2.2常见曲线的参数方程

合集下载

第二讲:曲线的参数方程

第二讲:曲线的参数方程

1.第二讲:曲线的参数方程参数方程的概念1.参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:=f (t )=g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M (x ,y )都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.(2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.2.参数方程与普通方程的区别与联系(1)区别:普通方程F (x ,y )=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y=f (t )=g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程.2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程如图圆O 与x 轴正半轴交点M 0(r ,0).(1)设M (x ,y )为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O的参数其中参数θ的几何意义是OM 0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M 0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM 0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 其中参数t 的物理意义是质点做匀速圆周运动的时间.2.圆心为C (a ,b ),半径为r 的圆的参数方程圆心为(a ,b ),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐3.参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t )(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二圆锥曲线的参数方程1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y 2a 2+x 2b 2=1(a >b >0)φ是参数),规定参数φ的取值范围是[0,2π).(3)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为φ是参数).2.双曲线的参数方程和抛物线的参数方程1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x 2a 2-y 2b 2=1规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y 2a 2-x 2b 2=12.抛物线的参数方程(1)抛物线y 2=2px (2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数.三直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M =x 0+t cos α=y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)=x 0+at =y 0+bt(t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.四渐开线与摆线(了解)1.渐开线的概念及参数方程(1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y )φ是参数).这就是圆的渐开线的参数方程.2.摆线的概念及参数方程(1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称摆线,又叫旋轮线.(2)半径为r的圆所产生摆线的参数方程为φ是参数).。

曲线与曲面的参数方程

曲线与曲面的参数方程

曲线与曲面的参数方程曲线与曲面是数学中的基本概念,它们在几何学、物理学和工程学等领域中有着重要的应用。

本文将介绍曲线与曲面的参数方程,以及它们在实际问题中的应用。

一、曲线的参数方程曲线是平面或空间中的一条连续的线段,它可以用参数方程来表示。

参数方程是指将曲线上的点的坐标用参数表示,而不是直接用坐标表示。

对于二维平面曲线,参数方程通常形式为:x = f(t)y = g(t)其中,t为参数,f(t)和g(t)是与参数t有关的函数。

通过不同的参数t取值,可以得到曲线上的各个点,从而描述整个曲线。

举个例子,考虑单位圆的参数方程。

圆的方程为x² + y² = 1,而参数方程为:x = cos(t)y = sin(t)其中,参数t的取值范围为0到2π。

当t取0时,x = cos(0) = 1,y= sin(0) = 0,即得到圆的右端点;当t取π/2时,x = cos(π/2) = 0,y =sin(π/2) = 1,即得到圆的上端点;依此类推,当t取2π时,又得到圆的右端点,从而完成了整个圆的参数方程描述。

二、曲面的参数方程曲面是空间中的一片连续的平面区域,它可以用参数方程来表示。

参数方程是指将曲面上的点的坐标用参数表示,而不是直接用坐标表示。

对于三维空间中的曲面,参数方程通常形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,u和v为参数,f(u, v)、g(u, v)和h(u, v)是与参数u和v有关的函数。

通过不同的参数u和v的取值,可以得到曲面上的各个点,从而描述整个曲面。

举个例子,考虑球面的参数方程。

球面的方程为x² + y² + z² = r²,而参数方程为:x = r sinθ cosφy = r sinθ sinφz = r c osθ其中,r为球的半径,θ为极角,范围是0到π,φ为方位角,范围是0到2π。

曲线的参数方程

曲线的参数方程
������ = ������ ������- 1 sin������,
如果t 是常数,θ 是参数,那么可以利用公式
������
sin2θ+cos2θ=1 消参;如果 θ 是常数,t 是参数,那么适当变形后可以利

������ + 1
2

������
������-
1 ������
2
= 4 消参.
-13-
【做一做3-2】 已知圆的方程为x2+y2-6y=0,将它化为参数方程.
解:由x2+y2-6y=0,
得x2+(y-3)2=9.
令x=3cos θ,y-3=3sin θ,
所以圆的参数方程为
������ ������
= =
3cos������, 3 + 3sin������
(������为参数).
-9-

