基本不等式2
2018-2019学年高中数学 第一章 不等式的基本性质和证明的基本方法 1.2 基本不等式(二
1.2 基本不等式(二)1.理解定理3、定理4,会用两个定理解决函数的最值或值域问题.2.能运用三个正数的平均值不等式解决简单的实际问题.自学导引1.当a 、b 、c ∈R +时,a +b +c3≥3abc a =b =c 时,等号成立,称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a 、b 、c 的几何平均值. 2.如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥na 1a 2…a n a 1=a 2=…=a n时,等号成立.基础自测1.设a 、b 、c ∈R ,下列各不等式中成立的是( ) A.a 2+b 2≥2|ab | B.a +b ≥2ab C.a 3+b 3+c 3≥3abcD.a +b +c3≥3abc解析 由a 2+b 2-2|ab |=|a |2-2|ab |+|b |2=(|a |-|b |)2≥0,故选A. 答案 A2.函数y =x 2·(1-5x )⎝ ⎛⎭⎪⎫0≤x ≤15的最大值为( )A.4675 B. 2657 C.4645D.2675解析 由y =x 2·(1-5x )=425·52x ·52x (1-5x ) ≤425⎝⎛⎭⎪⎪⎫52x +52x +1-5x 33=4675.答案 A3.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________. 解析 利用不等式求解.因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63,所以a max =63. 答案63知识点1 利用平均值不等式证明不等式 【例1】 已知a 、b 、c ∈R +,且a +b +c =1. 求证:1a +b +1b +c +1c +a ≥92. 证明 a +b +c =1⇒(a +b )+(b +c )+(c +a )=2, [(a +b )+(b +c )+(c +a )]⎝⎛⎭⎪⎫1a +b +1b +c +1c +a≥33(a +b )(b +c )(c +a )·313(a +b )(b +c )(c +a )=9⇒1a +b +1b +c +1c +a ≥92. ●反思感悟:认真观察要证的不等式的结构特点,灵活利用已知条件构造出能利用平均值不等式的式子.1.证明(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92(a ,b ,c ∈R +).证明 ∵(a +b )+(b +c )+(c +a ) ≥33(a +b )(b +c )(c +a ),1a +b +1b +c +1a +c ≥331a +b ·1b +c ·1a +c , ∴(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1a +c ≥92.当且仅当a =b =c 时,等号成立.知识点2 利用平均值不等式求最值【例2】 若正数a ,b 满足ab =a +b +3,求ab 的取值范围. 解 方法一:∵a 、b ∈R +,且ab =a +b +3≥333ab , ∴a 3b 3≥81ab .又ab >0,∴a 2b 2≥81. ∴ab ≥9(当且仅当a =b 时,取等号). ∴ab 的取值范围是[9,+∞). 方法二:∵ab -3=a +b ≥2ab , ∴ab -2ab -3≥0且ab >0,∴ab ≥3,即ab ≥9(当且仅当a =b 时取等号) ∴ab 的取值范围是[9,+∞).●反思感悟:注意平均值不等式应用的条件是三个正数在求最值时,一定要求出等号成立时未知数的值,如果不存在使等号成立的未知数的值,则最值不存在.2.求y =sin x cos 2x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最大值.解 ∵x ∈⎝⎛⎭⎪⎫0,π2,∴sin x >0,y >0.y 2=sin 2x cos 4x =2sin 2x cos 2x cos 2x2≤12⎝ ⎛⎭⎪⎫2sin 2x +cos 2x +cos 2x 33=12⎝ ⎛⎭⎪⎫233=854=427.故y ≤427=239,此时,2sin 2x =cos 2x ,tan 2x =12, y 有最大值239. 知识点3 平均值不等式的实际应用【例3】 某产品今后四年的市场需求量依次构成数列{a n },n =1,2,3,4,并预测到年需求量第二年比第一年增长的百分率为P 1,第三年比第二年增长的百分率为P 2,第四年比第三年增长的百分率为P 3,且P 1+P 2+P 3=1.给出如下数据: ①27,②25,③13,④12,⑤23, 则其中可能成为这四年间市场需求量的年平均增长率的是( ) A.①② B.①③ C.②③④D.②⑤解析 设这四年间市场年需求量的年平均增长率为x (x >0),则a 4=a 1(1+x )3=a 1(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3), ∴(1+x )3=(1+P 1)(1+P 2)(1+P 3)≤⎝ ⎛⎭⎪⎫1+P 1+1+P 2+1+P 333=⎝ ⎛⎭⎪⎫433. ∴1+x ≤43,即x ≤13,对比所给数据,只有①③满足条件,故选B. 答案 B3.设长方体的体积为1 000 cm 3,则它的表面积的最小值为__________ cm 2. 解析 设长方体的长、宽、高分别为a 、b 、c , 则abc =1 000,且a >0,b >0,c >0.∴它的表面积S =2(ab +bc +ca )≥2×33(abc )2=600. 当且仅当a =b =c =10 (cm)时取“=”号. 所以它的表面积S 的最小值为600 cm 2. 答案 600课堂小结利用基本不等式解决实际问题的步骤:(1)理解题意,设出变量,一般设变量时,把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)回答实际问题.随堂演练1.设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A.q =r <p B.p =r <q C.q =r >pD.p =r >q解析 利用对数的运算性质和对数函数的单调性判断p ,q ,r 之间的相等与不等关系. 因为b >a >0,故a +b2<ab .又f (x )=ln x (x >0)为增函数,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =p .答案 B2.已知x ≥52,则f (x )=x 2-4x +52x -4有( )A.最大值54B.最小值54C.最大值1D.最小值1解析f (x )=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1(x -2),又∵x ≥52,x -2≥12,则f (x )≥12·2(x -2)1(x -2)=1.答案 D3.函数y =x 2·(1-3x )在⎝ ⎛⎭⎪⎫0,13上的最大值是________.解析 由y =x 2·(1-3x ) =49·32x ·32x (1-3x ) ≤49⎝⎛⎭⎪⎪⎫32x +32x +1-3x 33=3243.答案32434.用长为16 cm 的铁丝围成一个矩形,则可围成的矩形的最大面积是________ cm 2. 解析 设矩形长为x cm(0<x <8),则宽为(8-x ) cm , 面积S =x (8-x ).由于x >0,8-x >0,可得S ≤⎝ ⎛⎭⎪⎫x +8-x 22=16,当且仅当x =8-x 即x =4时,S max =16. 所以矩形的最大面积是16 cm 2. 答案 16基础达标1.若x >0,则4x +9x2的最小值是( )A.9B.3336C.13D.不存在解析 ∵x >0,∴4x +9x 2=2x ·2x ·9x2≥332x ·2x ·9x2=3336.答案 B2.设a ,b ,c ∈(0,+∞)且a +b +c =1,令x =⎝⎛⎭⎪⎫1a -1·⎝⎛⎭⎪⎫1b -1⎝⎛⎭⎪⎫1c-1,则x 的取值范围为( )A.⎣⎢⎡⎭⎪⎫0,18B.⎣⎢⎡⎭⎪⎫18,1 C.[1,8)D.[8,+∞)解析 ∵x =⎝ ⎛⎭⎪⎫1a-1⎝ ⎛⎭⎪⎫1b-1⎝ ⎛⎭⎪⎫1c-1=1-a a ·1-b b ·1-cc=(b +c )(c +a )(a +b )abc ≥2bc ·2ca ·2ab abc=8,当且仅当a =b =c 时取等号,∴x ≥8. 答案 D3.已知x ,y 都为正数,且1x +4y=1,则xy 有( )A.最小值16B.最大值16C.最小值116D.最大值116解析 ∵x ,y ∈(0,+∞)且1x +4y=1,∴1=1x +4y ≥24xy=4xy,∴xy ≥4,∴xy ≥16,当且仅当⎩⎪⎨⎪⎧1x =4y ,1x +4y =1,x ,y ∈(0,+∞),即⎩⎪⎨⎪⎧x =2,y =8,时取等号,此时(xy )min =16. 答案 A4.已知a ,b ,∈R *,则⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c ≥________.解析 ⎝ ⎛⎭⎪⎫a b +b c +c a ⎝ ⎛⎭⎪⎫b a +c b +a c =1+1+1+ac b 2+a 2bc +b 2ac +ab c 2+bc a 2+c 2ab ≥3+2ac b 2·b 2ac+2a 2bc ·bc a 2+2abc 2+c 2ab=9. 答案 95.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元). 解析 利用均值(基本)不等式解决问题.设该长方体容器的长为x m ,则宽为4xm.又设该容器的造价为y 元,则y =20×4+2⎝ ⎛⎭⎪⎫x +4x ×10,即y =80+20⎝ ⎛⎭⎪⎫x +4x (x >0).因为x +4x≥2x ·4x =4⎝ ⎛⎭⎪⎫当且仅当x =4x ,即x =2时取“=”,所以y min =80+20×4=160(元). 答案 1606.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.解 (1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得⎩⎪⎨⎪⎧a =-3,b =1. (2)-3t +12+t=34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4.综合提高7.已知圆柱的轴截面周长为6,体积为V ,则下列关系式总成立的是( ) A.V ≥π B.V ≤π C.V ≥18πD.V ≤18π解析 设圆柱的底面半径为r ,高为h , 则由题意得:4r +2h =6,即2r +h =3,于是有V =πr 2h ≤π·⎝ ⎛⎭⎪⎫r +r +h 33=π⎝ ⎛⎭⎪⎫333=π,当且仅当r =h 时取等号. 答案 B8.如果圆柱的轴截面周长l 为定值,那么圆柱的体积最大值是( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析 l =4r +2h ,即2r +h =l2,V =πr 2h ≤⎝ ⎛⎭⎪⎫r +r +h 33π=⎝ ⎛⎭⎪⎫l 63π.答案 A9.定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析 先利用新定义写出解析式,再利用重要不等式求最值.因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy=x 2+2y 22xy ≥22xy 2xy=2,当且仅当x =2y 时,等号成立. 答案210.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F =76 000 v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 解析 把所给l 值代入,分子分母同除以v ,构造基本不等式的形式求最值. (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900.当且仅当v =11米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v+18=76 00020+18=2 000.当且仅当v =10米/秒时等号成立,此时车流量最大为2 000辆/时,比(1)中的最大车流量增加100辆/时.答案 (1)1 900 (2)10011.如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内? (2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积;(3)若AN 的长度不少于6米,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.解 设AN 的长为x 米(x >2),矩形AMPN 的面积为y . ∵|DN ||AN |=|DC ||AM |,∴|AM |=3x x -2, ∴S 矩形AMPN =|AN |·|AM |=3x 2x -2(x >2)(1)由S 矩形AMPN >32得3x2x -2>32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0,∴2<x <83或x >8,即AN 的长的取值范围是⎝ ⎛⎭⎪⎫2,83∪(8,+∞). (2)令y =3x 2x -2=3(x -2)2+12(x -2)+12x -2=3(x -2)+12x -2+12≥23(x -2)·12x -2+12=24, 当且仅当3(x -2)=12x -2, 即x =4时,y =3x2x -2取得最小值,即S 矩形AMPN 取得最小值24平方米.