中考冲刺数学专题9 ——动态几何问题

合集下载

2022年九年级中考数学冲刺专题---几何动态及最值问题

2022年九年级中考数学冲刺专题---几何动态及最值问题

中考数学冲刺专题---几何动态及最值问题一、单选题1.(2020·江阴模拟)如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6B.3C.2D.1.52.(2020·无锡模拟)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,作AG⊥PQ于点G,则AG的最大值为()C.365D.6 A.√73B.18√553.(2020·无锡模拟)如图,在平面直角坐标系中,已知A(10,0),点P为线段OA上任意一点.在直线y=34x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是()A.4.8B.5C.5.4D.64.(2020·宜兴模拟)如图,等边△ABC的边长为1,D,E两点分别在边AB,AC上,CE=DE,则线段CE的最小值为()A.2﹣√3B.2 √3﹣3C.12D.√3−125.(2020·南通模拟)如图,在矩形纸片ABCD中,AB=8,AD=17,折叠纸片使点B落在边AD上的E处,折痕为PQ.当E在AD边上移动时,折痕的端点P,Q也随着移动.若限定P,Q分别在边BA,BC上移动,则点E在边AD上移动的最大距离为()A.6B.7C.8D.96.(2020·无锡模拟)如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PK//BC,且PK=2,若∠CBK的度数最大时,则BK长为()A.6B.2√5C.2√10D.4√27.(2020·镇江模拟)如图,已知P是半径为3的⊙A上一点,延长AP到点C,使AC=4,以AC为对角线作▱ABCD,AB=4 √3,⊙A交边AD于点E,当▱ABCD面积为最大值时,EP⌢的长为()A.12πB.πC.32πD.3π8.(2020·泰兴模拟)如图,直线l与⊙O相切于点A,M是⊙O上的一个动点,MH⊥l,垂足为H.若⊙O的半径为1,则MA-MH的最大值为()A.12B.13C.14D.159.(2020·如皋模拟)如图,矩形ABCD中,AB=2,AD=3.E,F分别是AD,CD上的动点,EF=2.Q是EF的中点,P为BC上的动点,连接AP,PQ.则AP+PQ的最小值等于()A.2B.3C.4D.510.(2019·丹阳模拟)如图,已知⊙C的半径为3,圆外一点O满足OC=5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值()A.2B.4C.5D.611.(2020·鼓楼模拟)如图,△ABC中,∠BAC=45°,∠ABC=60°,AB=4,D是边BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,则弦EF长度的最小值为()A.√3B.√6C.2 √2D.2 √3 12.(2020·张家港模拟)如图,已知A,B两点的坐标分别为(8,0),(0,8),点C,F分别是直线x=−5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当ΔABE面积取得最小值时,tan∠BAD的值是()A.817B.4√217C.4√213D.71713.(2020·苏州模拟)如图,正方形ABCD的边长为1,点P为BC上任意一点(可与点B或C重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是()A.1B.√2C.√3D.√514.(2020·无锡模拟)如图,正方形ABCD中,AB=2,E是BC中点,CD上有一动点M,连接EM、BM,将的最小值为()ΔBEM沿着BM翻折得到ΔBFM.连接DF、CF,则DF+12FCA.52B.83C.94D.125二、填空题15.(2020·苏州模拟)如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是BC⏜上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.16.(2020·扬州模拟)已知点A、B是半径为2的⊙O上两点,且∠BOA=120°,点M是⊙O上一个动点,点P是AM的中点,连接BP,则BP的最小值是.17.(2020·昆山模拟)如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作平行四边形MCNB,连接MN,则MN的最小值是18.(2020·南京模拟)如图,矩形ABCD中,AB=3,BC=4,点E是A边上一点,且AE=√3,点F 是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD 的面积的最小值为.19.(2020·徐州模拟)如图,在矩形ABCD中,AB=6,AD=8,点E在AD边上,且AE:ED=1:3,动点P从点A出发,沿AB运动到点B停止,过点E作EF⊥PE,交射线BC于点F,设M是线段EF 的中点,则在点P运动的整个过程中,点M运动路线的长为.20.(2020·苏州模拟)如图,折线AB−BC中,AB=3,BC=5,将折线AB−BC绕点A按逆时针方向旋转,得到折线AD−DE,点B的对应点落在线段BC上的点D处,点C的对应点落在点E处,连接CE,若CE⊥BC,则tan∠EDC=°.21.(2020·扬州模拟)如图,在平面直角坐标系中,A(1,√3),B(2,0),C点在x轴上运动,过点O作直线AC的垂线,垂足为D.当点C在x轴上运动时,点D也随之运动.则线段BD长的最大值为.22.(2020·镇江模拟)如图,在RtΔABC中, ∠ACB=90°,AC=10,BC=5,将直角三角板的直角顶点与AC边的中点P重合,直角三角板绕着点P旋转,两条直角边分别交AB边于M,N,则MN的最小值是.23.(2020·宜兴模拟)如图,已知⊙O的半径是2,点A,B在⊙O上,且∠AOB=90°,动点C在⊙O 上运动(不与A,B重合),点D为线段BC的中点,连接AD,则线段AD的长度最大值是.24.(2020·太仓模拟)如图所示,等边△ABC的边长为4,点D是BC边上一动点,且CE=BD,连接AD,BE,AD与BE相交于点P,连接PC.则线段PC的最小值等于.25.(2020·惠山模拟)在Rt△ABC中,∠ABC=90°,AB=8,BC=4.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.26.(2020·淮安模拟)如图,正方形ABCD的边长为2,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.27.(2020·江阴模拟)如图,等边△AOB,点C是边AO所在直线上的动点,点D是x轴上的动点,在矩形CDEF中,CD=6,DE= √3,则OF的最小值为.28.(2020·灌南模拟)如图,在ΔABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是.29.(2019·崇川模拟)如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.三、综合题30.(2021·泰州模拟)如图,在▱ABCD 中,AB =5,BC =10,sinB =45,点P 以每秒2个单位长度的速度从点B 出发,沿着B→C→D→A 的方向运动到点A 时停止,设点P 运动的时间为ts.(1)连接AC ,判断△ABC 是否是直角三角形,试说明理由;(2)在点P 运动的过程中,若以点C 为圆心、PC 长为半径的⊙C 与AD 边相切,求t 的值;(3)在点P 出发的同时,点Q 以每秒1个单位长度的速度从点C 出发,沿着C→D→A 的方向运动,当P 、Q 中的一点到达终点A 时,另一点也停止运动.求当BP ⊥CQ 时t 的值.31.(2021·扬州模拟)如图,在矩形ABCD 中,AB =6,BC =8,点E 是AD 边上的动点,将矩形ABCD 沿BE 折叠,点A 落在点A′处,连接A′C 、BD.(1)如图1,求证:∠DE A′=2∠ABE ;(2)如图2,若点A′恰好落在BD 上,求tan ∠ABE 的值;(3)若AE =2,求S △A′CB .(4)点E 在AD 边上运动的过程中,∠A′ CB 的度数是否存在最大值,若存在,求出此时线段AE 的长;若不存在,请说明理由.32.(2020·无锡模拟)在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图1,现有矩形纸片ABCD,AB=8cm,AD=6cm.连接BD,将矩形ABCD沿BD剪开,得到△ABD 和△BCE.保持△ABD位置不变,将△BCE从图1的位置开始,绕点B按逆时针方向旋转,旋转角为α(0°≤α<360°).在△BCE旋转过程中,边CE与边AB交于点F.(1)如图2,将图1中的△BCE旋转到点C落在边BD上时,CF=;(2)继续旋转△BCE,当点E落在DA延长线上时,求出CF的长;(3)在△BCE旋转过程中,连接AE,AC,当AC=AE时,直接写出此时α的度数及△AEC的面积.33.(2020·常州模拟)如图,△ABC中,∠ACB=90∘,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x的函数解析式,写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到OE上点的距离的最小值为8,求⊙E的半径.34.(2020·无锡模拟)如图1,已知:在矩形ABCD中,AB =3√3cm,AD=9cm,点O从A点出发沿AD以acm/s的速度移向点D移动,以O为圆心,2cm长为半径作圆,交射线AD于M(点M在点O右侧).同时点E从C点出发沿CD以√3cm/s的速度移向点D移动,过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为点G.若在整过移动过程中△EFG的直角顶点G 能与点M重合.设运动时间为t(0<t≤3)秒.(1)求a的值;(2)在运动过程中,①当直线FG与⊙O相切时,求t的值;②是否存在某一时刻t,使点G恰好落在⊙O上(异于点M)?若存在,请写出t的值;若不存在,请说明理由.35.(2020·无锡模拟)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm 的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON= √2OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由. 36.(2020·南通模拟)(1)如图,已知△ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE= 12BC.(2)利用第(1)题的结论,解决下列问题:①如图,在四边形ABCD中,AD∥BC,E、F分别是AB、CD的中点,求证:EF∥BC,FE= 12(AD+BC)②如图,在四边形ABCD中,∠A=90°,AB=3 √3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,求EF长度的最大值.37.(2020·南京模拟)如图①,在△ABC中,∠C=90°,AC=15,BC=20,经过点C的⊙O与△ABC 的每条边都相交.⊙O与AC边的另一个公共点为D,与BC边的另一个公共点为E,与AB边的两个公共点分别为F、G.设⊙O的半径为r.(1)(操作感知)根据题意,仅用圆规在图①中作出一个满足条件的⊙O,并标明相关字母;(2)(初步探究)求证:CD2+CE2=4r2;(3)当r=8时,则CD2+CE2+FG2的最大值为;(4)(深入研究)直接写出满足题意的r的取值范围;对于范围内每一个确定的r的值,CD2+CE2+FG2都有最大值,每一个最大值对应的圆心O所形成的路径长为.38.(操作体验)如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点.(1)在图②中,连接P1A,P1B,说明∠AP1B=30°(方法迁移)(1)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°,(不写做法,保留作图痕迹).(2)已知矩形ABCD,BC=2.AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,则m 的取值范围为.(3)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=135°,若点P绕点A逆时针旋转90°到点Q,则PQ的最小值为.39.(1)如图1,点A在⊙O上,请在图中用直尺(不含刻度)和圆规作等边三角形ABC,使得点B、C 都在⊙O上.(2)已知矩形ABCD中,AB=4,BC=m.①如图2,当m=4时,请在图中用直尺(不含刻度)和圆规作等边三角形AEF,使得点E在边BC上,点F在边CD上;②若在该矩形中总能作出符合①中要求的等边三角形AEF,请直接写出m的取值范围. 40.(2020·建邺模拟)(概念认识)若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.(1)(初步思考)若等边△ABC的边长为1,则边BC关联的极限内半圆的半径长为.(2)如图②,在钝角△ABC中,用直尺和圆规作出边BC关联的极限内半圆(保留作图痕迹,不写作法).(3)(深入研究)如图③,∠AOB=30°,点C在射线OB上,OC=6,点Q是射线OA上一动点.在△QOC中,若边OC关联的极限内半圆的半径为r,当1≤r≤2时,求OQ的长的取值范围.。