, 并且对于������的每一个允许值, 由方程组
∗ 所确定的点������ ������, ������ 都在这条曲线上, 那么方程 ∗ 就叫做这条曲
线的参数方程, 联系变数������, ������的变数������叫做参变数, 简称参数. 相对于
参数方程而言, 直接给出点的坐标间关系的方程叫做普通方程.
(2)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意
义的变数,也可以是没有明显实际意义的变数.
-4-
一 曲线的参数方程
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
【做一做 1】
若点 P(2,4)在参数方程

常见曲线的参数方程

常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。

设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。

那么点A 的横坐标为x ,点B 的纵坐标为y 。

由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。

3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。

①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。

曲面与曲线知识点总结

曲面与曲线知识点总结

曲面与曲线知识点总结一、曲线与曲面的基本概念曲线是在平面上的点按照特定的规则所组成的图形,而曲面则是在三维空间内的点按照特定的规则所组成的图形。

在数学上,我们可以用函数来描述曲线和曲面,从而研究它们的性质和特点。

1.1 曲线的性质曲线可以是直线、圆、椭圆、抛物线、双曲线等不同类型的图形。

我们可以通过曲线的方程以及参数方程来描述它的形状和位置。

曲线的长短、曲率、切线、法线等性质对于描述曲线的形态和特点至关重要。

1.2 曲面的性质曲面可以是球面、圆柱面、圆锥面、双曲面、抛物面等不同类型的图形。

我们可以用二元函数或者参数方程来描述曲面的形状和位置。

曲面的曲率、切线、法线等性质是研究曲面形态的重要工具。

1.3 直角坐标系和参数方程在研究曲线和曲面的性质时,我们可以使用直角坐标系、参数方程和极坐标系等不同的数学工具来描述它们的形态和位置关系。

不同的描述方法可以帮助我们更好地理解曲线和曲面的性质。

二、曲线的方程与性质曲线方程是研究曲线性质的重要工具,通过曲线方程我们可以得到曲线的形状、位置、长度、曲率等重要信息。

2.1 一元曲线的方程一元曲线的方程可以用直角坐标系的方程或者参数方程来表示。

常见的一元曲线包括直线、圆和椭圆、抛物线、双曲线等。

这些曲线都有各自的特点和性质,通过曲线方程我们可以了解它们的形状和位置关系。

2.2 二元曲线的方程二元曲线的方程可以用参数方程或者隐式方程来表示。

常见的二元曲线包括螺线、双曲线、阿基米德螺线等。

通过曲线方程我们可以了解二元曲线的性质和特点。

2.3 曲线的性质曲线的性质包括长度、曲率、切线、法线等重要内容。

通过曲线方程和导数的求解,我们可以求得曲线的长度、曲率和切线、法线等相关信息,从而了解曲线的形态和特点。

三、曲面的方程与性质曲面方程是研究曲面性质的重要工具,通过曲面方程我们可以得到曲面的形状、位置、曲率等重要信息。

3.1 一元曲面的方程一元曲面的方程可以用隐式方程或者参数方程来表示。

2.1-2.2:平面曲线和曲面的方程

2.1-2.2:平面曲线和曲面的方程
F(x,y)=0 与一条曲线有着关系: (1) 满足方程的
(x, y) 必是曲线上某一点的坐标; (2) 曲线上任何一点 的坐标(x, y)满足这个方程. 那么这个方程就叫做这条 曲线的方程, 而这条曲线叫做这个方程的图形.
以下只考虑直角坐标系 例1 求圆心在坐标原点,半径为R的圆的方程.
解: 设M(x,y)是圆上任意一点, 则特征条件为
i
当t变化时, 动点P在平面上画出一条曲线,显然, 这条曲线
也可以看作是由动径矢r (t )的终点P画出.也就是说, 一个
起点固定在坐标原点的矢量, 它若随着一个参数变化, 那么它的终点就描画出一条曲线.
r r (t ) 我们称动径矢 r (t ) 是变数t的矢性函数. 记为 at b
Ax By C 0
也叫做一般方程
例2
方程 r (a cos t )i (b sin t ) j ,(a, b 0),
在平面上表示什么曲线?
椭圆
例2 一个圆在一直线上无滑动地滚动,求圆周上的一点 P的轨迹. y 解: 如图, 经过一段
时间的滚动, 圆与直 线的切点移到A点, 圆心移到C点.
配方得:
( x g ) ( y h) ( z k ) g h k l
2 2 2 2 2 2
所以 当 g 2 h2 k 2 l 0, 三元二次方程表示中心在
(-g, -h, -k), 半径为
g h k l
2 2 2
的球面.
当 g 2 h2 k 2 l 0,
上称为虚球面.
三元二次方程无实图形, 习惯
当 g 2 h2 k 2 l 0,
(-g, -h, -k), 例6

参数方程人教版高中数学

参数方程人教版高中数学