(3)令g (x )=3x +12x(x ≥4),设x 1>x 2≥4,则g (x 1)-g (x 2)=3(x 1-x 2)+12(x 2-x 1)x 1x 2=3(x 1-x 2)(x 1x 2-4)x 1x 2,∵x 1>x 2≥4,∴x 1-x 2>0,x 1x 2>16,∴g (x 1)-g (x 2)>0,∴g (x )在[4,+∞)上递增. ∴y =3(x -2)+12x -2+12在[6,+∞)上递增. ∴当x =6时,y 取得最小值,即S 矩形AMPN 取得最小值27平方米.12.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (km/h)的平方成正比,比例常数为b ,固定部分为a 元.(1)把全程运输成本y 元表示为速度v (km/h)的函数,并指出函数的定义域; (2)为了使全程运输成本最少,汽车应以多大的速度行驶? 解 (1)因为汽车每小时的运输成本为bv 2+a (元), 全程时间为sv (小时),故y =s v(bv 2+a ),即y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ].(2)由于a v+bv ≥2ab ,当且仅当v = ab时取等号,故 ①若 ab ≤c ,则当v = ab时,y 取最小值. ②若a b >c ,则先证y =s ⎝ ⎛⎭⎪⎫a v +bv ,v ∈(0,c ]为单调减函数,事实上,当v 1、v 2∈(0,c ],且v 1<v 2,则y 1-y 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1+bv 1-⎝ ⎛⎭⎪⎫a v 2+bv 2=s ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a v 1-a v 2+(bv 1-bv 2)=s (v 1-v 2)⎝⎛⎭⎪⎫b -a v 1v 2 =sb (v 1-v 2)·v 1v 2-abv 1v 2,∵v 1、v 2∈(0,c ],v 1<v 2, ∴v 1-v 2<0,v 1v 2>0,v 1<ab ,v 2< a b. 进而v 1v 2<a b,从而y 1-y 2>0.故y =s ⎝ ⎛⎭⎪⎫a v+bv ,v ∈(0,c ]为单调减函数,由此知当v =c 时,y 取得最小值. 综上可知,若ab ≤c ,则当v = ab时,y 取得最小值;a b >c,则当v=c时,y取得最小值.若。
基本不等式(2)
基本不等式(二)教学目标:掌握基本不等式2a b +(a ≥0,b ≥0);能用基本不等式求解简单的最大(小)值问题(指只用一次基本不等式即可解决的问题),重点解决如何出现定值,验证等号成立条件;2010年考试说明要求C 。
知识点回顾:○1基本不等式中第一条件x 为负值,那么-x 为正值,再用基本不等式。
○2构造定值是重点。
○3一定要验证等号成立条件,不满足用单调性求最值。
○4函数)0(>+=a x a x y 的图像要作为重点;函数)0(>-=a x a x y 用单调性求最值。
基础训练:1.若x ∈+R 则x x 42--的最大值 .2. 已知-2π<x <2π,则函数y=cosx+x cos 2的最小值是 .3.若4x >,则函数14y x x =-+-的值域为____________4. 若点(a ,b )在直线的最小值是则上b a y x 22,2+=+____________.5.函数2++=x a x y 的图像过点(2,6),2-≠x ,则此函数的值域为__________典型例题:设A 为锐角三角形的内角,a 是大于0的正常数,函数A a A y cos 1cos 1-+=的最小值是9,则a =___某厂家拟在2008年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足 ,如果不搞促销活动,则该产品的年销售量只能是1万件,已知2008年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元。
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用)。
(I )将2008年该产品的利润y 万元表示为年促销费用m 万元的函数;(II )该厂家2008年的促销费用投入多少万元时,厂家的利润最大?课堂检测:1. 若|(2)|0x x ->,则234x x y x-+=的取值范围是 .2. 函数y=182-+x x ,x ≠1时的值域为3.若函数2()x f x x a=+(0a >)在[)1,+∞上的最大值为3,则a 的值为 .4.已知不等式(x+y )⎪⎪⎭⎫ ⎝⎛+y a x 1≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为______5. 已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是 14.已知函数b a b f a f b a xx f +=<<-=2),()(,0,11)(则且若的最小值为________。
【课件】基本不等式(第二课时)2023-2024学年高一数学(人教A版2019必修第一册)
出发使用基本不等式,求得最值.
练一练
2+1
已知a>1,b>0,则
+2a的最小值为
(−1)
提示:
目标式局部:b2+1≥2b,
所以
2+1
2
+2a≥
(−1)
−1
+2(a-1)+2≥…
.
用基本不等式求最值
( )
例3. 已知 x>0, y>0 ,x+y+2=xy,则xy的
条
件
最
值
之
最小值为
.
2
+2
+
2 (−2)2 (−1)2
=
+
+1
4 1
=(m+n)+( + )-6(以下逆代)
用基本不等式求最值
( )
七
条
件
最
值
之
等
价
变
形
1
例6.已知x>0,y>0,且
+2
+
1 1
= ,求xy的最小值.
+2 3
1
解:由等式
+2
1
3
变形得xy=x+y+8
+
1
+2
=
所以xy≥2 +8 解得xy最小值为16
( )
一
直
接
求
最
值
例1. 已知 x>0,
则y= 2
的最大值
+2+4
1
基本不等式(2)
请问:你能自己设计一个有关最值问题的实际问题吗?并解决 它.你可以改变上述问题二中的某个条件或某些条件,或者另外设 计一个问题.
归纳小结
归纳小结
(1)基本不等式:如果a>0,b>0,那么 ab a b ,当且仅当a=b
x y 2 xy , 所以 720(x+y) ≥720× 2 xy ,
3
y
x
思维提升
问题二 所以z=240000+720(x+y) . 根据基本不等式可知, x y 2 xy , 所以 720(x+y) ≥720× 2 xy ,
所以 240000+720(x+y)
≥240000+720× 2 xy.
复习引入
1.基本不等式: 如果a>0,b>0,那么 ab a b ,当且仅当a=b时,等号成立. 2
复习引入
1.基本不等式: 如果a>0,b>0,那么 ab a b ,当且仅当a=b时,等号成立. 2
2.已知x,y都是正数, (1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2 P . (2)如果和x+y等于定值S,那么当x=y时,积xy有最大值S2 .
为多少时,所用篱笆最短?最短篱笆的长度是多少? (2)用一段长为36 m的篱笆围成一个矩形菜园,当这个矩形的边
长为多少时,菜园的面积最大?最大面积是多少?
当两个正数变量的积或和为定值时, 它们的和有最小值或积有最大值.
思维提升
问题二 某工厂要建造一个长方体形无盖贮水池,其容积为4800 m3,
基本不等式(二)
基本不等式:ab ≤a +b2(二)[学习目标] 1.熟练掌握基本不等式及其变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点一 基本不等式求最值 1.理论依据:(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值,且这个值为s 24. (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值,且这个值为2p .2.基本不等式求最值的条件: (1)x ,y 必须是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.3.利用基本不等式求最值需注意的问题: (1)各数(或式)均为正. (2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.知识点二 基本不等式在实际中的应用基本不等式在实际中的应用是指利用基本不等式解决生产、科研和日常生活中的问题.解答不等式的应用题一般可分为四步:(1)阅读并理解材料;(2)建立数学模型;(3)讨论不等关系;(4)作出结论.题型一 利用基本不等式求最值例1 (1)已知x ≥52,则f (x )=x 2-4x +52x -4有( )A .最大值54B .最小值54C .最大值1D .最小值1(2)已知t >0,则函数y =t 2-4t +1t的最小值为____.(3)已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为____.答案 (1)-2 (2)3 (3)3解析 (1)y =t 2+1-4t t =t +1t-4≥2-4=-2,当且仅当t =1t,即t =1或t =-1(舍)时,等号成立,∴y 的最小值为-2.(2)xy =12·⎝ ⎛⎭⎪⎫x 3·y 4≤12·⎝ ⎛⎭⎪⎪⎫x 3+y 422=12·⎝ ⎛⎭⎪⎫122=3,当且仅当x 3=y 4=12,即x =32,y =2时,等号成立,∴xy 的最大值为3.(3)f (x )=x 2-4x +52x -4=x -22+12x -2=12⎣⎢⎡⎦⎥⎤x -2+1x -2≥1. 当且仅当x -2=1x -2,即x =3时,等号成立. 跟踪训练1 (1)设a >b >0,则a 2+1ab +1aa -b的最小值是( ) A .1 B .2 C .3D .4(2)已知x ,y 为正数,且2x +y =1,则1x +1y的最小值为________.答案 (1)D (2)3+22解析 (1)a 2+1ab +1aa -b=a 2-ab +ab +1ab +1aa -b=a (a -b )+1aa -b+ab +1ab≥2+2=4.当且仅当a (a -b )=1且ab =1,即a =2,b =22时取“=”. (2)由2x +y =1,得1x +1y =2x +y x +2x +yy=3+y x+2xy ≥3+2y x ·2xy=3+22, 当且仅当y x =2xy, 即x =2-22,y =2-1时,等号成立.题型二 基本不等式的综合应用例2 (1)已知x >1,y >1,且14ln x 、14、ln y 成等比数列,则xy ( )A .有最大值eB .有最大值eC .有最小值eD .有最小值e 答案 C解析 由题意得⎝ ⎛⎭⎪⎫142=14ln x ln y ,∴ln x ln y =14,∵x >1,y >1,∴ln x ln y >0, 又ln(xy )=ln x ln y ≥2ln x ln y =1, ∴xy ≥e,即xy 有最小值为e.(2)若对任意x >0,xx 2+3x +1≤a 恒成立,求a 的取值范围.解 设f (x )=x x 2+3x +1=1x +1x+3,∵x >0,∴x +1x≥2,∴f (x )≤15,即f (x )max =15,∴a ≥15.跟踪训练2 (1)设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .2B .4C .1(2)函数y =kx +2k -1的图象恒过定点A ,若点A 又在直线mx +ny +1=0上,则mn 的最大值为________. 答案 (1)B (2)18解析 (1)由题意得,3a·3b=(3)2,即a +b =1, ∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4, 当且仅当b a =a b ,即a =b =12时,等号成立.(2)y =k (x +2)-1必经过(-2,-1),即点A (-2,-1), 代入得-2m -n +1=0, ∴2m +n =1,∴mn =12(2mn )≤12·⎝ ⎛⎭⎪⎫2m +n 22=18,当且仅当2m =n =12时,等号成立.题型三 基本不等式的实际应用例3 要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm ,请确定广告的高与宽的尺寸(单位:cm),使矩形广告面积最小,并求出最小值.解 设矩形栏目的高为a cm ,宽为b cm ,ab =9 000.① 广告的高为a +20,宽为2b +25,其中a >0,b >0. 广告的面积S =(a +20)(2b +25)=2ab +40b +25a +500 =18 500+25a +40b ≥18 500+225a ×40b =18 500+2 1 000ab =24 500.当且仅当25a =40b 时,等号成立,此时b =58a ,代入①式得a =120,从而b =75,即当a=120,b =75时,S 取得最小值24 500,故广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小,最小值为24 500 cm 2.