中考复习专题:动态几何之定值问题探讨

中考复习专题:动态几何之定值问题探讨

20XX年中考复习专题:动态几何之定值问题探讨一、线段(和差)为定值问题:典型例题:例1:已知:在矩形ABCD中,AB=6cm,AD=9cm,点P从点B出发,沿射线BC方向以每秒2cm的速度移动,同时,点Q从点D出发,沿线段DA以每秒1cm的速度向点A方向移动(当点Q到达点A时,点P与点Q同时停止移动),PQ交BD于点E.求证:在点P、Q的移动过程中,线段BE的长度保持不变.例2:如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C,顶点坐标为P.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.练习题:1.如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A 运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA 于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.(1)求证:△PQE∽△PMF;(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.2、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2) (3)3、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.4、已知:A、B、C不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;ii)如图二,当∠A为锐角时,求证sin∠A= BC2R;(2).若定长线段....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.二、面积(和差)为定值问题:典型例题:例1:如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC边的中点,AB=4,∠B=60°,(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN∥AB交线段AD于点N,连接PN、探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.例2:如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P 从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C 出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同2.时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?练习题:1.如图1,在△ABC 中,AB=AC=5,BC=6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG=3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是 .2.如图2,在矩形ABCD 中,AD=5,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 _________ .图1 图23.如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =+交折线OAB 于点E 。

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .

