非线性回归分析(常见曲线及方程)

合集下载

判断多元非线性回归经验公式的精读

判断多元非线性回归经验公式的精读

判断多元非线性回归经验公式的精读什么是多元非线性回归分析多元非线性回归分析是指包含两个以上变量的非线性回归模型。

对多元非线性回归模型求解的传统做法,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理。

有些非线性回归模型,经过适当的数学变换,便能得到它的线性化的表达形式,但对另外一些非线性回归模型,仅仅做变量变换根本无济于事。

属于前一情况的非线性回归模型,一般称为内蕴的线性回归,而后者则称之为内蕴的非线性回归。

多元非线性回归分析方程如果自变数与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的。

例如,二元二次多项式回归方程为:令,及于是上式化为五元一次线性回归方程:这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程。

多元非线性回归分析模型一、常见的内蕴多元性回归模型只要对模型中的变量进行数学变换,比如自然对数变换等,就可以将其转化具有标准形式特征的多元线性回归模型。

1.多重弹性模型是一组对的样本观察资料,则称存在下列关系的非线性回归模型为多重弹性模型(1)上述模型中的各解释变量的幂,能够说明解释变量的相对变化对被解释变量产生的相对影响,我们正式从这一角度说它是多重弹性模型的。

2.Cobb-Dauglas生产函数模型(2)其中,yi表示产出总量,Ki为资本要素,Li为劳动力要素,A、α、β为参数。

比较式(1)和(2),不难看出C-D生产函数模型实际是多重弹性模型的简化或特殊形式。

3.总成本函数模型用yi表示总成本,xi表示产出规模,则称具有如下关系的回归模型为总成本函数模型,i=1,2,…,n(3) 总成本函数是多项式函数的特殊形式,更为一般的情况就是多项式回归模型:,i=1,2,…,n(4) 多项式回归模型从宽松的角度讲,可以不把它看成是非线性回归模型,在这里主要是用来说明一下问题,把它看成内蕴的线性回归模型也无妨。

二、内蕴的非线性回归模型内蕴非线性回归模型的形式有很多种,大部分难以根据经济含义进行称呼,下面,列出几个以帮助大家增加认识。

(整理版)非线性回归问题

(整理版)非线性回归问题

非线性回归问题两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型。

分析非线性回归问题的具体做法是:〔1〕假设问题中已给出经验公式,这时可以将变量x 进行置换〔换元〕,将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决. 〔2〕假设问题中没有给出经验公式,需要我们画出数据的散点图,通过与各种函数〔如指数函数、对数函数、幂函数等〕的图象作比拟,选择一种与这些散点拟合得最好的函数,然后采用适当的变量置换,将问题化为线性回归分析问题来解决. 下面举例说明非线性回归分析问题的解法.例1 在彩色显影中,由经验可知:形成染料光学密度y 与析出银的光学密度x 由公式e b xy A =〔b <0〕表示,现测得实验数据如下:试求对的回归方程.分析:该例是一个非线性回归分析问题,由于题目中已给定了要求的曲线为eb xy A =〔b <0〕类型,我们只要通过所给的11对样本数据求出A 和b ,即可确定x 与y 的相关关系的曲线方程.解:由题意可知,对于给定的公式e bxy A =〔b <0〕两边取自然对数,得ln ln b y A x=+. 与线性回归方程对照可以看出,只要取1u x=,ln v y =,ln a A =,就有v a bu =+,这是v 对u 的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和a . 题目中所给数据由变量置换1u =,ln v y =变为如表所示的数据:由于|r |=0.998>0.602,可知u 与v 具有很强的线性相关关系. 再求得0.146b =-,0.548a =,∴v =0.5480.146u -,把u 和v 置换回来可得0.146ln 0.548y x=-, ∴0.1460.1460.1460.5480.548e1.73xxxy eee---===,∴回归曲线方程为0.1461.73exy -=.点评:解决此题的思路是通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤.例2 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:天数x 1 2 3 4 5 6 繁殖个数y612254995190〔1〕作出这些数据的散点图; 〔2〕求出y 对x 的回归方程. 解析:〔1〕作出散点图如图1所示.〔2〕由散点图看出样本点分布在一条指数型曲线e bxy c =〔c >0〕的周围,那么ln ln y bx c =+.令ln ln z y a c ==,,那么z bx a =+.x1 2 3 4 5 6 z相应的散点图如图2. 从图2可以看出,变换后的样本点分布在一条直线附近,因此可以用线性回归方程来拟合.由表中数据得到线性回归方程为0.69 1.115z x =+.因此 细菌的繁殖个数对温度的非线性回归方程为0.69 1.115e x y +=.点评:通过作散点图看出,此题是一个非线性回归问题,通过变量置换转化为线性回归问题求解的.值得注意的是,此题的数据与回归曲线是拟合得相当好的,这说明确定性关系〔如公式、函数关系式〕和相关关系之间并没有一条不可逾越的鸿沟.由于有实验误差、测量误差等存在,变量之间确实定性关系往往通过相关关系表现出来;反过来,在有些问题中,可以研究相关关系来深入了解变量变化的内在规律,从而找到它们确实定性关系.。