跟踪训练3 一批货物随17列货车从A 市以v 千米/时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝ ⎛⎭⎪⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时. 答案 8解析 设这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝ ⎛⎭⎪⎫v 202v =400v +16v400≥2400v ×16v400=8(小时), 当且仅当400v =16v400,即v =100时,等号成立,此时t =8小时.1.下列函数中,最小值为4的函数是( )A .y =x +4xB .y =sin x +4sin x (0<x <π)C .y =e x+4e-xD .y =log 3x +log x 812.函数y =x 2-x +1x -1(x >1)在x =t 处取得最小值,则t 等于( )A .1+ 2B .2C .3D .43.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A . m B . m C .7 m D . m 4.函数f (x )=x (4-2x )的最大值为________.5.当x <54时,函数y =4x -2+14x -5的最大值为________.一、选择题1.已知正数x ,y 满足8x +1y=1,则x +2y 的最小值是( )A .18B .16C .8D .102.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x+4y的最小值为( ) A .2 2 B .4 2 C .16 D .不存在3.下列命题正确的是( ) A .函数y =x +1x的最小值为2B .若a ,b ∈R 且ab >0,则b a +a b≥2C .函数x 2+2+1x 2+2的最小值为2 D .函数y =2-3x -4x的最小值为2-434.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为( )A .7B .8C .9D .105.已知a ,b ,c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是( )A .3+2 2B .3-22C .6-4 2D .6+426.已知a =(x -1,2),b =(4,y )(x ,y 为正数),若a ⊥b ,则xy 的最大值是( ) B .-12C .1D .-17.若直线2ax -by +2=0(a >0,b >0)被圆x 2+y 2+2x -4y +1=0截得的弦长为4,则1a +1b的最小值为( )C .2D .4 二、填空题8.设x >-1,则函数y =x +5x +2x +1的最小值是______.9.设a >b >c ,则a -c a -b +a -cb -c的最小值是________. 10.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(二次函数的图象如图所示),则每辆客车营运________年时,年平均利润最大.三、解答题11.已知x ,y >0,且x +2y +xy =30,求xy 的范围.12.已知正常数a ,b 和正变数x ,y 满足a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b 的值.13.某建筑公司用8 000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4 000平方米的楼房.经初步估计得知,如果将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层每平方米的平均综合费用最小值是多少(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)当堂检测1.答案 C解析 A 中x =-1时,y =-5<4,B 中y =4时,sin x =2,D 中x 与1的关系不确定,选C. 2.答案 B解析 y =x x -1+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立. 3.答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a+b +a 2+b 2≥2ab +2ab =4+22≈(m).∵要求够用且浪费最少,故选C. 4.答案 2解析 ①当x ∈(0,2)时, x,4-2x >0,f (x )=x (4-2x )≤12⎣⎢⎡⎦⎥⎤2x +4-2x 22=2, 当且仅当2x =4-2x ,即x =1时,等号成立.②当x ≤0或x ≥2时,f (x )≤0,故f (x )max =2.5.答案 1解析 ∵x <54,∴4x -5<0, ∴y =4x -5+14x -5+3 =-⎣⎢⎡⎦⎥⎤5-4x +15-4x +3 ≤-25-4x ·15-4x +3=1 当且仅当5-4x =15-4x,即x =1时,等号成立.课时精练答案一、选择题1.答案 A解析 x +2y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y =10+16y x +x y≥10+216=18,当且仅当16y x =x y,即x =4y 时,等号成立. 2.答案 B解析 ∵点P (x ,y )在直线AB 上,∴x +2y =3.∴2x +4y ≥22x ·4y =22x +2y =4 2.当且仅当2x =4y ,即x =32,y =34时,等号成立. 3.答案 B解析 A 错误,当x <0时或x ≠1时不成立;B 正确,因为ab >0,所以b a >0,a b >0,且b a+a b≥2;C 错误,若运用基本不等式,需()x 2+22=1,x 2=-1无实数解;D 错误,y =2-(3x +4x )≤2-43,故最大值为2-4 3. 4.答案 C解析 由于x ,y 为正数,故(x +y )⎝ ⎛⎭⎪⎫1x +4y =1+4+y x +4x y ≥9.当且仅当y x =4x y,即y =2x 时取“=”.5.答案 D解析 1a +1b +1c =⎝ ⎛⎭⎪⎫1a +1b +1c (a +2b +c ) =4+2b a +c a +a b +c b +a c +2b c≥4+2 2b a ·a b +2 c a ·a c +2 c b ·2b c=6+42, 当且仅当2b a =a b ,c a =a c ,c b =2b c时,等号成立, 即a 2=c 2=2b 2时,等号成立.6.答案 A解析 ∵a ⊥b 则a ·b =0,∴4(x -1)+2y =0,∴2x +y =2,∴xy =12(2x )·y ≤12·⎝ ⎛⎭⎪⎫222=12, 当且仅当2x =y 时,等号成立.7.答案 D解析 圆方程为(x +1)2+(y -2)2=4,圆心为(-1,2),半径为2,若直线被截得弦长为4,说明圆心在直线上,即-2a -2b +2=0,∴a +b =1,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b ) =2+b a +ab ≥2+2=4,当且仅当b a =ab,即a =b 时,等号成立. 二、填空题8.答案 9解析 ∵x >-1,∴x +1>0,设x +1=t >0,则x =t -1,于是有y =t +4t +1t=t 2+5t +4t =t +4t +5 ≥2 t ·4t+5=9, 当且仅当t =4t,即t =2时取“=”,此时x =1.∴当x =1时,函数y =x +5x +2x +1取得最小值9. 9.答案 4解析a -c a -b +a -c b -c =⎝ ⎛⎭⎪⎫1a -b +1b -c [(a -b )+(b -c )] =1+1+b -c a -b +a -b b -c ≥2+2 b -c a -b ·a -b b -c=4, 当且仅当b -c a -b =a -b b -c,即|a -b |=|b -c |, 又a >b >c ,∴b =a +c2时,等号成立.10.答案 5解析 二次函数顶点为(6,11),设为y =a (x -6)2+11,代入(4,7)得a =-1, ∴y =-x 2+12x -25, 年平均利润为y x =-x 2+12x -25x=-⎝ ⎛⎭⎪⎫x +25x +12≤-2 x ·25x +12=2, 当且仅当x =25x,即x =5时,等号成立. 三、解答题11.解 因为x ,y 是正实数,故30=x +2y +xy ≥22xy +xy ,当且仅当x =2y ,即x =6,y =3时,等号成立.所以xy +22xy -30≤0.令xy =t ,则t >0,得t 2+22t -30≤0,解得-52≤t ≤3 2.又t >0,知0<xy ≤32,即xy 的范围是(0,18]. 12.解 因为x +y =(x +y )·1=(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y≥a +b +2ab =(a +b )2, 当且仅当ay x =bx y ,即y x =b a时,等号成立, 所以x +y 的最小值为(a +b )2=18,又a +b =10,所以ab =16.所以a ,b 是方程x 2-10x +16=0的两根,所以a =2,b =8或a =8,b =2.13.解 设楼房每平方米的平均综合费用为f (x )元,依题意得,f (x )=Q (x )+8 000×10 0004 000x =50x +20 000x+3 000(x ≥12,x ∈N *), f (x )=50x +20 000x+3 000 ≥2 50x ·20 000x+3 000=5 000(元). 当且仅当50x =20 000x,即x =20时上式取“=”. 因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最少,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.。
3.4基本不等式2
(a>0,b>0)中,如果a· b=P为定值, 能得到什么原理? 原理一:若两个正数的积为定值,则当 这两个正数相等时它们的和取最小值.
思考2:在基本不等式 a b 2
ab
(a>0,b>0)中,如果a+b=S为定值, 又能得到什么原理?
原理二:若两个正数的和为定值,则当 这两个正数相等时它们的积取最大值 .
作业:
补充:
1 并求取得最小值时x的值. 1.求y 2 x ( x 2)的最小值, x2 1 并求取得最大值时x的值. 2.求y x(1 3x)(0 x )的最大值, 3
3:已知正数 a、b 满足 a+b=1,求证:
1 (1)ab≤4; 1 1 1 ( 2) 2 (2)aa+b2≥4 ; b 2 1 1 (3)( a ) (b ) 9 a b
2y x 2 y 时,即x 2 1, y 1 当且仅当 x 时取到等号. 2 x 2 y 1
“1”的代换
1 9 (1)已知 x>0,y>0,且 + =1,求 x+y 的最小值; 变式: x y
(2)设 x>0,y>0,且 2x+8y=xy,求 x+y 的最小值.
1 9 (1)已知 x>0,y>0,且 + =1,求 x+y 的最小值; x y
1 9 解:(1)∵x>0,y>0, + =1, x y 1 9 y 9x ∴x+y=( + )(x+y)= + +10≥6+10=16. x y x y y 9x 当且仅当 = , x y 1 9 又 + =1, x y 即 x=4,y=12 时,上式取等号. 故当 x=4,y=12 时,(x+y)min=16.
证明:∵a,b,c 为正实数,且 a+b+c=1, 1-a b+c 2 bc 1 ∴ -1= = ≥ , a a a a 1 2 ac 1 2 ab 同理 -1≥ , -1≥ . b b c c 由上述三个不等式两边均为正,分别相乘 1 1 1 2 bc 2 ac 2 ab ( -1)( -1)( -1)≥ · · =8. a b c a b c 1 当且仅当 a=b=c= 时,等号成立. 3
2.2基本不等式(二)
例4 某工厂要建造一个长方体无盖贮水池,其容积为4800 m3, 深为3m,如果池底每1 m2的造价为150元,池壁每1m2的造价为 120元,问怎样设计水池能使总造价最低?最低总造价是多少元?
解:设水池底面一边的长度为x m, 的总造价为y元,根据题意,得
则水池的宽为1600
x
m
,水池
y 150 4800 120(23x 23 1600)
(2)一段长为36 m的篱笆围成一个一边靠墙的矩形菜园, 问这个矩形的长、宽各为多少时,菜园的面积最大.最大面 积是多少?
例3 (1)用篱笆围成一个面积为100 m2的矩形菜园,问这 个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆长 是多少?
解: (1)设矩形菜园的长为x m,宽为y m,则xy=100,篱 笆的长为2(x+y) m.
小结
本节课我们用两个正数的算术平均数与几何平均数的 关系顺利解决了函数的一些最值问题。
在用基本不等式求函数的最值,是值得重视的一种方 法,但在具体求解时,应注意考查下列三个条件:
(1)函数的解析式中,各项均为正数;
(2)函数的解析式中,含变数的各项的和或积必须有一个为 定值;
(3)函数的解析式中,含变数的各项均相等,取得最值即用 均值不等式求某些函数的最值时,应具备三个条件:一正 二定三取等。
解: 设矩形菜园的长为x m,宽为ym,则2 (x+y)=36,
其中x+y=18,矩形的面积为xy m. 2
由 xy x y 18 9, 22
可得xy 81,
当且仅当x y 9时,等号成立.