又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

中考数学压轴题策略之动态几何问题

中考数学压轴题策略之动态几何问题

中考数学压轴题策略之动态几何问题面对中考,考生看待考试需坚持往常心态,温习时仍要按知识点、题型、易混易错的效果停止梳理,不时总结,不时反思,从中提炼最正确的解题方法,进一步提高解题才干。

下文预备了静态几何效果的解题战略的内容。

解这类效果的基本战略是:
1.动中觅静:这里的〝静〞就是效果中的不变量、不变关系,动中觅静就是在运动变化中探求效果中的不变性.
2.动态互化:〝静〞只是〝动〞的瞬间,是运动的一种特殊方式,动态互化就是抓住〝静〞的瞬间,使普通情形转化为特殊效果,从而找到〝动〞与〝静〞的关系.
3.以动制动:以动制动就是树立图形中两个变量的函数关系,经过研讨运动函数,用联络开展的观念来研讨变化元素的关系.
总之,处置静态几何效果的关键是要擅长运用运动与变化的目光去观察和研讨图形,掌握图形运动与变化的全进程,抓住变化中的不变,以不变应万变。

详细做法是:
①片面阅读标题,了解运动的方式与方式,全方位调查运动中的变与变的量及其位置关系;
②运用分类讨论思想,将在运动进程中招致图形实质发作变化的各种时辰的图形分类画出,变〝动〞为〝静〞;
③在各类〝静态图形〞中运用相关的知识和方法(如方程、相似等)停止探求,寻觅各个相关几何量之间的关系,树立相应的数学模型停止求解。

另外,需求强调的是此类题型普通终点低,第一步往往是一个十分复杂的效果,考生普通都能拿分,但恰恰是这一步效果的解题思想和方法是此题基本的做题思想和方法,是特殊到普通数学思想和方法的详细运用,所以考生在处置第一步时不只要准确计算出答案,更重要的是明白此题的方法和思绪。

九年级数学专题复习:动态几何中的“点动型”问题

九年级数学专题复习:动态几何中的“点动型”问题

九年级数学专题复习————动态几何题中的“点动型”问题分析一、知识点回顾1、相似三角形的一些基本图形:A字型共角型共角共边型X型蝴蝶型母子相似图∠1=∠2=∠3型2、垂直平分线的性质:垂直平分线上的点的距离相等。

3、平行四边形的性质:平行四边形的对角线。

4、矩形的定义:有的平行四边形是矩形。

5、菱形的判定:对角线的平行四边形是菱形。

6、二次函数y=ax2+bx+c(a>0),当x=时,y有最小值,y最小值=。

若a>0,当x=时,y有最大值,y最大值=。

7、一元二次方程ax2+bx+c=0(a≠0),当b2-4ac 0时,方程有2个不相等的实数根;当b2-4ac 0时,方程有2个相等的实数根;当b2-4ac 0时,方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的求根公式是。

8、两圆⊙O1、⊙O2的半径分别为R、r,若两圆外切,则O1 O2 、R、r的关系是。

9、二、强化训练:1、写出图中相似三角形的成比例的边:2、在平面直角坐标系中,有一点A(3,4),在x轴上取一点P,使△OAP是等腰三角形,这样的点P有个。

直接写出P点坐标。

三、综合提升:如图,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,速度为2cm /s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:(1)用含有t的代数式表示AP= 。

