成i=1:m的形式如i=1:2.5
把坡面与水平面的夹角α叫做坡角.
结合图形思考,坡度i与坡角α之间具有什么
关系?
例4同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m)。

仰角俯角和方位角

仰角俯角和方位角



指南或指北的方向线与目标方向线构成小于 900的角,叫做方位角. 如图:点A在O的北偏东30° 点B在点O的南偏西45°(西南方向或南偏西 45°)
北 30° A
西
O 45°

B

例1. 如图,一艘海轮位于灯塔P的北偏东45°方向,距 离灯塔80海里的A处,它沿正南方向航行一段时间后, 到达位于灯塔P的南偏东30°方向上的B处,这时,海 轮所在的B处距离灯塔P有多远?
B
A
合作与探究
变题1:如图,直升飞机在长400米的跨江大桥 AB的上方P点处,且A、B、O三点在一条直线 上,在大桥的两端测得飞机的仰角分别为30° 和45 °,求飞机的高度PO .
P
答案: (200 3 200) 米
x
O
x
45°
30°
B
400米
A
1、如图,为了测量电线杆的高度AB,在离 电线杆30米的C处,用高1.20米的测角仪CD 测得电线杆顶端B的仰角a=30°,求电线 杆AB的高.
C
60° 45°
A
2km D
B
例3.如图,小岛P的周围20√2海里内有暗礁, 某渔船沿北偏东60°的AM方向航行,在A处测得 小岛P的方向为北偏东30°,距A处40海里,该 渔船若不改变航向,有无触礁的可能?若有, 渔船在A处应再向北偏东偏离多大角度才能脱险?
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。

仰角、俯角和方位角

仰角、俯角和方位角

变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的仰角为600 ,求山高AB。
A
300
D 60° F x
E
30°
C
x
B
3、在山顶上D处有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o,已 知塔高BD=30米,求山高CD。 B α
30米30°
①弄清已知条件及要求解的问题。 ②画图将实际问题转化为数学问题。 ③寻找解题途径。 ⑷解、答
(2)、如果图中无直角三角形,可适当地作垂 线等辅助线,“化斜为直”,“善于转化”为 解直角三角形问题。 (3)、解直角三角形的有关问题常通过设未知 数、列方程(组)来解,也比较容易。常常设 图形中具有“双重身份”的线段或者是两个三 角形联系密切的特殊线段为未知数。
·
F
·
12
11
10
30°
9
B
·
如图, 海上有一灯塔P, 在它周围3海里内有 暗礁. 一艘客轮以9海里/时的速度由西向东 航行, 行至A点处测得P在它的北偏东60度的 方向, 继续行驶20分钟后, 到达B处又测得 灯塔P在它的北偏东45度方向. 问客轮不改变 方向继续前进有无触礁的危险?
问题的本质:

C
B
被观测点
这个问题归结为: 在Rt△ABC中,已知∠A= 60°, 斜边AB=30,求AC的长
问题本质是 直线与圆的关系
例2.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。

【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。

方位角俯角仰角课件..

方位角俯角仰角课件..

根据题意画出如下图所示的几何图形 图4-26
A
75°
B
· D
C
1.5m 28.5m
解:
在Rt△ABC中,∠C = 90°,
BAC = 90 -15 = 75 AC=28.5+1.5=30(m),
由于BC是∠BAC的对边,AC是邻边,
因此
tan 75 = BC = BC . AC 30
BC = 30 tan 75 112(m ).
视线 铅 直 线 视线 仰角 俯角 水平线
例1 如图4-25,一艘游船在离开码头A后,以和河岸 成 30°角的方向行驶了500m到达B处,求B处与河岸 的距离.
?
图4-25
解: 从点B作河岸线(看成直线段)的垂线,垂足为C,
在Rt△ABC中,∠C=90°,∠A=30°,AB=500m. 由于BC是∠A的对边,AB是斜边,因此
sin 30 = BC = BC , AB 500
(m). 从而 BC =500 sin 30 250
C
A
答:B处与河岸的距离约为250m. C
实际问题
建立几何模型 转化
?
数学问题
图4-25
解直角三角形
练习
如图4-27,一艘轮船航行到B处时,灯塔A在船 的北偏东 60 的方向,轮船从B处向正东方向行驶 2400m到达C处,此时灯塔A在船的正北方向.求C处 与灯塔A的距离(精确到1m).
(俯角和仰角)
解直角三角形依据下列关系式 1、三边之间的关系:
B a C b c A
a b c (勾股定理)
2 2 2
2、两锐角之间的关系: ∠A+∠B=90° 3、边角之间的关系: a sin A cos B , c a 1 tan A , b tan B

九年级数学仰角、俯角 PPT

九年级数学仰角、俯角 PPT

∵∠DNC=45°
∴CA=400+x 在Rt△ACD中,
∵∠DAC=30°
∴AC=xtan60°=400+x
x 340 200( 3 1) 3 1
∴塔高CD 为
200m( .3 1)
例3、在山顶上处D有一铁塔,在塔顶B处测得地面上 一点A得俯角α=60o,在塔底D测得点A得俯角β=45o, 已知塔高BD=30米,求山高CD。
1、如图,为了测量电线杆得高度AB,在离电
线杆22、7米得C处,用高1、20米得测角仪 CD测得电线杆顶端B得仰角a=22°,求电线 杆AB得高、(精确到0、1米)
1.20
=220 22.7
2、在山脚C处测得山顶A得仰角为45°。问题 如下:(1)沿着水平地面向前300米到达D点,在 D点测得山顶A得仰角为600 , 求山高AB。
P
பைடு நூலகம்
A
B
建筑物BC上有一旗杆AB,由距BC 40m得D处观 察旗杆顶部A得仰角为50°,观察底部B得仰角为 45°,求旗杆得高度(精确到0、1m)
A
B
D 40 C
(2007淄博)王英同学从A地沿北偏西60º方向走 100m到B地,再从B地向正南方向走200m到C地, 此时王英同学离A地多少距离?

A
3x
45° 60°
C
D xB
3、国外船只,除特许外,不得进入我国海洋100海里 以内得区域,如图,设A、B就是我们得观察站,A与B 之间得距离为160海里,海岸线就是过A、B得一条直 线,一外国船只在P点,在A点测得∠BAP=450,同时在 B点测得∠ABP=600,问此时就是否要向外国船只发 出警告,令其退出我国海域、
B α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档