题后反思:通 过这道例题的 学习,你有什 么收获?
即菜园长、宽都为9m时,菜园面积最大,最大面 积为81 m2.
不等式公式四个
不等式公式四个一、基本不等式1:a^2 + b^2≥slant2ab(a,b∈ R),当且仅当a = b时取等号。
1. 推导。
- 对于(a - b)^2,因为任何实数的平方是非负的,所以(a - b)^2≥slant0。
- 展开(a - b)^2=a^2 - 2ab+b^2≥slant0,移项可得a^2 + b^2≥slant2ab。
2. 应用示例。
- 已知a = 3,b = 4,则a^2 + b^2=3^2+4^2 = 9 + 16=25,2ab = 2×3×4 = 24,满足a^2 + b^2≥slant2ab。
- 求y=x+(1)/(x)(x>0)的最小值。
- 根据a^2 + b^2≥slant2ab,这里a = x,b=(1)/(x),则x+(1)/(x)≥slant2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时取最小值2。
二、基本不等式2:(a + b)/(2)≥slant√(ab)(a>0,b>0),当且仅当a = b时取等号。
1. 推导。
- 由a^2 + b^2≥slant2ab,因为a>0,b>0,令A=√(a),B = √(b),则A^2=a,B^2 = b。
- 代入A^2 + B^2≥slant2AB得到a + b≥slant2√(ab),即(a + b)/(2)≥slant√(ab)。
2. 应用示例。
- 已知a = 4,b = 9,(a + b)/(2)=(4+9)/(2)=(13)/(2),√(ab)=√(4×9)=6,满足(a + b)/(2)≥slant√(ab)。
- 求y = x(1 - x)(0< x<1)的最大值。
- 因为y=x(1 - x),这里a=x,b = 1 - x,根据(a + b)/(2)≥slant√(ab),y=x(1 - x)≤slant((x+(1 - x))/(2))^2=(1)/(4),当且仅当x=1 - x即x=(1)/(2)时取最大值(1)/(4)。
基本不等式(2)
3.4.1基本不等式(2)一、学习目标1.通过本节学习,掌握最值原理,并且能用最值原理解决相关问题;2.通过小组活动培养学生观察、探究的能力,并能体会出证明不等式的基本思想方法.二、教学重点、难点: 利用基本不等式求解最值.三、课前自学问题1:将 36拆成两个正数之积,使和最小,怎样拆?问题2:将8 拆成两个正数之和,使积最大,怎样拆?分组活动: 分组尝试把问题1,2一般化.已知y x ,都是正数,①如果积xy 是定值p ,那么当 时,和y x +有最小值 ; ②如果和y x +是定值s ,那么当 时,积xy 有最大值 .四、问题探究例1 求函数)0(16>+=x x x y 的最小值.变式1:求函数),2(,216+∞-∈++=x x x y 的最小值;变式2:求函数xx y 16+=的值域;变式3:求函数16322++=x x y 的最小值;变式4:已知0>x ,求函数44)(2+=x x x f 的值域.(若0<x 呢?)例2:若0>a ,0>b ,且6=+b a ,求ab 2的最大值.变式:若0>a ,0>b ,且63=+b a ,求ab 2的最大值.五、反馈小结书99练习4,5课后作业:1.已知0x >,求423x x--的最大值,并求相应的x 值.2.已知02x <<,求函数()f x =x 值.3.求下列函数的最值: 的最小值求已知y x xx y ,0,9)1(2>+=.的最大值求已知y x x x y ,2,421)2(-<++=.(3)的最小值求求函数y x x x y .0,422<+=.(4) 求函数)0(4≠+=x xx y 的值域.4.已知1,1>>y x ,且4lg lg =+y x .⑴求y x lg lg ⋅的最大值;⑵求)lg(y x +的最小值; ⑶求yx 11+的最小值.5.已知,20520,0=+>>y x y x ,且 求y x lg lg +的最大值.6.正数b a ,满足3++=b a ab ,求ab 的最小值.。
高一数学基本不等式2
睛,两边是怪异的淡白色粉丝耳朵,鼻子下面是威猛的蓝宝石色电闸一样的嘴唇,说话时露出笨拙的紫玫瑰色树皮般的牙齿,一条奇特的浅灰色扫帚一般的舌头确实非
常猜疑和超脱。他极似天蓝色肥肠似的身材的确绝对的猛爆却又透着一丝霸气,高大的暗灰色细小菱角般的胡须好像绝无仅有的绝妙和威猛。那一双精悍的青兰花色面
条样的眉毛,真的有些时尚但又有些标准。再看P.妥奥姆斯政委的身形,他有着瘦瘦的极似弯刀造型的肩膀,肩膀下面是结实的极似香肠造型的手臂,他怪异的水白
傲的蓝宝石色丸子造型的神态感觉空前粗野却又透着一丝标新立异。…………那个身穿多变的流峰袄的副l官是
女议长U.赫泰娆嘉妖女。她出生在J.荷赤
可星国的纽扣草原,绰号:银拳警棍!年龄看上去大约十四五岁,但实际年龄足有五六千岁,身高两米八左右,体重约六百公斤。此人最善使用的兵器是『红火跳神花
卷锤』,有一身奇特的武功『银光杖妖鸟巢头』,看家的魔法是『白金瀑祖折扇理论』,另外身上还带着一件奇异的法宝『粉烟秋妖贝壳石』。她有着浮动的深灰色橘
高一数学必修5第三章《不等式》 3.4 基本不等式 第2课时
复习巩固
利用
求最值的要点:
(1)最值存在的条件的: 一正, 二定,三相等.
(2)积一定, 和有最小值
(3)和一定, 积有最大值
典例讲评
例. 若x>0,y>0,且
,求xy的最小值.
典例讲评
例2.(1)用篱笆围成一个面积为100m2 的矩形菜园,问这个矩形的长、宽各为 多少时,所用篱笆最短.最短的篱笆是多少
子模样的身材
优游 优游
典例讲评
例3. 某工厂要建造一个长方形无盖 蓄水池, 其容积为4800 m3, 深为 3m, 如果池底每平方米的造价为150元, 池壁每平方米的造价为120元, 怎样 设计水池能使总造价最低? 最低总 造价是多少?
基本不等式(二) 韦明
解:(1)y==(x+1)++1
当x+1>0时,y≥2+1;
当x+1<0时,y≤-2+1
即函数的值域为:(-∞,-2+1]∪[2+1,+∞)
(2)当x+1≠0时,令t =
则问题变为:y =,t∈(-∞,-2+1]∪[2+1,+∞)
∴y∈[,0)∪(0,]
又x+1 = 0时,y = 0
4.课后作业
1)已知x+y= 2,求2x+2y的最小值。
2)求函数y =(x≠0)的最大值。
3)求函数y =的值域。
4)已知函数y= (3x+2)(1-3x)
(1)当-<x<时,求函数的最大值;
(2)当0≤x≤时,求函数的最大、最小值。
教学后记:
通过这节课,让学生对基本不等式有更深的体会,同时,对定理中的限制条件也有更深的理解。
∴y∈[,+∞)
(2)当x>0时,y=x+≥2=2;
当x<0时,y≤-2
∴y∈(-∞,-2]∪[2,+∞)
例2:当x>1时,求函数y=x+的最小值
解:y=(x-1)++1(∵x>1)≥2+1=3
∴函数的最小值是3
问题:x>8时?
总结:一正二定三相等。
介绍:函数y=x+的图象及单调区间
例3:求下列函数的值域
即y∈[-,]
说明:这类分式函数的值域也可通过判别式法求值域,但要注意检验。
例4:求下列函数的最大值
(1)y=2x(1-2x)(0<x<)
(2)y=2x(1-3x)(0<x<)
例5:已知x+2y=1,求+的最小值。
3.课堂小结
一般说来,和式形式存在最小值,凑积为常数;积的形式存在最大值,凑和为常数,要注意定理及变形的应用。
基本不等式 (2) PPT
关资料,
为什么叫基本不等式,它
到底基本在哪里?整理并形成一篇300字左右
的小文章。
xy ≤ 81
定 积
当且仅当x=y时,等号成立 x=y=9
有
最
因此,这个矩形的长、宽都为9m时,
大
菜园面积最大,最大面积是81m2
值
学以致用、巩固提高
2 × 例:函数
1 y= x+
的最小值为
x
点评:运用基本不等式的过程中,千万不能忽略了 “正数”这个前提条件。
学以致用、巩固提高
2 × 函数 y
(x2
的篱笆是多少?
A
D
解:如图设BC=x ,CD=y ,
则xy=100,篱笆的长为2(x+y)m. B
C
x + y ≥ xy ∴x + y ≥2 xy = 2 100 = 20
积
2
定
∴( 2 x + y)≥40
和
当且仅当 x=y 时,等号成立 此时x=y=10.
最 小
因此,这个矩形的长、宽都为10m时,所用的篱笆 值
2)
1 x2
2
的最小值是
点评:用基本不等式求最值, 必须注意“=”成立的条 件。如果取等号的条件不成立, 表示不能取到该最值。
分享一段话: 尝试理解数学结论的发展过程
和本质,完整全面地看待我们的 数学结论;不仅要关注结果,更 要关注结果成立的前提条件。
学以致用、巩固提高
下列函数的最小值为2的是( D )
最短,最短的篱笆是40m.
例:(2)如图,用一段长为36m的篱笆围成一个矩形菜
园,问这个矩形菜园的长和宽各为多少时,菜园的面积
最大,最大面积是多少?
基本不等式 (2)
“风车”中有哪些图形,这 风车”中有哪些图形, 风车 些图形的面积有什么相等 关系和不等关系? 关系和不等关系?
S正方形ABCD = a + b
2
1 S直角三角形 = ab 2
2
a + b ≥ 2ab
2 2
S正方形ABCD ≥ 4 S直角三角形
• 问:那么它们有相等的情况吗? 那么它们有相等的情况吗?
③
a = b时
④中的等号成立. 中的等号成立.
作业
课本P100习题3.4A组 课本P100习题3.4A组 P100习题3.4A 1,2题 第1,2题
再见! 再见!
P
1.如图,AB是圆 1.如图,AB是圆o的 如图,AB 直径, AB上任 直径,Q是AB上任 一点, 一点,AQ=a,BQ=b, 过点Q作垂直于AB 过点Q作垂直于AB 的弦PQ PQ, AP,BP, 的弦PQ,连AP,BP,
构造条件
三、应用
发现运算结构, 发现运算结构,应用不等式
a+b ab ≤ (a > 0, b > 0) 2
2
a+b ab ≤ (a > 0, b > 0) 2
的最大值. 例2、已知 0 < x < 1 ,求函数 y = x (1 − x ) 的最大值 、 求函数
1 变式:已知 的最大值. 变式 已知 0 < x < ,求函数 y = x (1 − 2 x ) 的最大值 求函数 2
S 4 注意:一正二定三相等! 注意:一正二定三相等!
五 、小结
1、本节课主要内容? 、本节课主要内容?