(2)当t为何值时,PQ平分△ABC的周长。

(3)当t为何值时,PQ∥BC.(4)当t为何值时,PQ⊥BC.(5)当t为何值时,△APQ为直角三角形。

(当t为何值时,△APQ与△ABC相似。

)(6)当t为何值时,△APQ为等腰三角形。

(7)当t为何值时,点P在CQ的垂直平分线上。

(8)以AQ、P Q为边作平行四边形AQPD,连接DQ,交AB于点E.①当t为何值时,平行四边形AQPD为矩形.并求出此时矩形的面积。

九年级数学中考专题:动态几何综合压轴题

九年级数学中考专题:动态几何综合压轴题

2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。

2023年中考数学高频考点训练——反比例函数-动态几何问题

2023年中考数学高频考点训练——反比例函数-动态几何问题

2023年中考数学高频考点训练——反比例函数-动态几何问题一、综合题1.如图1,在平面直角坐标系中,直线AB 与反比例函数(0)ky x x =>的图象交于点A (1,3)和点B (3,n),与x 轴交于点C ,与y 轴交于点D .(1)求反比例函数的表达式及n 的值;(2)将△OCD 沿直线AB 翻折,点O 落在第一象限内的点E 处,EC 与反比例函数的图象交于点F .①请求出点F 的坐标;②在x 轴上是否存在点P ,使得△DPF 是以DF 为斜边的直角三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2.如图,一次函数y =﹣x +4的图象与反比例ky x =(k 为常数,且k ≠0)的图象交于A (1,a ),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)①在x 轴上找一点P ,使P A +PB 的值最小,求满足条件的点P 的坐标;②在x 轴上找一点M ,使|MA ﹣MB |的值为最大,直接写出M 点的坐标.3.如图,在平面直角坐标系xOy 中,直线l :y =kx ﹣1(k≠0)与函数y mx =(x >0)的图象交于点A (3,2).(1)求k ,m 的值;(2)将直线l 沿y 轴向上平移t 个单位后,与y 轴交于点C ,与函数y mx =(x >0)的图象交于点D .①当t =2时,求线段CD 的长;②若≤CD≤2,结合函数图象,直接写出t 的取值范围.4.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y =kx (x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.5.在平面直角坐标系xOy 中,反比例函数(0)ky k x =≠的图象过点(23)A ,.(1)求k 的值;(2)过点(0)(0)P m m ≠,作x 轴的垂线,分别交反比例函数(0)ky k x =≠,4y x=-的图象于点M ,N .①当2m =-时,求MN 的长;②若5MN ≥,直接写出m 的取值范围.6.如图,已知直线OA 与反比例函数(0)my m x =≠的图像在第一象限交于点A .若4OA =,直线OA 与x 轴的夹角为60°.(1)求点A 的坐标;(2)求反比例函数的解析式;(3)若点P 是坐标轴上的一点,当AOP 是直角三角形时,直接写出点P 的坐标.7.(1)探究新知:如图1,已知ABC 与ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:如图2,点M ,N 在反比例函数(0)ky k x =>的图象上,过点M作ME y ⊥轴,过点N 作NF x ⊥轴,垂足分别为E ,F .试证明://MN EF .(3)拓展延伸:若(2)中的其他条件不变,只改变点M ,N 在反比例函数(0)ky k x =>图象上的位置,如图3所示,MN 与x 轴、y 轴分别交于点A 、点B ,若3BM =,请求AN 的长.8.如图,在第一象限内有一点A (4,1),过点A 作AB ⊥x 轴于B 点,作AC ⊥y 轴于C 点,点N 为线段AB 上的一动点,过点N 的反比例函数y =nx 交线段AC 于M 点,连接OM ,ON ,MN .(1)若点N 为AB 的中点,则n 的值为;(2)求线段AN 的长(用含n 的代数式表示);(3)求△AMN 的面积等于14时n 的值.9.如图,直线26y x =+与反比例函数()0ky k x =>的图象交于点()1A m ,,与x 轴交于点B .平行于x 轴的直线()08y n n =<<交反比例函数的图象于点M ,交AB 于点N ,连接BM .(1)求m 的值和反比例函数的表达式;(2)当n 为何值时,BMN 的面积最大?10.已知正比例函数y 1=ax 的图象与反比例函数y 2=6ax -的图象交于A ,B 两点,且A 点的横坐标为﹣1.(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答,当x 取何值时,反比例函数的值大于正比例函数的值.(3)点M (m ,n )是反比例函数图象上一动点,其中0<n <3,过点M 作MD ∥y 轴交x 轴于点D ,过点B 作BC ∥x 轴交y 轴于点C ,交直线MD 于点E ,当四边形OMEB 面积为3时,请判断DM 与EM 大小关系并给予证明.11.如图,将一张Rt ABC 纸板的直角顶点放在(2,1)C 处,两直角边BC ,AC 分别与x ,y 轴平行(BC AC >),纸板的另两个定点A ,B 恰好是直线15y kx =+与双曲线2m y x =(0)m >的交点.(1)求m 和k 的值;(2)将此Rt ABC 纸板向下平移,当双曲线2my x =(0)m >与Rt ABC 纸板的斜边所在直线只有一个公共点时,求Rt ABC 纸板向下平移的距离.12.在矩形AOBC 中,分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(03),,B 点坐标为(40),,F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数0)y x=>的图象与AC 边交于点E ,连接OE OF ,,作直线EF .(1)若2CF =,求反比例函数解新式;(2)在(1)的条件下求出EOF 的面积;(3)在点F 的运动过程中,试说明ECFC 是定值.13.如图,在平面直角坐标系xOy 中,双曲线y 1=kx 与直线y 2=mx +n 交于点A ,E ,AE 交x 轴于点C ,交y 轴于点D ,AB x ⊥轴于点B ,C 为OB 中点.若D 点坐标为(0,﹣2),且S △AOD =4(1)求双曲线与直线AE 的解析式;(2)写出E 点的坐标;(3)观察图象,直接写出y 1≥y 2时x 的取值范围.14.如图,在平面直角坐标系xOy 中,反比例函数(0)my x x =>的图像经过点342A ⎛⎫⎪⎝⎭,,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m =,点C 的坐标为;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图象于点E ,求ODE 面积的最大值.15.如图,在平面直角坐标系中,一次函数12y x =-+与反比例函数2(0)k y x x =<相交于点B ,与x 轴相交于点A ,点B 的横坐标为-2.(1)求k 的值;(2)直接写出当0x <且12y y <时,x 的取值范围;(3)设点M 是直线AB 上的一点,过点M 作//MN x 轴,交反比例函数2(0)ky x x =<的图象于点N .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.16.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足0,平行四边形ABCD 的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线ky x =经过C 、D 两点.(1)a=,b=;(2)求D 点的坐标;(3)点P 在双曲线ky x =上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;17.如图,已知直线y=-2x 与双曲线y=kx (k<0)上交于A 、B 两点,且点A 的纵坐标为-2(1)求k 的值;(2)若双曲线y=kx (k<0)上一点C 的纵坐标为12,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)

中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由;
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=

武汉市中考数学复习专题——动态几何问题(含答案)

武汉市中考数学复习专题——动态几何问题(含答案)

武汉市中考数学复习专题——动态几何问题(含答案)春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.第二十七讲动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是.(黄冈市中考题)思路点拨解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置()A .在平分AB 的某直线上移动B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系. 3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”. 【例题求解】【例1】 如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是 .(黄冈市中考题)思路点拨 解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB ′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.(吉林省中考题)思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒). (1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值. (江西省中考题)思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP是否为一定值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由.(济南市中考题)思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.⌒学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字). (济南市中考题) 2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .(黄冈市中考题)3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .23π B .34πC .4D .232π+(烟台市中考题)4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21(荆门市中考题)5.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.(江西省中考题)6.已知:如图,⊙O 韵直径为10,弦AC=8,点B 在圆周上运动(与A 、C 两点不重合),连结BC 、BA ,过点C 作CD ⊥AB 于D .设CB 的长为x ,CD 的长为y . (1)求y 关于x 的函数关系式;当以BC 为直径的圆与AC 相切时,求y 的值; (2)在点B 运动的过程中,以CD 为直径的圆与⊙O 有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B 运动的过程中,如果过B 作BE ⊥AC 于E ,那么以BE 为直径的圆与⊙O 能内切吗?若不能,说明理由;若能,求出BE 的长.(太原市中考题)7.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移移动.设OM=x ,ON= (y >x ≥0),ΔAOM 的面积为S ,若cos α、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量x 的取值范围; (4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.(河北省中考题)8.已知:如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C =60°,BD ⊥CD . (1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.(青岛市中考)9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.(福建省三明市中考题)10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙O 1.(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.(武汉市中考题)参考答案。