参数方程知识精讲一.参数方程的定义在平面直角坐标系中,若曲线上的任意一点满足,并且对于的每个允许值,由方程组所确定的点都在这条曲线上,则该方程叫曲线的参数方程,变量是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.二.常见曲线的参数方程1.直线标准式:经过点,倾斜角为的直线的参数方程为(为参数).一般式:经过点,倾斜角为的直线的参数方程为(为参数),其中.2.圆的常用参数方程为:为参数.3.圆锥曲线的参数方程椭圆的常用参数方程为:为参数.双曲线的参数方程为(为参数).抛物线的参数方程为(为参数).三点剖析一.方法点拨1.直线的标准式中,参数有明显的几何意义.经过点,倾斜角为的直线的参数方程为(为参数),在直线有任一点,,即表示直线上任一点到定点的距离.若是直线上两点,所对应的参数分别为,则.2.已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法、三角法)转化为普通方程解答.3.对于直线与圆锥曲线曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里经常用到的有代数换元或三角换元.4.参数方程与极坐标的互化问题,需要通过普通方程这一中间桥梁来实现,现将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).题模精讲题模一参数方程化普通方程例1.1、曲线(θ为参数)的对称中心()A、在直线y=2x上B、在直线y=-2x上C、在直线y=x-1上D、在直线y=x+1上例1.2、参数方程(t为参数)所表示的曲线是()A、A选项B、B选项C、C选项D、D选项例1.3、曲线的参数方程是(t是参数,t≠0),它的普通方程是()A、(x-1)2(y-1)=1B、y=C、y=-1D、y=+1题模二直线与圆的参数方程例2.1、设曲线C的参数方程为(θ为参数),直线l的方程为x+y+1=0,则曲线C上到直线l距离为的点的个数为()A、1B、2C、3D、4例2.2、已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段长度.例2.3、在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.题模三参数方程的应用例3.1、设直线l:(l为参数)与曲线C:(t为参数,实数a≠0)交于不同两点,求实数a的取值范围.例3.2、已知点P(x,y)是圆x2+y2=2y上的动点,(1)求2x+y的取值范围;(2)若x+y+a≥0恒成立,求实数a的取值范围.例3.3、在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.随堂练习随练1.1、已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为____.随练1.2、直线y=2x+1的参数方程是()A、(t为参数)B、(t为参数)C、(t为参数)D、(θ为参数)随练1.3、圆的参数方程为,则此圆的半径为______________.随练1.4、极坐标ρ=cosθ和参数方程(t为参数)所表示的图形分别是()A、直线、直线B、直线、圆C、圆、圆D、圆、直线随练1.5、以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径.(Ⅰ)求直线l的参数方程和圆C的极坐标方程;(Ⅱ)试判定直线l和圆C的位置关系.随练1.6、圆C的极坐标方程为,极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,且长度单位相同,直线l的参数方程为(t为参数).(1)求C的直角坐标方程及圆心的极坐标(2)l与C交于A,B两点,求|AB|随练1.7、在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.随练1.8、若x,y为实数,且x2+2xy﹣y2=7,则x2+y2的最小值为______.随练1.9、已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M 到直线C3:(t为参数)距离的最小值.自我总结课后作业作业1、参数方程(θ为参数)化为普通方程是()A、2x-y+1=0B、2x+y-1=0C、2x-y+1=0,x∈[0,1]D、2x+y-1=0,x∈[0,1]作业2、曲线(t为参数)的直角坐标方程是____.作业3、在直角坐标系中,已知直线l:(s为参数)与曲线C:(t 为参数)相交于A、B两点,则|AB|=_______.作业4、已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程与直线l的普通方程;(2)设曲线C与直线l相交于P、Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.作业5、在平面直角坐标系中,坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(,).圆C的参数方程为,(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.作业6、以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为(t为参数),圆C的极坐标方程为ρ=4cos(θ-).(Ⅰ)求直线l和圆C的直角坐标方程;(Ⅱ)若点P(x,y)在圆C上,求x+y的取值范围.作业7、已知直线n的极坐标是pcos(θ+)=4,圆A的参数方程是(θ是参数)(1)将直线n的极坐标方程化为普通方程;(2)求圆A上的点到直线n上点距离的最小值.作业8、在平面直角坐标系xOy 中,已知曲线C1:(t 为参数)与曲线C 2:(θ为参数,a>0).(Ⅰ)若曲线C1与曲线C2有一个公共点在x轴上,求a的值;(Ⅱ)当a=3时,曲线C1与曲线C2交于A,B两点,求A,B两点的距离.作业9、在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.。