非线性回归分析常见曲线及方程

非线性回归分析常见曲线及方程

非线性回归分析常见曲线及方程Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】非线性回归分析回归分析中,当研究的因果关系只涉及和一个时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1bay x =+2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=a/e b x其中a>0,7.S型曲线(Logistic)1e x ya b-=+8.对数曲线y=a+b log x,x>09.指数曲线y=a e bx其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x,beta,r,J)求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显着性水平为1-alpha的置信区间Y,DELTA.例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程2ˆct=.+btas+解:1. 对将要拟合的非线性模型y=a/e b x,建立M文件如下:function yhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[ 10];beta0=[8 2]';3.求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta即得回归模型为:1.064111.6036e x y-=4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化曲线方程曲线图形变换公式变换后的线性函数by ax=ln ln ln c a v x u y=== u c bv +=bx y ae =ln ln c a u y==u c bv +=b xe y a=1ln ln x c a v u y===u c bv +=ln y a b x +=ln v x u y== u bv +=a。

曲线回归

曲线回归

x
(四) 双曲关系曲线
x ˆ y a bx
a bx ˆ y x 1 ˆ y a bx
y
y
1 b
a>0,b<0
a>0,b>0
0
x
0
a b
x
(五) S型曲线
最著名的曲线是Logistic生长曲线,它最早由比 利时数学家P.F.Vehulst于1838年导出,但直至20世 纪20年代才被生物学家及统计学家R.Pearl和 L.J.Reed重新发现,并逐渐被人们所发现。目前它已 广泛应用于多领域的模拟研究。
x 3.37 4.12 4.87 5.62 6.37 7.12 y 349 374 388 395 401 397
7.87
384
从散点图看。呈单峰趋势,没有明显的凹凸变化,故 预期可用二次式配合。
1 3.37 11.3569 1 4.12 16.9744 X 1 7.87 61.9369
至此即获得了二元线性回归方程:
ˆ 2 165.03532698 y 74.89269841 x1 5.96825397 x2
二、多项式回归的假设检验
(一)多项式回归关系的假设检验
(三)各次分量项的假设检验源自 ae4.5948
98.965
0.39833 x ˆ y 98.965e
二、幂函数曲线方程的配置
ˆ ax y
当x、y都大于0时,
b
ˆ ln a b ln x ln y
ˆ , x ln x 令y ln y
y ln a bx
如果:
ryx
SPyx SS y SS X
ˆ a b1 x b2 x y

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是⾮线性的。

例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。

可采⽤⾮线性⽅法进⾏估计。

估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。

计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。

专⽤软件使这种计算变得⾮常容易。

但本章不是介绍这类模型的估计。

另外还有⼀类⾮线性回归模型。

其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。

称此类模型为可线性化的⾮线性模型。

下⾯介绍⼏种典型的可以线性化的⾮线性模型。

4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。

显然x t 和y t 的关系是⾮线性的。

对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。

其中u t 表⽰随机误差项。

010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。

x t和y t的关系是⾮线性的。

令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。

图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。

非线性回归分析常见模型

非线性回归分析常见模型

非线性回归常见模型一.基本内容模型一xc e c y 21=,其中21,c c 为常数.将xc ec y 21=两边取对数,得x c c e c y xc 211ln )ln(ln 2+==,令21,ln ,ln c b c a y z ===,从而得到z 与x 的线性经验回归方程a bx z +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型二221c x c y +=,其中21,c c 为常数.令a c b c x t ===212,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型三21c x c y +=,其中21,c c 为常数.a cbc x t ===21,,,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型四反比例函数模型:1y a b x=+令xt 1=,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.模型五三角函数模型:sin y a b x=+令x t sin =,则变换后得到y 与t 的线性经验回归方程a bt y +=,用公式求即可,这样就建立了y 与x 非线性经验回归方程.二.例题分析例1.用模型e kx y a =拟合一组数据组()(),1,2,,7i i x y i =⋅⋅⋅,其中1277x x x ++⋅⋅⋅+=;设ln z y =,得变换后的线性回归方程为ˆ4zx =+,则127y y y ⋅⋅⋅=()A.70e B.70C.35e D.35【解析】因为1277x x x ++⋅⋅⋅+=,所以1x =,45z x =+=,即()127127ln ...ln ln ...ln 577y y y y y y +++==,所以35127e y y y ⋅⋅⋅=.故选:C例2.一只红铃虫产卵数y 和温度x 有关,现测得一组数据()(),1,2,,10i i x y i =⋅⋅⋅,可用模型21e c x y c =拟合,设ln z y =,其变换后的线性回归方程为4zbx =- ,若1210300x x x ++⋅⋅⋅+=,501210e y y y ⋅⋅⋅=,e 为自然常数,则12c c =________.【解析】21e c x y c =经过ln z y =变换后,得到21ln ln z y c x c ==+,根据题意1ln 4c =-,故41e c -=,又1210300x x x ++⋅⋅⋅+=,故30x =,5012101210e ln ln ln 50y y y y y y ⋅⋅⋅=⇒++⋅⋅⋅+=,故5z =,于是回归方程为4zbx =- 一定经过(30,5),故ˆ3045b -=,解得ˆ0.3b =,即20.3c =,于是12c c =40.3e -.故答案为:40.3e -.该景点为了预测2023年的旅游人数,建立了模型①:由最小二乘法公式求得的数据如下表所示,并根据数据绘制了如图所示的散点图.。