中考数学专题:《动态动点几何问题》带答案

中考数学专题:《动态动点几何问题》带答案

《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。

初三数学专题复习之动态几何

初三数学专题复习之动态几何

初三数学专题复习之动态几何知识精讲一.与函数结合动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们一般用以下几种方法建立函数:(1)应用勾股定理建立函数解析式;(2)应用比例式建立函数解析式;(3)应用求图形面积的方法建立函数关系式.二.动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值.动态几何常见的题型有三大类:(1)点动问题;(2)线动问题;(3)面动问题.解决动态几何问题的常见方法有:(1)特殊探路,一般推证;(2)动手实践,操作确认;(3)建立联系,计算说明.动态几何习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数;2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值.三.双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力,其中以灵活多变而著称的双动点问题更成为今年中考试题的热点.常以双动点为载体,探求函数图象问题、探求结论开放性问题、探求存在性问题、探求函数最值问题.双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.三点剖析一.考点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.二.重难点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.题模精讲题模一:三角形与动点问题例1.1如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.【答案】(1)①②2【解析】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴,∴此时例1.2以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接①如图1,当点D、C分别在AO、BO;②如图2,将图1中的△AOB绕点O(2)如图3N在线段OD P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.【答案】(12【解析】该题考查旋转与相似.(1)①连接EF,∵点E、F、M分别是AC、CD、DB的中位线,∴EF、FM分别是△ACD和△DBC的中位线,∴EF//AD,FM//CB,∴△EFM是直角三角形∵EM//CD.连接EF、AD、BC.(如图8)∵Rt△AOB∵Rt△COD∴△AOD∽△BOC.∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,FM∥CB∵在Rt△EFM(2)过O E,∴当点P在点E处时,点P到O这时当旋转到OE与OD重合时,NP当点P在点B处时,且当旋转到OB在DO的延长线时,NP例 1.3在△ABC中将△ABC绕顶点C顺时针旋转,旋转角''.A B C(1)如图1AC时,设AB相交于点D.证明:△BCD是等边三角形;(2)如图2、B B',设比;(3)如图3,设AC 中点为E P EP EP 长度最大,并求出EP 的最大值.【答案】 (1)见解析;(2'':3:1ACA BCB S S=3EP 长度最大,其最大值是【解析】 (1)证明:如图1,∵在△ABCAC ,∴在△CDB∴△BCD 是等边三角形;(2)解:如图2(3)解:如图,连接CP ,当△ABCEP例 1.4 用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P . (1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长;(2)当点P PAB 的度数.探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN .在旋转△DEF 的过程中,△AMN 的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由. 【答案】 见解析【解析】探究一:(1)依题意画出图形,如图所示:FP为角平分线,过点A作AG⊥BC于点G在Rt△APG(2)由(1如图所示,以点ABC过点A过AG⊥BC于点G在Rt△AGP1∴∠P AB的度数为15°或75°.探究二:△AMN的周长存在有最小值.如图所示,连接AD,∵△ABC为等腰直角三角形,点D为斜边BC的中点,∵在△AMD与△CND∴△AMD≌△CND(ASA在Rt△AMN中,由勾股定理得:∴△AMN.∴△AMN例1.5如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C 重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.【答案】(1)t+4)(cm)(2)t=03【解析】(1)∵BD=tcm,DE=4cm,∴BE=BD+DE=(t+4)cm,∵EF∥AC,∴△BEF∽△BCA,∴EF:CA=BE:BC,即EF:10=(t+4):16,解得:t+4)(cm);(2)分三种情况讨论:①如图1,∵当DF=EF时,∴∠EDF=∠DEF,∵AB=AC,∴∠B=∠C,∵EF∥AC,∴∠DEF=∠C,∴∠EDF=∠B,∴点B与点D重合,∴t=0;②如图2,当DE=EF时,则t+4),解得:③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,∴△DEF∽△ABC.解得:综上所述,当t=0DEF为等腰三角形.(3)如图4,设P是AC的中点,连接BP,∵EF∥AC,∴△FBE∽△ABC.又∵∠BEN=∠C,∴△NBE∽△PBC,∴∠NBE=∠PBC.∴点B,N,P共线,∴点N沿直线BP运动,MN也随之平移.如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.∵M、N分别是DF、EF的中点,∴MN∥DE,且.分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,∵当t=0时,0+4)∠当t=12时,EF=AC=10,•sin∠10.∴PR=PL﹣RL=PL﹣TK=3∴S平行四边形PQST=ST•PR=2∴整个运动过程中,MN2.题模二:四边形与动点问题例2.1如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连结AM、CM.(1)当M点在何处时,AM+CM的值最小;(2)当M点在何处时,AM+BM(3)当AM+BM+CM【答案】(1)见解析(2)见解析(3【解析】该题考查的是四边形综合.(1)当M点落在BD……………………………1分(2)如图,连接CE,当M点位于BD与CE……………………………2分理由如下:∵M是正方形ABCD对角线上一点∴△ABM≌△CBM分EC上取一点N BN∴△BNE≌△ABM……………………3分∴△BMN是等边三角形.分根据“两点之间线段最短”∴当M点位于BD与CE EC的长.……………………………5分(3)过E CB的延长线于F设正方形的边长为x分在Rt△EFC中,……………………………7分1B关于直线AC的对称点是点D,点E为射线CA上一点,且DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D顺时针旋转αE C②如图3,点为中点,点PM长度的取值范围?【答案】(1)如图1,证明见解析;(2【解析】(1)补全图形,如图1所示;证明:由题意可知:射线CA垂直平分BD∴△EBD是等边三角形(2)①证明:如图2又∵点C与点F关于BD对称∴四边形BCDF为正方形,由(1)△BDE为等边三角形∴△EDF SAS)②线段PM设射线CA交BD于点O,I:如图3(1)DC,MP D、M、P、C共线时,PM有最小值II:如图3(2)当点P P、D、M、C共线时,PM有最大值.∴线段PM例2.3如图1,在菱形ABCD中,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=___秒时,DF的长度有最小值,最小值等于___;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.