你会了 吗?
2、两个结论:两个正数,积定和最小;和定积最大。 两个结论:两个正数,积定和最小;和定积最大。
13基本不等式(2)
x
例 3 过点 1,2 的直线 l与 x的正半径、 y轴 的正半轴分别交于 A, B两点,当AOB 的面 积最小时, 求直线 l的方程.
解 设点Aa,0, B0, ba 0, b 0, 则直线 l x y 1 2 的方程为 1, 点1,2在l上, 故 1.
2)解决实际问题注意:
审题——建模——求解——评价
3)注重分类讨论、换元、化归等数 学思想方法在解题中的运用
练习 练习(1)求周长为 12的直角三角形面积的最大值.
(2)、若直角三角形的内切圆半径为,求其面积的 1
半径为,求其面积的最小值。 1 (3) 如图,设矩形ABCD(AB>CD)的周长为 24,把它关于AC对折起来,AB折过去以后, 交DC于点P,AB=x,求⊿ADP的最大面积及 相应的x值。
Thursday, September 25, 2008
知识回顾
1、基本不等式的内容:
ab ab (a, b R ) 2 2、基本不等式的条件:
一正 、二定 、三相等
3、基本不等式的变形:
x y 2 xy ( x R , y R )
x y 2 xy ( ) (x R , y R ) 2
4 (3)已知x 3, 求x 的最小值. x 4 4 解 : x 2 x 4, 原式有最小值4. x x 4 当且仅当x , 即x 2时, 等号成立. x
D : 练1.下列函数的最小值为2的是 ____
1 A. y x x
C. y x 2
1 1 变式(2) : 设0 x , y x(1 2 x)最大值是 ____ . 2 8
例1 用长为4 a 的铁丝围成一个矩形 , 怎样才能 使所围矩形的面积最大 . 解 设矩形长为 x 0 x 2a , 则宽为2a x, 矩形
一轮复习配套讲义:第6篇 第4讲 基本不等式(2)
第4讲 根本不等式[最|新考纲]1.了解根本不等式的证明过程.2.会用根本不等式解决简单的最|大(小)值问题.知 识 梳 理1.根本不等式:ab ≤a +b2 (1)根本不等式成立的条件:a >0 ,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数 ,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式(1)重要不等式:a 2+b 2≥2ab (a ,b ∈R ).当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ) ,当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ) ,当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号) ,当且仅当a =b 时取等号. 3.利用根本不等式求最|值 x >0 ,y >0 ,那么(1)如果积xy 是定值p ,那么当且仅当x =y 时 ,x +y 有最|小值是2p (简记:积定和最|小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时 ,xy 有最|大值是s 24(简记:和定积最|大).辨 析 感 悟1.对根本不等式的认识(1)当a ≥0 ,b ≥0时 ,a +b2≥ab .(√)(2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.(×) 2.对几个重要不等式的认识(3)(a +b )2≥4ab (a ,b ∈R ).(√) (4)2ab a +b=21a +1b≤ab ≤a +b 2≤a 2+b 22.(×)(5)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).(√) 3.利用根本不等式确定最|值(6)函数y =sin x +4sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤0 π2的最|小值为4.(×) (7)(2021·福州模拟改编)假设x >-3 ,那么x +4x +3的最|小值为1.(√) (8)(2021·四川卷改编)函数f (x )=4x +ax (x >0 ,a >0)在x =3时取得最|小值 ,那么a =36.(√) [感悟·提升]两个防范 一是在应用根本不等式求最|值时 ,要把握不等式成立的三个条件 ,就是 "一正 - -各项均为正;二定 - -积或和为定值;三相等 - -等号能否取得〞 ,假设忽略了某个条件 ,就会出现错误.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎪⎫a +b 22,要弄清它们的作用、使用条件及内在联系 ,两个公式也表达了ab 和a +b 的转化关系.如(2)、(4)、(6).二是在利用不等式求最|值时 ,一定要尽量防止屡次使用根本不等式.假设必须屡次使用 ,那么一定要保证它们等号成立的条件一致.学生用书第103页【例1】x >0 ,y >0 ,z >0. 求证:⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥8.证明 ∵x >0 ,y >0 ,z >0 ,∴y x +z x ≥2 yz x >0 ,x y +z y ≥2 xzy >0 , x z +y z ≥2 xyz >0 ,∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥ 8 yz ·xz ·xyxyz=8.当且仅当x =y =z 时等号成立.规律方法 利用根本不等式证明不等式是综合法证明不等式的一种情况 ,证明思路是从已证不等式和问题的条件出发 ,借助不等式的性质和有关定理 ,经过逐步的逻辑推理最|后转化为需证问题. 【训练1】a >0 ,b >0 ,c >0 ,且a +b +c =1. 求证:1a +1b +1c ≥9.证明 ∵a >0 ,b >0 ,c >0 ,且a +b +c =1 , ∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9 ,当且仅当a =b =c =13时 ,取等号.考点二 利用根本不等式求最|值【例2】 (1)(2021·山东卷)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0 ,那么当xyz 取得最|大值时 ,2x +1y -2z 的最|大值为( ). A .0 B .1 C.94D .3(2)(2021·广州一模)2x +2y =1 ,(x >0 ,y >0) ,那么x +y 的最|小值为( ). A .1 B .2 C .4 D .8审题路线 (1)x 2-3xy +4y 2-z =0⇒变形得z =x 2-3xy +4y 2⇒代入zxy ⇒变形后利用根本不等式⇒取等号的条件把2x +1y -2z 转化关于1y 的一元二次函数⇒利用配方法求最|大值.解析 (1)由x 2-3xy +4y 2-z =0 ,得z =x 2-3xy +4y 2 , ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3.又x ,y ,z 为正实数 ,∴x y +4yx ≥4 , 当且仅当x =2y 时取等号 ,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-⎝ ⎛⎭⎪⎫1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1 ,当1y =1 ,即y =1时 ,上式有最|大值1.(2)∵x >0 ,y >0 ,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y = 4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·yx =8.当且仅当x y =yx ,即x =y =4时取等号. 答案 (1)B (2)D规律方法 条件最|值的求解通常有两种方法:一是消元法 ,即根据条件建立两个量之间的函数关系 ,然后代入代数式转化为函数的最|值求解;二是将条件灵活变形 ,利用常数代换的方法构造和或积为常数的式子 ,然后利用根本不等式求解最|值.【训练2】 (1)假设正数x ,y 满足x +3y =5xy ,那么3x +4y 的最|小值是( ). A.245B.285 C .5 D .6(2)(2021·浙江十校联考)假设正数x ,y 满足4x 2+9y 2+3xy =30 ,那么xy 的最|大值是( ). A.43B.53 C .2 D.54解析 (1)由x +3y =5xy 可得15y +35x =1 ,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1 ,y =12时 ,等号成立) , ∴3x +4y 的最|小值是5.(2)由x >0 ,y >0 ,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立) ,∴12xy +3xy ≤30 ,即xy ≤2 ,∴xy 的最|大值为2. 答案 (1)C (2)C考点三 根本不等式的实际应用【例3】(2021·济宁期末)小|王大学毕业后 ,决定利用所学专业进行自主创业.经过市场调查 ,生产某小型电子产品需投入年固定本钱为3万元 ,每生产x 万件 ,需另投入流动本钱为W (x )万元 ,在年产量缺乏8万件时 ,W (x )=13x 2+x (万元).在年产量不小于8万件时 ,W (x )=6x +100x -38(万元).每件产品售价为5元.通过市场分析 ,小|王生产的商品能当年全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定本钱-流动本钱)(2)年产量为多少万件时 ,小|王在这一商品的生产中所获利润最|大 ?最|大利润是多少 ?解 (1)因为每件商品售价为5元 ,那么x 万件商品销售收入为5x 万元 ,依题意得 ,当0<x <8时 ,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时 ,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -30<x <835-⎝ ⎛⎭⎪⎫x +100x x ≥8.(2)当0<x <8时 ,L (x )=-13(x -6)2+9.此时 ,当x =6时 ,L (x )取得最|大值L (6)=9万元 , 当x ≥8时 ,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x =35-20=15 ,此时 ,当且仅当x =100x 时 ,即x =10时 ,L (x )取得最|大值15万元.∵9<15 ,所以当年产量为10万件时 ,小|王在这一商品的生产中所获利润最|大.最|大利润为15万元.规律方法 (1)利用根本不等式解决实际问题时 ,应先仔细阅读题目信息 ,理解题意 ,明确其中的数量关系 ,并引入变量 ,依题意列出相应的函数关系式 ,然后用根本不等式求解.(2)在求所列函数的最|值时 ,假设用根本不等式时 ,等号取不到 ,可利用函数单调性求解.【训练3】 为响应国|家扩大内需的政策 ,某厂家拟在2021年举行促销活动 ,经调查测算 ,该产品的年销量(即该厂的年产量)x 万件与年促销费用t (t ≥0)万元满足x =4-k2t +1(k 为常数).如果不搞促销活动 ,那么该产品的年销量只能是1万件.2021年生产该产品的固定投入为6万元 ,每生产1万件该产品需要再投入12万元 ,厂家将每件产品的销售价格定为每件产品平均本钱的1.5倍(产品本钱包括固定投入和再投入两局部).(1)将该厂家2021年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2021年的年促销费用投入多少万元时 ,厂家利润最|大 ? 解 (1)由题意有1=4-k 1 ,得k =3 ,故x =4-32t +1.∴y =1.5×6+12xx×x -(6+12x )-t =3+6x -t =3+6⎝ ⎛⎭⎪⎫4-32t +1-t =27-182t +1-t (t ≥0).(2)由(1)知:y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12.由根本不等式9t +12+⎝ ⎛⎭⎪⎫t +12≥29t +12·⎝ ⎛⎭⎪⎫t +12=6 , 当且仅当9t +12=t +12 ,即t =2.5时等号成立 ,故y =27-182t +1-t =27.5-⎣⎢⎢⎡⎦⎥⎥⎤9t +12+⎝ ⎛⎭⎪⎫t +12 ≤27.5-6=21.5.当且仅当9t +12=t +12时 ,等号成立 ,即t =2.5时 ,y 有最|大值21.5.所以2021年的年促销费用投入2.5万元时 ,该厂家利润最|大 ,最|大利润为21.5万元. 1.