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

非线性回归分析(常见曲线与方程)

非线性回归分析(常见曲线与方程)

非线性回归分析回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic)对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析常见非线性规划曲线1.双曲线1b a yx2.二次曲线3.三次曲线4.幂函数曲线5.指数函数曲线(Gompertz)6.倒指数曲线y=ab/xe其中a>0,7.S型曲线(Logistic) y1 abex8.对数曲线y=a+blogx,x>0bx9.指数曲线y=ae其中参数a>01.回归:(1)确定回归系数的命令[beta,r,J]=nlinfit(x,y,’model’,beta0)(2)非线性回归命令:nlintool(x,y,’model’,beta0,alpha)2.预测和预测误差估计:[Y,DELTA]=nlpredci(’model’,x,beta,r,J)求nlinfit或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.例2观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程s?a btct2.t(s)1/302/303/304/305/306/307/30s(cm)11.8615.6720.6026.6933.7141.9351.13t(s)8/309/3010/3011/3012/3013/3014/30s(cm)61.4972.9085.4499.08113.77129.54146.48解:b/x,建立M文件volum.m如下:e1.对将要拟合的非线性模型y=afunctionyhat=volum(beta,x)yhat=beta(1)*exp(beta(2)./x);2.输入数据:x=2:16;y=[6.428.209.589.59.7109.939.9910.4910.5910.6010.8010.6010.9010.76];beta0=[82]';3.求回归系数:[beta,r,J]=nlinfit(x',y','volum',beta0);beta2.y11.6036ex即得回归模型为:4.预测及作图:[YY,delta]=nlpredci('volum',x',beta,r,J);plot(x,y,'k+',x,YY,'r')2.非线性函数的线性化曲线方程曲线图形变换公式变换后的线性函数b y=ax c=lnavlnx=u=ylnu=cbvbx y=ae c=alnu=ylnu=cbvc=alny=a1bvxxeu=ylnu=cbvy=abxvlnxln==u=abvuy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性回归分析
回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理
两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic) 对数曲线、指数曲线等,以这些变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析
常见非线性规划曲线
1.双曲线1b
a
y x =+
2.二次曲线
3.三次曲线
4.幂函数曲线
5.指数函数曲线(Gompertz)
6.倒指数曲线y=a
/
e b x其中a>0,
7.S型曲线(Logistic)
1
e x y
a b-=
+
8.对数曲线y=a+b log x,x>0
9.指数曲线y=a e bx其中参数a>0
1.回归:
(1)确定回归系数的命令
[beta,r,J]=nlinfit(x,y,’model’,beta0)
(2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha)
2.预测和预测误差估计:
[Y,DELTA]=nlpredci(’model’, x,beta,r,J)
求nlinfit 或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA.
例2 观测物体降落的距离s与时间t的关系,得到数据如下表,求s
2
解:
1. 对将要拟合的非线性模型y=a/
e b x,建立M文件volum.m如下:
function yhat=volum(beta,x)
yhat=beta(1)*exp(beta(2)./x);
2.输入数据:
x=2:16;
y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];
beta0=[8 2]';
3.求回归系数:
[beta,r ,J]=nlinfit(x',y','volum',beta0);
beta
即得回归模型为:
1.0641
11.6036e x y-
=
4.预测及作图:
[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')
2.非线性函数的线性化
曲线方程
曲线图形
变换公式
变换后的线性函数
b
y ax

ln ln ln c a v x u y
=== u c bv +=
bx
y ae

ln ln c a u y
==
u c bv +=
b x
e y a

1ln ln x c a v u y
===
u c bv +=
ln y a b x +=
ln v x u y
== u bv +=a。

相关文档
最新文档