【答案】(1)见解析(2),12(3)6秒和(4)﹣12【解析】分析:(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得(4)连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,证△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得∠CGN=∠DCN=∠CNG知tan∠ABC=tan∠CGN=2可得,由GF=DE=t得FM=t﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴则AE′=6∴,DF=BE′=12,故答案为:,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴∴(4)﹣12如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴∵tan∠ABC=tan∠CGN=2,∴GN=12,∴,∵GF=DE=t,∴FM=t﹣12,∵tan∠FMH=tan∠ABC=2,∴t﹣12),即﹣12例2.4在正方形ABCD中,点E是对角线AC的中点,点F在边CD上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接EG,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接FH,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生改变?若不改变,求出∠EGH的度数;若发生改变,请说明理由.【答案】(1(2)答案见解析(3)不改变,∠EGH=45°【解析】(1)解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADF=∠BCD=90°,∠DAC=∠ACB=∠ACD=45°,∵DG是△ADF的中线,DG=2.5,∴AF=2DG=5,∴,∴CF=CD﹣DF=1,∵点E是对角线AC的中点,G是AF的中点,∴EG是△ACF的中位线,∴(2)证明:延长DH交BC于M,如图所示,∵DG⊥AF,∴∠AGH=∠DGA=∠DGF=90°,∴∠AFD+∠FDG=90°,∵∠DMC+∠FDG=90°,∴∠AFD=∠DMC,在△CDM和△DAF∴△CDM≌△DAF(AAS),∴CM=DF,∵点F是CD的中点,∴DF=CF,∴CM=CF,在△CMH和△CFH,∴△CMH≌△CFH(SAS),∴∠CMH=∠CFH,∴∠CFH=∠AFD;(3)解:∠EGH的大小不发生改变,∠EGH=45°;理由如下:∵点E是对角线AC的中点,∠ADC=90°,∴,∴∠ADE=∠DAC=45°,∴∠AED=90°=∠AGD,∴A、D、G、E四点共圆,∴∠AGE=∠ADE=45°,∴∠EGH=90°﹣45°=45°.例2.5如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D 同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=______cm,AB与CD之间的距离为______cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.【答案】(1)5(2)(3)满足条件的x【解析】(1)∵菱形ABCD中,AC=6cm,BD=8cm,∴AC⊥BD,∴,设AB与CD间的距离为h,∴△ABC的面积,又∵△ABC的面积菱形ABCD6×8=12,,∴(2)设∠CBD=∠CDB=θ,则易得:①当4≤x≤5时,如答图1﹣1所示,此时点Q与点O重合,点P在线段BC上.∵PB=x,∴PC=BC﹣PB=5﹣x.过点P作PH⊥AC于点H,则5﹣x).∴y=S△APQ35﹣x)=;②当5<x≤9时,如答图1﹣2所示,此时点Q在线段OB上,点P在线段CD上.PC=x﹣5,PD=CD﹣PC=5﹣(x﹣5)=10﹣x.过点P作PH⊥BD于点H,则10﹣x).∴y=S△APQ=S菱形ABCD﹣S△ABQ﹣S四边形BCPQ﹣S△APD=S菱形ABCD﹣S△ABQ﹣(S△BCD﹣S△PQD)﹣S△APD×h6×89﹣x)×3﹣8×3x﹣1)10﹣x)]10﹣x=2③当9<x≤10时,如答图1﹣3所示,此时点Q与点B重合,点P在线段CD上.y=S△APQ×5.综上所述,当4≤x≤10时,y与x之间的函数解析式为:(3)有两种情况:①若PQ∥CD,如答图2﹣1所示.此时BP=QD=x,则BQ=8﹣x.∵PQ∥CD,∴②若PQ∥BC,如答图2﹣2所示.此时PD=10﹣x,QD=x﹣1.∵PQ∥BC,∴综上所述,满足条件的x随堂练习随练1.1在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)(2(3【解析】(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴′O′∴∴O(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把OC(0,﹣3∴直线O′C的解析式为﹣3,当y=0﹣3=0,解得P0),∴∴O′P′作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′′P′P′′∴DH=O′H﹣O′∴P随练1.2如图,在四边形ABCD M为对角线BD(不含点B)上任意一点,△ABE是等边三角形,将绕点逆时针旋转60°得到,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2②当点M【答案】(1)见解析;(2)连接AC,当点M位于BD与AC3)当点M位于BD、CE EC的长.理由见解析【解析】(1)∵△ABE是等边三角形,在△AMB和△ENB中,∴△AMB≌△ENB(SAS);(2)①根据“两点之间线段最短”,连接AC,当点M位于BD与AC②连接CE,当点M位于BD、CE理由如下:如图,连接CE交BD于点M,连接AM,在EM上取一点N在△ABD和△CBD中,∴△ABD≌△CBD(SSS),在△EBN和△CBM中,∴△EBN≌△CBM(ASA),∴此时BN由BM绕点B逆时针旋转60°得到,由(1)知:△AMB≌△ENB,∴△BMN是等边三角形,∴根据“两点之间线段最短”可知当点M位于BD、CEEC的长.随练1.3在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】(1)见解析(2(3)6【解析】(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°∵AD=2,∴在Rt△AMG中,根据勾股定理得:,∵,∴(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.随练1.4正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【答案】(12)成立,证明见解析(3【解析】(1………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,∴△ABF≌△CBE.∴∠1=∠2.…………………………………………3分∵EH⊥BF,∠BCE=90°,∴H,C两点都在以BE为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC.∴CH=CB.………………………………………………………………… 5分∴CH=AB.………………………………………………………………… 6分(3………………………………………………………………………7分随练 1.5已知,如图①,在▱ABCD中,AB=3cm,BC=5cm.AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【答案】(1)2)y=3)2;(4)当PQ⊥MQ【解析】如图1,在Rt△ABC中,由勾股定理得:,由平移性质可得MN∥AB;∵PQ∥MN,∴PQ∥AB,解得(2)如图2,作PF⊥BC于点F,AE⊥BC于点E,由S△ABC BC3×5AE,∴则由勾股定理得:∵PF⊥BC,AE⊥BC,∴AE∥PF,∴△CPF∽△CAE,解得:∵PM∥BC,所以M到BC的距离所以,△QCM是面积(3)∵PM∥BC,∴S△PQC=S△MQC,∵S△QMC:S四边形ABQP=1:4,∴S△MQC:S△ABC=1:5,则54×3,t2﹣4t+4=0,解得:t1=t2=2,∴当t=2时,S△QMC:S四边形ABQP=1:4;(4)如图2,∵PQ⊥MQ,∴∠MQP=∠PFQ=90°,∵MP∥BC,∴∠MPQ=∠PQF,∴△MQP∽△PFQ,∴PQ2=PM×FQ,即:PF2+FQ2=PM×FQ,由∴FQ=CF﹣整理得2t2﹣3t=0,解得t1=0(舍),t2答:当PQ⊥MQ.随练1.6如图,矩形ABCD中,AB=4,AD=8,点E、F分别在线段BC、CD上,将△CEF沿EF翻折,点C的落点为M(1)如图1,当 CE=5,M点落在线段AD上时,求MD的长(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△CEF沿EF折叠,①连接BM,△BME是否可以是直角三角形?如果可以,求此时CE的长,如果不可以,说明理由②连接MD,如图3,求四边形ABMD的周长的最小值和此时CE的长【答案】(1)MD的长为2(2)①可以;CE=2②四边形ABMD的周长的最小值为(12),此时CE的长为4【解析】(1)如图1,作EN⊥AD于点N,∴∠ANE=∠ENM=90°.∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,∴∠A=∠B=∠ANE=90°,∴AB=NE=4,AN=BE.∵EC=5,∴BE=3,∴AN=3.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM=5.在Rt△EMN中,由勾股定理,得MN=3,∴MD=8﹣3﹣3=2.