根本不等式具有将 "和式〞转化为 "积式〞和将 "积式〞转化为 "和式〞的放缩功能 ,常常用于比拟数(式)的大小或证明不等式 ,解决问题的关键是分析不等式两边的结构特点 ,选择好利用根本不等式的切入点.2.连续使用公式时取等号的条件很严格 ,要求同时满足任何一次的字母取值存在且一致.教你审题7 - -如何挖掘根本不等式中的 "相等〞【典例】(2021·天津卷)设a +b =2 ,b >0 ,那么12|a |+|a |b 取得最|小值为________. [审题] 一审条件:a +b =2 ,b >0 ,转化为条件求最|值问题; 二审问题:12|a |+|a |b 转化为 "1〞的代换; 三审过程:利用根本不等式时取等号的条件.解析 因为a +b =2 ,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b=a 4|a |+1≥-14+1=34 ,当且仅当b 4|a |=|a |b ,a <0 ,即a =-2 ,b =4时取等号 ,故12|a |+|a |b 的最|小值为34. 答案 34[反思感悟]在求解含有两个变量的代数式的最|值问题时 ,通常的解决方法是变量替换或常值 "1”的替换 ,即由条件得到某个式子的值为常数 ,然后将欲求最|值的代数式乘上常数 ,再对代数式进行变形整理 ,从而可利用根本不等式求最|值. 【自主体验】(2021·台州一模)设x ,y 均为正实数 ,且32+x +32+y=1 ,那么xy 的最|小值为( ). A .4 B .4 3 C .9 D .16 解析 由32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数 ,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立) ,即xy -2xy -8≥0 ,解得xy ≥4 ,即xy ≥16 ,故xy 的最|小值为16. 答案 D对应学生用书P303根底稳固题组 (建议用时:40分钟)一、选择题1.(2021·泰安一模)假设a ,b ∈R ,且ab >0 ,那么以下不等式中 ,恒成立的是( ).A .a +b ≥2ab B.1a +1b >2abC.b a +ab ≥2 D .a 2+b 2>2ab解析 因为ab >0 ,即b a >0 ,a b >0 ,所以b a +ab ≥2b a ×ab =2.答案 C2.(2021·杭州一模)设a >0 ,b >0.假设a +b =1 ,那么1a +1b 的最|小值是( ). A .2 B.14 C .4 D .8解析由题意1a+1b=a+ba+a+bb=2+ba+ab≥2+2ba×ab=4 ,当且仅当ba=ab,即a=b=12时,取等号,所以最|小值为4.答案 C3.(2021·金华十校模拟)a>0 ,b>0 ,a ,b的等比中项是1 ,且m=b+1a,n=a+1b,那么m+n的最|小值是().A.3 B.4 C.5 D.6解析由题意知:ab=1 ,∴m=b+1a=2b ,n=a+1b=2a ,∴m+n=2(a+b)≥4ab=4.答案 B4.(2021·陕西卷)小|王从甲地到乙地的时速分别为a和b(a<b) ,其全程的平均时速为v ,那么().A.a<v<ab B.v=abC.ab<v<a+b2D.v=a+b2解析设甲、乙两地之间的距离为s.∵a<b ,∴v=2ssa+sb=2sab(a+b)s=2aba+b<2ab2ab=ab.又v-a=2aba+b-a=ab-a2a+b>a2-a2a+b=0 ,∴v>a.答案 A5.(2021·兰州模拟)函数y=x-4+9x+1(x>-1) ,当x=a时,y取得最|小值b ,那么a+b=().A.-3 B.2 C.3 D.8解析y=x-4+9x+1=x+1+9x+1-5 ,由x>-1 ,得x+1>0 ,9x+1>0 ,所以由根本不等式得y=x+1+9x+1-5≥2(x+1)×9x+1-5=1 ,当且仅当x+1=9x +1 ,即(x +1)2=9 ,所以x +1=3 ,即x =2时取等号 ,所以a =2 ,b =1 ,a +b =3. 答案 C 二、填空题6.(2021·广州模拟)假设正实数a ,b 满足ab =2 ,那么(1+2a )·(1+b )的最|小值为________.解析 (1+2a )(1+b )=5+2a +b ≥5+22ab =9.当且仅当2a =b ,即a =1 ,b =2时取等号. 答案 97.x ,y ∈R + ,且满足x 3+y4=1 ,那么xy 的最|大值为______. 解析 ∵x >0 ,y >0且1=x 3+y4≥2xy 12 ,∴xy ≤3.当且仅当x 3=y 4 ,即当x =32 ,y =2时取等号. 答案 38.函数y =a 1-x (a >0 ,a ≠1)的图象恒过定点A ,假设点A 在直线mx +ny -1=0(mn >0)上 ,那么1m +1n 的最|小值为________. 解析 ∵y =a 1-x 恒过点A (1,1) ,又∵A 在直线上 ,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4 ,当且仅当m =n =12时 ,取 "=〞 ,∴1m +1n 的最|小值为4. 答案 4 三、解答题9.a >0 ,b >0 ,a +b =1 ,求证:1a +1b +1ab ≥8.证明 1a +1b +1ab =1a +1b +a +b ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1 ,a >0 ,b >0 ,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4 , ∴1a +1b +1ab ≥8⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立.10.x >0 ,y >0 ,且2x +5y =20. (1)求u =lg x +lg y 的最|大值; (2)求1x +1y 的最|小值. 解 (1)∵x >0 ,y >0 ,∴由根本不等式 ,得2x +5y ≥210xy . ∵2x +5y =20 ,∴210xy ≤20 ,xy ≤10 ,当且仅当2x =5y 时 ,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =202x =5y 解得⎩⎪⎨⎪⎧x =5y =2 此时xy 有最|大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5 ,y =2时 ,u =lg x +lg y 有最|大值1. (2)∵x >0 ,y >0 ,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020 , 当且仅当5y x =2xy 时 ,等号成立.由⎩⎨⎧2x +5y =205y x =2xy 解得⎩⎪⎨⎪⎧x =1010-203y =20-4103.∴1x +1y 的最|小值为7+21020.能力提升题组 (建议用时:25分钟)一、选择题1.x >0 ,y >0 ,且2x +1y =1 ,假设x +2y >m 2+2m 恒成立 ,那么实数m 的取值范围是( ).A .(-∞ ,-2]∪[4 ,+∞)B .(-∞ ,-4]∪[2 ,+∞)C .(-2,4)D .(-4,2)解析 ∵x >0 ,y >0且2x +1y =1 , ∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y ≥4+24y x ·x y =8 ,当且仅当4y x =x y ,即x =4 ,y =2时取等号 ,∴(x +2y )min =8 ,要使x +2y >m 2+2m 恒成立 , 只需(x +2y )min >m 2+2m 恒成立 , 即8>m 2+2m ,解得-4<m <2. 答案 D2.(2021·郑州模拟)正实数a ,b 满足a +2b =1 ,那么a 2+4b 2+1ab 的最|小值为( ).A.72 B .4 C.16136 D.172解析 因为1=a +2b ≥22ab ,所以ab ≤18 ,当且仅当a =2b =12时取等号.又因为a 2+4b 2+1ab ≥2a 2·4b 2+1ab =4ab +1ab .令t =ab ,所以f (t )=4t +1t 在⎝ ⎛⎦⎥⎥⎤0 18单调递减 ,所以f (t )min =f ⎝ ⎛⎭⎪⎫18=172.此时a =2b =12. 答案 D 二、填空题3.(2021·南昌模拟)x >0 ,y >0 ,x +3y +xy =9 ,那么x +3y 的最|小值为________. 解析 由 ,得xy =9-(x +3y ) ,即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,令x +3y =t ,那么t 2+12t -108≥0 ,解得t ≥6 ,即x +3y ≥6. 答案 6三、解答题4.(2021·泰安期末考试)小|王于年初用50万元购置一辆大货车 ,第|一年因缴纳各种费用需支出6万元 ,从第二年起 ,每年都比上一年增加支出2万元 ,假定该车每年的运输收入均为25万元.小|王在该车运输累计收入超过总支出后 ,考虑将大货车作为二手车出售 ,假设该车在第x 年年底出售 ,其销售价格为(25-x )万元(国|家规定大货车的报废年限为10年).(1)大货车运输到第几年年底 ,该车运输累计收入超过总支出 ?(2)在第几年年底将大货车出售 ,能使小|王获得的年平均利润最|大 ?(利润=累计收入+销售收入-总支出)解 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元 , 那么y =25x -[6x +x (x -1)]-50(0<x ≤10 ,x ∈N ) , 即y =-x 2+20x -50(0<x ≤10 ,x ∈N ) ,由-x 2+20x -50>0 ,解得10-52<x <10+5 2.而2<10-52<3 ,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出 ,所以销售二手货车后 ,小|王的年平均利润为y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝ ⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x =9 ,当且仅当x =5时等号成立 ,即小|王应当在第5年将大货车出售 ,才能使年平均利润最|大.方法强化练 - -不等式 (对应学生用书P305)(建议用时:75分钟)一、选择题1. "|x |<2”是 "x 2-x -6<0”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件解析 不等式|x |<2的解集是(-2,2) ,而不等式x 2-x -6<0的解集是(-2,3) ,于是当x ∈(-2,2)时 ,可得x ∈(-2,3) ,反之那么不成立 ,应选A. 答案 A2.(2021·青岛一模)假设a ,b 是任意实数 ,且a >b ,那么以下不等式成立的是( ).A .a 2>b 2B.b a <1 C .lg(a -b )>0 D.⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b解析 ∵0<13<1 ,∴y =⎝ ⎛⎭⎪⎫13x 是减函数 ,又a >b ,∴⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b . 答案 D3.(2021·杭州二中调研)假设不等式|8x +9|<7和不等式ax 2+bx >2的解集相等 ,那么实数a ,b 的值分别为( ). A .a =-8 ,b =-10 B .a =-4 ,b =-9 C .a =-1 ,b =9 D .a =-1 ,b =2解析 据题意可得|8x +9|<7的解集是{x |-2<x <-14} ,故由{x |-2<x <-14}是一元二次不等式ax 2+bx >2的解集 ,可知x 1=-2 ,x 2=-14是ax 2+bx -2=0的两个根 ,根据根与系数的关系可得x 1x 2=-2a =12 , ∴a =-4 ,x 1+x 2=-b a =-94 ,∴b =-9 ,应选B. 答案 B4.(2021·浙江温岭中学模拟)以下命题错误的选项是( ). A .假设a ≥0 ,b ≥0 ,那么a +b2≥ab B .假设a +b2≥ab ,那么a ≥0 ,b ≥0 C .假设a >0 ,b >0 ,且a +b2>ab ,那么a ≠b D .假设a +b2>ab ,且a ≠b ,那么a >0 ,b >0解析 假设a +b2>ab ,且a ≠b ,那么a =0 ,b >0或a >0 ,b =0或a >0 ,b >0.故D 错误. 答案 D5.(2021·长沙诊断)实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0 x +2y ≥03x +y -5≤0 那么2x +y 的最|大值是( ).A .0B .3C .4D .5解析 设z =2x +y ,得y =-2x +z ,作出不等式对应的区域 ,平移直线y =-2x +z ,由图象可知当直线经过点B 时 ,直线的截距最|大 ,由⎩⎪⎨⎪⎧2x -y =03x +y -5=0 解得⎩⎪⎨⎪⎧x =1y =2 即B (1,2) ,代入z =2x +y ,得z =2x +y =4. 