2.2.2-2.2.3 双曲线的参数方程 抛物线的参数方程 课件(人教A选修4-4)

2.2.2-2.2.3 双曲线的参数方程  抛物线的参数方程 课件(人教A选修4-4)

提示:参数 α 表示抛物线上除顶点外的任意一点 M,以射线 OM 为终边的角.
[研一题] [例 1] 距离为 2. 在双曲线 x2-y2=1 上求一点 P, P 到直线 y=x 的 使
[精讲详析]
本题考查双曲线的参数方程的应用,解答本题
需要先求出双曲线的参数方程, 设出 P 点的坐标, 建立方程求解. 设 P 的坐标为(secφ, φ), P 到直线 x-y=0 的距离为 2 tan 由 |secφ-tan φ| 得 = 2 2 1 sin φ 得|cos φ-cos φ|=2,|1-sin φ|=2|cos φ|
[研一题] [ 例 3]
x=4secθ, y=3tan θ
如果椭圆右焦点和右顶点分别是双曲线 (θ 为参数)的右顶点和右焦点,求该椭圆上的点到双
曲线渐近线的最大距离.
[精讲详析]
本题考查椭圆及双曲线的参数方程, 解答本题需
要先将双曲线化为普通方程并求得渐近线方程,然后根据已知条 件求出椭圆的参数方程求解即可. x2 y2 ∵16- 9 =1,∴右焦点(5,0),右顶点(4,0).
设 M(x、y)为抛物线上的动点,P(x0,y0)在抛物线的延长 线上, M 为线段 OP 且
x=2t, 的中点, 抛物线的参数方程为 y=2t2,
x0=4t, 由中点坐标公式得 y0=4t2,
1 2 变形为 y0=4x0,即 x2=4y. 表示的为抛物线.
[悟一法] 在求曲线的轨迹和研究曲线及方程的相关问题时,常根据需 要引入一个中间变量即参数(将 x,y 表示成关于参数的函数),然 后消去参数得普通方程.这种方法是参数法,而涉及曲线上的点 的坐标时,可根据曲线的参数方程表示点的坐标.
p p F(2,0),准线 x=-2,设准线与 x 轴的交点为 A.由抛物线定义可 得|EM|=|MF|,所以△MEF 是正三角形,在 Rt△EFA 中,|EF| p =2|FA|,即 3+2=2p,得 p=2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。