答:MD的长为2;(2)①如图2,当∠BME=90°时,∵∠EMF=90°,∴∠BMF=180°,∴B、M、F在同一直线上.∵F是BC的中点,∴.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴MF=CF=2,EC=EM.在Rt△BCF中,由勾股定理,得∴2.设EC=EM=x,则BE=8﹣x,在Rt△BME中,由勾股定理,得(8﹣x)2﹣x2=(2)2,解得:∴如图3,当∠BEM=90°时,∴∠MEC=90°∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,∴四边形ECFM是正方形,∴MF=CE=2.∴CE=2②如图4,∵四边形ABMD的周长最小,∴BM+MD最小,∴B、M、D在同一直线上,∴点M在BD上.连结MC,∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM,FC=FM.∴EF垂直平分MC,∴MG=CG,∴GF是△CDM的中位线,∴FG∥BD,∴BE=CE.∵BC=8,∴CE=4.在Rt△ABD中,由勾股定理,得∴四边形ABMD的周长的最小值为:4+12.答:四边形ABMD的周长的最小值为(12),此时CE的长为4.随练1.7如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)【答案】(1)5(23【解析】(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,∴NM′=11,∵AF∥NE,∴△AFM′∽△NEM′,即△MEF的周长最小;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,∵ME=5,GQ=2,∴四边形MEQG随练1.8边长为2A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交N.(1(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(123)见解析【解析】该题考查的是三角形全等与旋转问题.(12分(2..............................5分(3△≌6分∴△≌.......................................7分∴在旋转正方形的过程中,值无变化............................8分课后作业作业1已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,∠D=∠BOC=120°,∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2,如图1,连接OD,∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,∴∠BOO′=∠OO′A′=180°,∴四点B,O,O′,A′共线,∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O为△ABC的中心,∵四点B,O,O′,A′共线,∴BD⊥AC,∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,∴∴当等边△ABC的边长为1时,OA+OB+OC的最小值作业2几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是____;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC 的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【答案】(12)3)【解析】(1)由题意知:连接ED交AC于点P,此时PB+PE最小,最小值为ED,∵点E是AB的中点,∴AE=1,由勾股定理可知:ED2=AE2+AD2=5,∴∴PB+PE(2)延长AO交⊙O于点D,连接DC,AC,∴AD=4,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AC=OA=2,∵AD是⊙O直径,∴∠ACD=90°,∴由勾股定理可求得:∴PA+PC的最小值为(3)作点C,使得点P与点C关于OB对称,作点D,使得点P与点D关于OA对称,连接OC、OD、CD,CD交OA、OB于点Q、R,此时PR+RQ+PQ最小,最小值为CD的长,∵点P与点C关于OB对称,∴∠BOP=∠COB,OP=OC=10,同理,∠DOA=∠POA,OP=OD=10,∵∠BOP+∠POA=45°,∴∠COD=2(∠BOP+∠POA)=90°,由勾股定理可知:∴△PQR周长的最小值为作业3如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,作正方形MNPQ,使点A、C分别在MQ和MN上,连接AN、BQ.(1)直接写出线段AN和BQ的数量关系是______.(2)将正方形MNPQ绕点M逆时针方向旋转θ(0°<θ≤360°)①判断(1)的结论是否成立?请利用图2证明你的结论;②若BC=MN=6,当θ(0°<θ≤360°)为何值时,AN取得最大值,请画出此时的图形,并直接写出AQ 的值.【答案】(1)BQ=AN(2)【解析】(1)BQ=AN.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,∴AM⊥BC,BM=AM,∴∠AMB=∠AMC=90°.∵四边形PQMN是正方形,∴QM=NM.在△QMB和△NMA中,∴△QMB≌△NMA(SAS),∴BQ=AN.故答案为:BQ=AN;(2)①BQ=AN成立.理由:如图2,连接AM,∵在Rt△BAC中,M为斜边BC中点,∴AM=BM,AM⊥BC,∴∠AMQ+∠QMB=90°.∵四边形PQMN为正方形,∴MQ=NM,且∠QMN=90°,∴∠AMQ+∠NMA=90°,∴∠BMQ=∠AMN.在△BMQ和△AMN中,∴△BMQ≌△AMN(SAS),∴BQ=AN;②由①得,BQ=AN,∴当BQ取得最大值时,AN取得最大值.如图3,当旋转角θ=270°时,BQ=AN(最大),此时∠AMQ=90°.∵BC=MN=6,M是BC的中点,∴MQ=6,,∴在Rt△AMQ中,由勾股定理得作业4(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于_________时,线段AC的长取得最大值,且最大值为_________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上;a+b(2)见解析(3)见解析【解析】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵∴最大值为;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴∴OE=BO3=2∴P(2作业5(1(2等方法判断(1DEFG绕点D的值.【答案】(1)垂直且相等(2【解析】(1)如图(1),∵△ABC D是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),延长EA到BG于一点M∴线段BG和AE相等且垂直;(2)成立,如图(2),延长EA分别交DG、BG∵△ABCD是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),BG⊥AE(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG 最大,如图(3),在Rt△AEFDEFG旋转过程中,当AE作业6如图1,已知B点坐标是(6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.(1)点M的坐标是(____,____),DE=____;(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G 两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?【答案】(1)(2),8(23【解析】∵点B的坐标为(6),∴tan∠∴∠BOA=30°.∵在Rt△EOD中,点M是ED的中点,∴∴∠MDO=∠BOA=30°,∵BD⊥ED,∴∠EDB=90°.∴∠EDO+∠BDA=90°.∵∠BDA+∠DBA=90°,∴∠EDO=∠DBA=30°∴AD=AB•tan30°=6∴∴OE=ODtan30°.∵M是DE的中点,∴点M的坐标为(2).∴DE=8.(2)根据题意画出点P、点Q运动的轨迹.D的运动时间秒;点F运动的时间=6÷1=6秒;∵点P是BD的中点,∴点P P的坐标为(3),P1的坐标为(1)∴PP1P1P2P点运动的路线长PP1+P1P2=5;∵M是DE的中点,∠EOD=90°∴∴点M运动的路线为弧ME.∵∠BOA=30°,∴∠EOM=60°.∴点M运动的路线长∵GH=DE,∴点G(3)∵点P、Q分别为FG和GH的中点,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011中考冲刺数学专题9——动态几何问题【备考点睛】动态几何问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究。