答案 C6.(2021·北京海淀一模)设x ,y ∈R + ,且x +4y =40 ,那么lg x +lg y 的最|大值是( ).A .40B .10C .4D .2解析 ∵x ,y ∈R + ,∴40=x +4y ≥24xy =4xy ,当x =4y =20时取等号 , ∴xy ≤100 ,lg x +lg y =lg xy ≤lg 100=2. 答案 D7.某种生产设备购置时费用为10万元 ,每年的设备管理费共计9千元 ,这种生产设备的维修费为第|一年2千元 ,第二年4千元 ,第三年6千元 ,而且以后以每年2千元的增量逐年递增 ,那么这种生产设备最|多使用多少年报废最|合算(即使用多少年的年平均费用最|少)( ). A .8 B .9 C .10 D .11解析 设使用x 年的年平均费用为y 万元.由 ,得y =10+0.9x +0.2x 2+0.2x2x ,即y =1+10x +x 10(x ∈N *).由根本不等式知y ≥1+210x ·x 10=3 ,当且仅当10x =x10 ,即x =10时取等号.因此使用10年报废最|合算 ,年平均费用为3万元. 答案 C8.(2021·天水一模)实数x ,y 满足⎩⎪⎨⎪⎧x ≥1 y ≤a (a >1)x -y ≤0 假设目标函数z =x +y 取得最|大值4 ,那么实数a 的值为( ). A .4 B .3 C .2 D.32 解析作出可行域 ,由题意可知可行域为△ABC 内部及边界 ,y =-x +z ,那么z 的几何意义为直线在y 轴上的截距 ,将目标函数平移可知当直线经过点A 时 ,目标函数取得最|大值4 ,此时A 点坐标为(a ,a ) ,代入得4=a +a =2a ,所以a =2. 答案 C9.(2021·湖州模拟)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0x -y +2≥0x ≥0 y ≥0.假设目标函数z =ax+by (a >0 ,b >0)的最|大值为12 ,那么2a +3b 的最|小值为( ).A.256B.83C.113 D .4解析 不等式表示的平面区域如下图阴影局部.当直线ax +by =z (a >0 ,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时 ,目标函数z =ax +by (a >0 ,b >0)取得最|大值12 ,即4a +6b =12 ,即2a +3b =6. 所以2a +3b =⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6=136+⎝ ⎛⎭⎪⎫b a +a b≥136+2=256(当且仅当a =b =65时等号成立). 答案 A10.(2021·金丽衢十二校联考)任意非零实数x ,y 满足3x 2+4xy ≤λ(x 2+y 2)恒成立 ,那么实数λ的最|小值为( ).A .4B .5 C.115D.72解析 依题意 ,得3x 2+4xy ≤3x 2+[x 2+(2y )2]=4(x 2+y 2) ,因此有3x 2+4xyx 2+y2≤4 ,当且仅当x =2y 时取等号 ,即3x 2+4xy x 2+y 2的最|大值是4 ,结合题意得λ≥3x 2+4xyx 2+y 2 ,故λ≥4 ,即λ的最|小值是4. 答案 A 二、填空题11.(2021·烟台模拟)关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎪⎫-13 12 ,那么不等式-cx 2+2x -a >0的解集为________.解析由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎪⎫-13 12知a <0 ,且-13 ,12为方程ax 2+2x +c =0的两个根 ,由根与系数的关系得-13+12=-2a ,⎝ ⎛⎭⎪⎫-13×12=ca ,解得a =-12 ,c =2 ,∴-cx 2+2x -a >0 ,即2x 2-2x -12<0 ,其解集为(-2,3). 答案 (-2,3)12.(2021·武汉质检)f (x )=⎩⎪⎨⎪⎧3xx ≥0⎝ ⎛⎭⎪⎫13xx <0那么不等式f (x )<9的解集是________.解析 当x ≥0时 ,由3x <9得0≤x <2. 当x <0时 ,由⎝ ⎛⎭⎪⎫13x <9得-2<x <0.故f (x )<9的解集为(-2,2). 答案 (-2,2)13.(2021·湖北七市联考)点P (x ,y )在不等式组⎩⎪⎨⎪⎧x ≥0 x +y ≤3y ≥x +1表示的平面区域内 ,假设点P (x ,y )到直线y =kx -1(k >0)的最|大距离为2 2 ,那么k =________. 解析 在坐标平面内画出题中的不等式组表示的平面区域及直线y =kx -1的大概位置 ,如下图 ,因为k >0 ,所以由图可知 ,点(0,3)到直线y =kx -1的距离最|大 ,因此|0-1-3|k 2+1=2 2 ,解得k =1(负值舍去).答案 114.(2021·湘潭诊断)向量a =(x -1,2) ,b =(4 ,y ) ,假设a ⊥b ,那么9x +3y 的最|小值为________.解析 由a ⊥b 得a ·b =4(x -1)+2y =0 ,即2x +y =2.所以9x +3y ≥29x ·3y =232x +y =6. 答案 615.(2021·宁波十校联考)设a ,b ∈(0 ,+∞) ,a ≠b ,x ,y ∈(0 ,+∞) ,那么a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时 ,上式取等号 ,利用以上结论 ,可以得到函数f (x )=2x+91-2x(x ∈(0 ,12))的最|小值为________. 解析 根据结论 ,f (x )=2x +91-2x =42x +91-2x ≥(2+3)22x +(1-2x )=25 ,当且仅当22x =31-2x ,即x =15∈(0 ,12)时 ,f (x )取最|小值为25. 答案 25 三、解答题16.(2021·长沙模拟)f (x )=2xx 2+6. (1)假设f (x )>k 的解集为{x |x <-3或x >-2} ,求k 的值; (2)假设对任意x >0 ,f (x )≤t 恒成立 ,求实数t 的范围. 解 (1)f (x )>k ⇔kx 2-2x +6k <0 , 由其解集为{x |x <-3或x >-2} ,得x 1=-3 ,x 2=-2是方程kx 2-2x +6k =0的两根 , 所以-2-3=2k ,即k =-25. (2)∵x >0 ,f (x )=2x x 2+6=2x +6x≤66 , 由f (x )≤t 对任意x >0恒成立 ,故实数t 的取值范围是⎣⎢⎡⎭⎪⎫66 +∞.17.(2021·广州诊断)某单位决定投资3 200元建一仓库(长方体状) ,高度恒定 ,它的后墙利用旧墙不花钱 ,正面用铁栅 ,每米长造价40元 ,两侧墙砌砖 ,每米长造价45元 ,顶部每平方米造价20元 ,求:仓库面积S 的最|大允许值是多少 ?为使S 到达最|大 ,而实际投资又不超过预算 ,那么正面铁栅应设计为多长 ? 解 设铁栅长为x 米 ,一侧砖墙长为y 米 ,那么顶部面积S =xy ,依题设 ,得40x +2×45y +20xy =3 200 ,由根本不等式 ,得3 200≥240x ·90y +20xy =120 xy +20xy =120S +20S ,那么S +6S -160≤0 ,即(S -10)(S +16)≤0 ,故0<S ≤10 ,从而0<S ≤100 ,所以S 的最|大允许值是100平方米 ,取得此最|大值的条件是40x =90y 且xy =100 ,解得x =15 ,即铁栅的长应设计为15米. 18.(2021·泉州调研)函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时 ,讨论f (x )的单调性;(2)假设x ∈[2 ,+∞)时 ,f (x )≥0 ,求a 的取值范围. 解 (1)当a =-2时 ,f (x )=x 3-32x 2+3x +1. f ′(x )=3x 2-62x +3.令f ′(x )=0 ,得x =2-1或2+1.当x ∈(-∞ ,2-1)时 ,f ′(x )>0 ,f (x )在(-∞ ,2-1)上是增函数; 当x ∈(2-1 ,2+1)时 ,f ′(x )<0 ,f (x )在(2-1 ,2+1)上是减函数; 当x ∈(2+1 ,+∞)时 ,f ′(x )>0 ,f (x )在(2+1 ,+∞)上是增函数. (2)法一 ∵当x ∈[2 ,+∞)时 ,f (x )≥0 , ∴3ax 2≥-x 3-3x -1 , ∴a ≥-x 3-1x -13x 2 ,设g (x )=-x 3-1x -13x 2 ,∴求g (x )的最|大值即可 ,那么g ′(x )=-13+1x 2+23x 3=-x 3+3x +23x 3,设h (x )=-x 3+3x +2 ,那么h ′(x )=-3x 2+3 ,当x ≥2时 ,h ′(x )<0 , ∴h (x )在[2 ,+∞)上单调递减 , ∴g ′(x )在[2 ,+∞)上单调递减 , ∴g ′(x )≤g ′(2)=0 , ∴g (x )在(2 ,+∞)上单调递减 , ∴g (x )max =g (2)=-54 , ∴a ≥-54.法二 因为x ∈[2 ,+∞)时 ,f (x )≥0 ,所以由f (2)≥0 ,得a ≥-54. 当a ≥-54 ,x ∈(2 ,+∞)时 ,f ′(x )=3(x 2+2ax +1)≥ 3⎝ ⎛⎭⎪⎫x 2-52x +1=3⎝ ⎛⎭⎪⎫x -12(x -2)>0 , 所以f (x )在(2 ,+∞)上是增函数 ,于是当x ∈[2 ,+∞)时 ,f (x )≥f (2)≥0. 综上 ,a 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫-54 +∞. 学生用书第105页教育工作中的百分之一的废品 ,就会使国|家遭受严重的损失 .- -马卡连柯教师应当善于组织 ,善于行动 ,善于运用诙谐 ,既要快乐适时 ,又要生气得当 .教公众号:惟微小筑。
基本不等式 (2)
ab 叫做两个正数 a、 b的 几何平均数.
两个重要不等式:
b R, 那么a b 2ab 基本不等式1: 如果 a , (当且仅当 a b 时取“ ” 号) . ab b R , 那么 ab 基本不等式2: 如 果 a , 2 (当且仅当 a b 时取“ ” 号) . 注意:两个基本不等式的不同点和相同点: ① 两个不等式的适用范围不同; ② 等号成立的条件相同. ③ 基本不等式2可推广到有限个,如 abc 3 如果 a, b, c R , 那么 abc 3 (当且仅当 a b c 时取“ ” 号) .
解 2: x 1 x 1 0
2 x x 1 2 2 ( x 1) 1 2 ( x 1) 1 2 2 1 x 1 x 1 1 (舍去) 即 x 2或0 当 且 仅 当x 1 x 1 1 当 x 2 时 ,x 的最小值为 2 2 1. x 1
② 当x<0时, x 0,
1 1 1 2 x ( 2 x ) 2 2 x 2 2 x x x
1 2 当且仅当 2 x 时, 取 等 号 . , 即x 2 x 2 1 当x 时, 2 x 有 最 大 值 2 2 . 2 x
2 的最小值 . 例2. 若 x 1, 求 x x 1
3.4 基本不等式 (2)
两个重要不等式:
基本不等式1: 如果 a , b R, 那么a b 2ab
2 2
(当且仅当 a b 时取“ ” 号) .
ab 基本不等式2: 如果 a, b R , 那么 ab 2 (当且仅当 a b 时取“ ” 号) . ab 这 里, 叫做两个正数 a、 b的 算术平均数; 2
3.4基本不等式2
推广: (1)两个正数积为定值,和有最小值。
(2)两个正数和为定值,积有最大值。
变式:
a b (当a b时取“ ”号) (1)当a, b R 时, 2 . b a
1 2. (2)当a, b R 时, a a
练习:
1 1、若x 3,函数y x ,当x为何值时, x 3
函数有最值,并求其最值。 归纳:见和想积,乘积为定值,则和有最小值。
练习:
2: 设x,y满足x+y=40且x,y都是正数,则xy的最大值是( ) A.400 B.100 C.40 D。20
归纳:见积想和,和为定值,则乘积有最大值。 变式1: 已知x, y R , 且x 4 y 1, 则xy的最大值为________
a b ab 2(aFra bibliotek 0, b 0)
1. 重要不等式:若a,b∈R,则a + b ≥ 2ab (当且仅当a = b时,等号成立)
2
2
a+b 2. 基本不等式:若a,b∈R ,则 ≥ ab 2 (当且仅当a = b时,等号成立)
+
3. 注意:两个不等式的适用范围不同;
8 问题:a > 0, 当a取什么值,a + 的值 a 最小?最小值是多少?