设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。

那么点A 的横坐标为x ,点B 的纵坐标为y 。

由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。

3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。

①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。

二、双曲线的参数方程1、以坐标原点O 为中心,焦点在x 轴上,标准方程为22221(0,0)x y a b a b-=>>的双曲线的参数方程为sec (tan x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0,0)y x a b a b-=>>的双曲线的参数方程为tan (sec x b y a ϕϕϕ=⎧⎨=⎩为参数)2、双曲线参数方程的推导如图,以原点O 为圆心,,(0,0)a b a b >>为半径分别作同心圆12,C C ,设A 为圆1C 上任一点,作直线OA ,过点A 作圆1C 的切线'AA 与x 轴交于点'A ,过圆2C 与x 轴的交点B 作圆2C 的切线'BB 与直线OA 交于点'B 。

过点','A B 分别作y 轴,x 轴的平行线','A M B M 交于点M 。

设Ox 为始边,OA 为始边的角为ϕ,点(,)M x y ,那么点'(,0),'(,)A x B b y 因为点A 在圆1C 上,由圆的参数方程的点A 的坐标为(cos ,sin )a a ϕϕ。

所以(cos ,sin )OA a a ϕϕ=,'(cos ,sin )AA x a a ϕϕ=--,因为'OA AA ⊥,所以'0OA AA ⋅=,从而2cos (cos )(sin )0a x a a ϕϕϕ--=,解得cos a x ϕ=,记1sec cos ϕϕ= 则sec x a ϕ=。

因为点'B 在角ϕ的终边上,由三角函数的定义有tan ybϕ=,即tan y b ϕ=⋅ 所以点M 的轨迹的参数方程为sec (tan x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的双曲线的参数方程。

3、双曲线的参数方程中参数ϕ的意义参数ϕ是点M 所对应的圆的半径OA 的旋转角,成为点M 的离心角,而不是OM 的旋转角,通常规定[)0,2ϕπ∈,且2,23ππϕϕ≠≠4、双曲线的参数方程中参数ϕ的意义因为2221sin 1cos cos ϕϕϕ-=,即22sec tan 1ϕϕ-=,可以利用此关系将普通方程和参数方程互化① 由双曲线的参数方程sec (tan x a y b ϕϕϕ=⎧⎨=⎩为参数),易得sec ,tan x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去,得到普通方程22221(0,0)x y a b a b -=>>② 在双曲线的普通方程22221(0,0)x y a b a b -=>>中,令sec ,tan x ya bϕϕ==,从而将普通方程化为参数方程sec (tan x a y a ϕϕϕ=⎧⎨=⎩为参数)三、抛物线的参数方程1、以坐标原点为顶点,开口向右的抛物线22y px =(0)p >的参数方程为22(2x pt t y pt ⎧=⎨=⎩为参数)同样,顶点在坐标原点,开口向上的抛物线22(0)x py p =>的参数方程是22(2x pt t y pt=⎧⎨=⎩为参数)2、抛物线参数方程的推导:如图设抛物线的普通方程为22y px =(0)p >,其中p 表示焦点到准线的距离。

设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角为α。

当α在(,)22ππ-内变化时,点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的点M 与之对应,故可取α为参数来探求抛物线的参数方程。

由于点M 在α的终边上,根据三角函数的定义可得tan yxα=,即tan y x α=,代入抛物线普通方程可得22tan (2tan p x p y ααα⎧=⎪⎪⎨⎪=⎪⎩为参数) 这就是抛物线22y px =(0)p >(不包括顶点)的参数方程。

如果令1,(,0)(0,)tan t t α=∈-∞+∞,则有22(2x pt t y pt ⎧=⎨=⎩为参数) 当0t =时,由参数方程表示的点正好是抛物线的顶点(0,0),因此当(,0)(0,)t ∈-∞+∞时,参数方程就表示整条抛物线。

3、抛物线参数方程中参数t 的意义是表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数。

四、例题:例1、已知椭圆的参数方程为2cos (4sin x y ϕϕϕ=⎧⎨=⎩为参数),点M 在椭圆上,对应的参数3πϕ=,点O 为原点,则直线OM 的斜率为____________.解:当3πϕ=时,2cos 134sin 233x y ππ⎧==⎪⎪⎨⎪==⎪⎩故点M 的坐标为(1,23),所以直线OM 的斜率为23。