对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用。

动态几何问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中。

动态几何问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形、四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想。

【经典例题】类型一、利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程。

例题1 如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解答:(1)①∵1t =秒,∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点,∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米,∴835PC =-=厘米,∴PC BD =.又∵AB AC =,∴B C ∠=∠,∴BPD CQP △≌△. ②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠, 则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒 ,∴515443Q CQ v t===厘米/秒.(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104x x=+⨯,解得803x=秒.∴点P共运动了803803⨯=厘米.∵8022824=⨯+,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.例题2 如图,在梯形ABCD中,3AD BC AD=∥,,5DC=,42AB=,45B=︒∠.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C 点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长.(2)当MN AB∥时,求t的值.(3)试探究:t为何值时,MNC△为等腰三角形.解答:(1)如图①,过A、D分别作AK BC⊥于K,DH BC⊥于H,则四边形ADHK是矩形∴3KH AD==.在Rt ABK△中,2sin454242AK AB=︒==g.2cos45424BK AB=︒==g g,在Rt CDH△中,由勾股定理得,22543HC-=∴43310BC BK KH HC=++=++=(2)如图②,过D作DG AB∥交BC于G点,则四边形ADGB是平行四边形∵MN AB∥∴MN DG∥∴3BG AD==∴1037GC=-=由题意知,当M、N运动到t秒时,102CN t CM t==-,.∵DG MN∥∴NMC DGC=∠∠又C C=∠∠∴MNC GDC△∽△∴CN CMCD CG=即10257t t-=解得,5017t=(3)分三种情况讨论:①当NC MC=时,如图③,即102t t=-∴103t=②当MN NC=时,如图④,过N作NE MC⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t==-=-(图①)A DCB KH(图②)A DCBG MN在Rt CEN △中,5cos EC t c NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t =解法二:∵90C C DHC NEC =∠=∠=︒∠∠,∴NEC DHC △∽△ ∴NC EC DC HC =即553t t -=∴258t = ③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025t FC C MC t ===-解得6017t = 解法二: ∵90C C MFC DHC =∠=∠=︒∠∠,∴MFC DHC △∽△∴FC MC HC DC =即1102235t t-=∴6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形例题3 (湖北武汉) 如图,拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (2,23)两点,与x 轴交于另一点B ;(1) 求此拋物线的解析式;(2) 若拋物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45︒,设线段OP =x ,MQ =22y 2,求y 2与x 的函数关系式,并直接写出自变量x 的取值范围;(3) 在同一平面直角坐标系中,两条直线x =m ,x =n 分别 与拋物线交于点E ,G ,与(2)中的函数图像交于点F ,H 。

问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的 数量关系;若不能,请说明理由。

解答: (1) ∵拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (0,23)两点, ∴⎪⎩⎪⎨⎧==++2302b b a a ,∴a = -21,b =23, A D CBMN(图③)(图④)A D C BM NH E(图⑤) A D CBH N MF∴拋物线的解析式为y 1= -21x 2+x +23。

(2) 作MN ⊥AB ,垂足为N 。

由y 1= -21x 2+x +23易得M (1,2), N (1,0),A (-1,0),B (3,0),∴AB =4,MN =BN =2,MB =22, ∠MBN =45︒。

根据勾股定理有BM 2-BN 2=PM 2-PN 2。

∴(22)2-22=PM 2= -(1-x )2… ,又∠MPQ =45︒=∠MBP , ∴△MPQ ~△MBP ,∴PM 2=MQ ⨯MB =22y 2⨯22… 。

由 、 得y 2=21x 2-x +25。

∵0≤x <3, ∴y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3)。

(3) 四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是m +n =2(0≤m ≤2,且m ≠1)。

∵点E 、G 是抛物线y 1= -21x 2+x +23 分别与直线x=m ,x=n 的交点,∴点E 、G 坐标为 E (m ,-21m 2+m +23),G (n ,-21n 2+n +23)。

同理,点F 、H 坐标为F (m ,21m 2-m +25),H (n ,21n 2-n +25)。

∴EF =21m 2-m +25-(-21m 2+m +23)=m 2-2m +1,GH =21n 2-n +25-(-21n 2+n +23)=n 2-2n +1。

EFHG 是平行四边形,EF =GH 。

∴m 2-2m +1=n 2-2n +1,∴(m +n -2)(m -n )=0。

由题意知m ≠n ,∴m +n =2 (0≤m ≤2,且m ≠1)。

因此,四边形EFHG 可以为平行四边形,m 、n 之间的数量关系是m +n =2 (0≤m ≤2,且m ≠1)。

例题4 如图,在矩形ABCD 中,BC =20cm ,P ,Q ,M ,N 分别从A ,B ,C ,D 出发沿AD ,BC ,CB ,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ =x cm(0x ≠),则AP =2x cm ,CM =3x cm ,DN =x 2cm . (1)当x 为何值时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.解答:(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,212220211211x x x x +===-由,得,(舍去).OE F GH xy因为BQ +CM =34(211)20x x +=-<,此时点Q 与点M 不重合. 所以211x =-符合题意. ②当点Q 与点M 重合时,320,5x x x +==由得.此时22520DN x ==>,不符合题意. 故点Q 与点M 不能重合.所以所求x 的值为211-.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由220(3)20(2)x x x x -+=-+, 解得120()2x x ==舍去,.当x =2时四边形PQMN 是平行四边形.②当点P 在点N 的右侧时,由220(3)(2)20x x x x -+=+-,解得1210()4x x =-=舍去,.当x =4时四边形NQMP 是平行四边形.所以当24x x ==或时,以P ,Q ,M ,N 为顶点的四边形是平行四边形. (3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F . 由于2x >x ,所以点E 一定在点P 的左侧.若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF ,即223x x x x -=-.解得120()4x x ==舍去,.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形, 所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形.类型二、根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题例题5 已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.解答:(1)过点C 作CD AB ⊥,垂足为D .则2AD =,当MN 运动到被CD 垂直平分时,四边形MNQP 是矩形,即32AM =时, 四边形MNQP 是矩形,32t ∴=秒时,四边形MNQP 是矩形.tan 60PM AM =Q °=MNQP S ∴=四边形(2)1°当01t <<时,1()2MNQP S PM QN MN =+四边形·2=+2°当12t ≤≤时,1()2MNQP S PM QN MN =+四边形·= 3°当23t <<时,1()2MNQP S PM QN MN =+四边形·= 点评:此题关键也是对P 、Q 两点的不同位置进行分类。

相关文档
最新文档