(2)求y的最值.
解答
解: 设污水处理池的长为 x m, 总造价为y元,则 y=400· (2x+200/x×2)+248· (2×200/x)+80×200 =800x+259200/x+16000.
259200 16000 ≥ 2 800 x x
基本不等式(2)
的最小值.
注意“1”的妙用
当堂检测
1. 在下列不等式的证明过程中,正确的是( A.若
a, b R
).
,则
a b a b 2 2 b a b a
B.若 a, b R ,则 lg a lg b 2 lg a lg b C.若 x R
2 2 ,则 x 2 x x x
探究
若x 0 ,求
9 f ( x) 4 x x
的最小值.
求 f ( x) 4 x
若
3 0 x 2
9 x 5
( x 5)
的最小值.
,则函数 y x(3 2 x) 的最大值.
小结:若为负数,则添负号变正;
当“积”或“和”不为定值时,要适当的等价变形 。
典型例题
某工厂要建造一个长方体无盖贮水池,其容 3 m ,深为 3m ,如果池底每 1m 2 的 积为 4800 造价为150元,池壁每 1m 2 的造价为120元, 问怎样设计水池能使总造价最低,最低总造 价是多少元?
典型例题Biblioteka 1 1 x 0, y 0 x 2 y 1 .已知 ,满足 ,求 x y
D.若 x R ,则 3x 3 x 2 3x 3 x 2
5 2. 已知 x 4
A.2
,则函数 y 4 x 2
1 的最大值是( ). 4x 5
B.3
C.1
1 D. 2
,则
3. 若 x, y R
,且x
y 1
A.
C.
(2, )
B.[2, )
a b 2 ab
ab (
ab 2 ) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式(一)
教材:人教A版必修5第三章第四节
一、教学内容解析
内容:基本不等式的发现与证明.
内容解析:
本节课是高中数学人教A版必修5第三章第4节第一课时的内容,。
在高中时期,不等式的学习主要分两个阶段:第一阶段的学习安排在必修5第三章,讨论不等式的基本性质、一元二次不等式及其解法、二元一次不等式组及简单的线性规划问题和基本不等式;第二阶段安排在选修4-5“不等式选讲”,对基本不等式的推广、绝对值不等式及其解法、证明不等式的基本方法以及介绍两个经典不等式:柯西不等式和排序不等式。
基本不等式在整个不等式的学习中起着承上启下的作用。
“基本不等式”这节内容在教学中安排三个课时,第一课时的内容是基本不等式的发现与证明,理解基本不等式的结构和等号成立的条件;第二课时的内容是利用基本不等式证明简单不等式及求简单的最值问题。
第三课时的内容是从实际问题中抽象出具体的基本不等式问题,然后应用基本不等式处理最值问题,并深入理解基本不等式的条件和结构特征。
教学重点:应用数形结合的思想理解基本不等式,并从不同角度探究基本不等式的证明过程。
二、教学目标设置
目标:
(1)通过观察“数学家大会”的会标及赵爽弦图,探究出里面蕴含的相等和不等的数值关系,提炼得到重要不等式,体会数学建模的过程;并从国际数学家大会会标和赵爽弦图的相关背景
中,感受数学的文化价值。
(数学抽象、数学建模、直观想象)
(2)通过对剪拼纸片的手工活动中面积大小的直观比较,进一步抽象概括和逻辑推理得到基本不等式,体会活动过程中合作学习的乐趣。
(数学抽象、逻辑推理)
(3)通过基本不等式的证明过程,了解演绎证明的三种常用思想方法。
(逻辑推理)
(4)理解基本不等式的代数和几何意义,体会数形结合的数学思想方法。
(数学抽象、直观想象)
(5)通过例题的分析,初步感知二元变量的函数的概念,以及增加了变量的约束条件会使变量从二元向一元转化的过程。
(数学运算、逻辑推理)
目标解析:
教学目标设置的两个特点:一是教学目标的设置都是以数学核心素养的提升为出发点;二是围绕“以生为本”教学理念,在引导学生通过“自主学习”与“合作探究”,掌握基本不等式证明的过程中,以发展数学核心素养为落脚点,培养学生运用数学建模和数形结合的能力。
三、学生学情分析
本节课的授课对象是高二年级的学生,他们已经具备了平面几何的基本知识,具有良好的图形分析能力和抽象概括能力,他们也已经学习了函数的最值问题以及不等式的性质和解法,但对于基本不等式的多种代数几何背景的理解及用基本不等式解决二元变量函数的最值问题还有些困难。
教学难点:从不同角度探究基本不等式的证明,能利用基本不等式的模型求解函数最值。
四、教学策略分析
本节课采用“情境—问题”的课堂教学模式,即在教师的引导下,以学生的自主探究与合作交流为前提,以问题为导向设计教学情境,以“基本不等式的发现与证明”为基本研究内容,强调学生动手操作和主动参与,让他们在观察、操作、探究等活动中发现并证明基本不等式,并在此过程中逐步提高推理论证能力及数形结合能力。
五、教学过程设计
环节一 创设情境,提出问题
活动1:欣赏数学家会标,提炼出里面蕴含的不等关系 素养指向:数学抽象、数据分析
情境 如图1是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
探究1:会标中有哪些几何图形?能否从正方形、三角形的面积角度来思考,寻找相等关系和不等关系?
【设计意图】融入数学史,渗透数学的文化价值,通过适度点拨,引导学生利用图形中的面积之间存在的数量关系,抽象出重要不等式。
思考:你能对重要不等式222a b ab +≥进行证明吗?等号成立的条件是什么?你能从图形中对“等号成立”进行解释吗?
【设计意图】引导学生从图形上对式子等号成立的条件进行几何解释,增强学生用图“形”表现“数”、用“数”解释图“形”的意识。
环节二 基本不等式的发现与证明 活动2:合作学习,建模探究
素养指向:数学抽象、数学建模、逻辑推理
探究2(操作):请同学们拿出两张大小不同的正方形的纸,并把它们分别沿对角线对折成两
C O
D A
B
E
个等腰直角三角形。
假设两个正方形的面积分别是,a b ,则两个等腰直角三角形的面积分别是22
,a
b
,请跟周围同学讨论一下,如何对这两个等腰直角三角形进行拼接和裁剪可以构成一
个分别以什么发现?
【设计意图】采用剪拼纸片的手工活动,从多边形纸片裁剪掉小三角形纸片后得到的矩形纸片面积变小,学生从中发现并提炼出公式化的基本不等式。
活动3:多角度认识基本不等式,深化理解,揭示本质 素养指向:数学抽象、数学建模、逻辑推理、直观想象
【定义】通常我们把a b +
≥写成)002
,a b
a b +≥>>,称其为基本不等式。
其中,把
2
a b
+叫做两个正数,
a b 的算术平均数,叫做两个正数,a b 的几何平均数,当且仅当a b =时,上述等号成立。
问题1:
基本不等式)002
,a b
a b +≥>>用文字语言如何描述?从数列的角度,还可以怎么描述?
【设计意图】引导学生将符号语言转化成文字语言,巩固学生对基本不等式结构的认识;进一步从数列的角度分析,加深学生对基本不等式本质的理解,同时也让学生建立起新旧知识之间的联系。
问题2
:
特点?
【设计意图】通过构造方程并运用判别式大于等于0得到基本不等式,意在沟通等式与不等式之间的联系,发展学生的辩证思维。
问题3:你能否借助已证的重要不等式222a b ab +
≥,分析)00,a b a b +≥>>的成立性吗?
【设计意图】激发学生的思维,使其从多角度发现重要不等式222a b ab
+≥与基本不等式)00,a b a b +≥>>的内在联系。
问题4:如图2,取线段AB a b =+,其中,AC a BC b ==,以AB 为直径作O ,过点C 作垂直于AB 的弦DE ,连接,AD BD . (1) 试找出图中哪条线段表示,a b 的算术平均值?哪条线段表示
,a b 的几何平均值?它们分别有什么几何意义呢?
(2) 移动点C 在线段AB 上的位置(在几何画板上),你有什么
结论呢?
(3)你能从图中解释基本不等式
)002
,a b
a b +≥>>等号成立的条件吗? 【设计意图】借助学生熟悉的平面几何图形,引导学生从几何图形中抽象出基本不等式,使学生体会从形到数的转化,逐步领悟数形结合思想的内涵;设置探究问题,可以促使学生从运动、变化的角度思考问题和解决问题。
活动4:多种方法证明基本不等式 素养指向:数学抽象、逻辑推理
思考:刚才我们得到这个不等式的过程,就是它的几何证明方法,你还能用其它方法证明这个不等式吗?
【设计意图】引导学生运用作差法、分析法、综合法等方法证明基本不等式,让学生了解这些证法的要领和步骤。
环节三 基本不等式的应用
活动5:完成相关练习,加深对基本不等式的理解 素养指向:数学运算、逻辑推理
问题5:由基本不等式出发,你还能推导出哪些结论?
【设计意图】引导学生根据刚学的不等式的性质和已推出的结论导出更多的结论,一方面可以促使学生对公式的灵活应用,为后续的不等式的证明教学做铺垫;另一方面,创造机会可以让学生进行发散性思维的训练,有助于学生的探究、创新、逻辑论证能力的提升。
例:(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?
(2)一段长为36m 的篱笆围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大.最大的面积是多少?
【设计意图】体现基本不等式的实际运用,让学生感受到数学来源于生活,服务于生活。
课堂小结:
1、 知识内容: 一个公式、两个概念、三类语言、四种证法。
一个公式:
)002
,a b
a b +≥>> 两个概念:算术平均数2
a b
+,
三类语言:符号语言、文字语言、图形语言 四种证法:比较法、分析法、综合法、几何法 2、 数学思想:数学建模、数形结合
作业布置:
课堂作业:教材第100页习题A 组的第1,2题
课后作业:请同学们课后在网上查找基本不等式的其他代数几何证明方法,整理并相互交流。
【设计意图】课堂作业加深学生对基本不等式的理解和应用,课后作业拓展学生思维,培养其数形结合的能力。
六、课堂教学目标检测设计。