例2、已知椭圆的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数,R θ∈),则该椭圆的焦距为________.解:由参数方程得cos 4sin 5xy θθ⎧=⎪⎪⎨⎪=⎪⎩将两式平方相加得椭圆的标准方程为2211625x y +=所以焦距为6= 例3、O 是坐标原点,P 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上离心角为6π-所对应的点,那么直线OP 的倾斜角的正切值是_________ 解;把ϕ=6π-代入椭圆参数方程3cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),可得P点坐标为(1)2-,所以直线OP的倾斜角的正切值是tan 9ϕ==- 例4、已知曲线14cos :(3sin x t C t y t =-+⎧⎨=+⎩为参数),28cos :(3sin x C y θθθ=⎧⎨=⎩为参数)化12,C C 的方程为普通方程,并说明它们分别表示什么曲线;解:221:(4)(3)1C x y ++-=,2:C 221649x y +=,1C 为圆心是(4,3)-,半径是1的圆,2C 为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆。

例5、设M 为抛物线22y x =上的动点,定点0M (1,0)-,点P 为线段0M M 的中点,求点P 的轨迹方程。

解:设点(,)P x y ,令2y t =,则2222y x t ==,得抛物线的参数方程为222x t y t⎧=⎨=⎩,则动点2(2,2)M t t ,定点0M (1,0)-,由中点坐标公式知点P 的坐标满足方程组21(12)21(02)2x t y t ⎧=-+⎪⎪⎨⎪=+⎪⎩ 即212x t y t ⎧=-+⎪⎨⎪=⎩(t 为参数) 这就是P 点的轨迹的参数方程。

消去参数化为普通方程是212y x =+,它是以x 轴为对称轴,顶点为1(,0)2-的抛物线。

例6、在椭圆22194x y+=上求一点M,使点M到直线2100x y+-=的距离最小,并求出最小距离。

解:因为椭圆的参数方程为3cos(2sinxyϕϕϕ=⎧⎨=⎩为参数),所以可设点M的坐标为(3cos,2sin)ϕϕ由点到直线的距离公式,得到点M到直线的距离为:d==)10ϕϕ=--其中ϕ满足于0034cos,sin55ϕϕ==由三角函数的性质知,当ϕϕ-=时,d93cos3cos5ϕϕ==,82sin2sin5ϕϕ==,因此,当点M位于98(,)55时,点M与直线2100x y+-=例7、已知抛物线22(0)y px p=>,O为坐标原点,,M N是抛物线上两点且MN=若直线,OM ON的倾斜角分别为2,33ππ,求抛物线方程。

解:设(,)M x y,由抛物线参数方程可知22cot32cot3x py pππ⎧=⎪⎪⎨⎪=⎪⎩,即23x py p⎧=⎪⎪⎨⎪=⎪⎩故2()3pM p,同理知2(,)3N p p,因为MN=所以16p=,得抛物线方程为213y x=例8、已知两曲线的参数方程分别为sinxyθθ⎧=⎪⎨=⎪⎩(0)θπ≤<和25()4x tt Ry t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________.解:5cos sin x y θθ⎧=⎪⎨=⎪⎩,表示椭圆221(5501)5x y x y +=-≤≤≤≤且 25()4x tt R y t⎧=⎪∈⎨⎪=⎩表示抛物线245y x =,联立得2221(5501)545x y x y y x ⎧+=-≤≤≤≤⎪⎪⎨⎪=⎪⎩且解得245015()x x x x +-=⇒==-或舍 又因为01y ≤≤,所以它们的交点坐标为25(1,)5例9、如图所示,设M 为双曲线22221(0,0)x y a b a b-=>>上任意一点,过点M 作双曲线两渐近线的平行线,分别与两渐近线交于A ,B 两点,试求平行四边形MAOB 的面积。

相关文档
最新文档